09

Новый люминофор ИК-диапазона на основе германата $Sr_3La_2(Ge_3O_9)_2: Nd^{3+}, Ho^{3+}$

© М.А. Мелкозерова, Я.В. Бакланова, О.А. Липина, А.Ю. Чуфаров, А.П. Тютюнник, В.Г. Зубков

Институт химии твердого тела УрО РАН, Екатеринбург, Россия

E-mail: melkozerova@yandex.ru

(Поступила в Редакцию 12 июля 2017 г.)

Прекурсорным методом впервые получен активированный неодимом и гольмием кольцевой германат Sr₃La₂(Ge₃O₉)₂, изоструктурный силикату Sr₃Er₂(Si₃O₉)₂. Установлено, что Nd³⁺ в структуре Sr₃La₂(Ge₃O₉)₂ является сенсибилизатором инфракрасной люминесценции Ho³⁺. При возбуждении излучением с длиной волны 808 nm в спектрах люминесценции Sr₃La_{2-x}Nd_x(Ge₃O₉)₂:Ho³⁺ наблюдается серия эмиссионных линий в коротковолновом и среднем ИК-диапазоне ($1.0-3.4 \mu m$). Наибольшая интенсивность линий при 2.1 и 2.7 μm , связанных с переходами ⁵ $I_7 \rightarrow {}^5I_8$ и ${}^5I_6 \rightarrow {}^5I_7$ в ионе Ho³⁺, обнаружена для составов, содержащих следовые количества гольмия. На основании анализа концентрационных зависимостей интенсивности люминесценции установлен оптимальный состав люминофора, обеспечивающий максимальную эффективность преобразования энергии лазерного излучения. Полученные данные интерпретированы в предположении кросс-релаксационного переноса энергии от Nd³⁺ к Ho³⁺.

Работа выполнена в рамках проекта Российского научного фонда № 16-13-10111.

DOI: 10.21883/FTT.2018.02.45393.206

1. Введение

Силикаты и германаты редкоземельных элементов (РЗЭ) представляют интерес в качестве эмиссионных сред видимого, ближнего и среднего ИК-диапазонов [1–10]. Особое место среди этих материалов занимают иттрийсодержащие силикаты кальция и стронция $A_3Y_2(Si_3O_9)_2$ (A = Ca, Sr) [11–17]. Расположение активных центров на оптимальных для переноса энергии и заряда расстояниях (~ 6.5 Å) в этих соединениях обусловливает высокую интенсивность свечения с квантовым выходом до 90% [15]. К настоящему времени на основе этих оптических матриц, активированных Tb³⁺, Eu²⁺, Mn²⁺, Dy³⁺, Ce³⁺, получены люминофоры синего, желтого, зеленого и белого свечения [12–16].

Ранее нами сообщалось о получении новой группы кольцевых силикатов $Sr_3R_2(Si_3O_9)_2$ (R = Eu-Lu, Y) со структурой подобной Ca₃Y₂(Si₃O₉)₂ (пр. гр. C2/c, Z = 4) [5]. Основным мотивом кристаллической решетки $Sr_3R_2(Si_3O_9)_2$ (R = Eu-Lu, Y) являются дискретные кольцевые анионы $[Si_3O_9]^{6-}$, расположенные между слоями из катионов стронция и РЗЭ. Катионы Sr²⁺ и РЗЭ занимают позиции с шести-, семи- и восьмикратной координацией атомами кислорода. В зависимости от кристаллического радиуса ионы РЗЭ занимают либо все три возможные позиции, либо только две — с координационными числами 6 и 8. Путем замены кремниевых трициклов [Si₃O₉]⁶⁻ на имеющие больший размер германиевые трициклы [Ge₃O₉]⁶⁻ нам удалось расширить границы устойчивости этого структурного типа и получить в виде индивидуальных фаз лантан- и иттрийсодержащие кольцевые германаты, $Sr_3La_2(Ge_3O_9)_2$ и $Sr_3Y_2(Ge_3O_9)_2$ [18]. Было установлено, что данные соединения представляют собой прозрачные в широком диапазоне длин волн среды, которые могут быть использованы в качестве матриц для создания люминофоров видимого, ближнего и среднего ИК-диапазонов. В представленной работе приводятся результаты исследования спектрально-люминесцентных свойств германата $Sr_3La_2(Ge_3O_9)_2$, активированного неодимом и гольмием.

Неодим Nd³⁺ обладает широкими полосами поглощения в видимом и ИК-диапазонах и часто применяется для сенсибилизации люминесценции других ионов РЗЭ, не имеющих в этих областях подходящих полос для возбуждения [19,20]. В частности, было показано, что Nd³⁺ является эффективным сенсибилизатором эмиссии Но³⁺ в германате CaLa₂Ge₃O₁₀ [21] и литий-гафниевом гранате Li₇La₃Hf₂O₁₂ [22]. В спектрах испускания этих систем, активированных Nd³⁺, обнаружена серия эмиссионных линий в ближнем и коротковолновом ИК-диапазоне с максимумом эмиссии при 2-2.3 µm, связанная с присутствием следовых количеств гольмия. Обычно в ИК-люминофорах концентрация активатора составляет от единиц до десятых долей процента [20,23-25]. Однако наличие микроколичеств посторонних ионов РЗЭ может существенно изменить люминесцентные свойства материала. Так ранее было показано, что с ионами Tm³⁺ и Er³⁺, содержание которых не превышало $10^{-5} - 10^{-6}$ mass%, связано возникновение ап-конверсии в кристаллах YVO₄:Nd³⁺ и $KGd(WO_4)_2$ [26,27].

Целью данной работы является установление возможности применения неодима в качестве сенсибилизатора инфракрасной люминесценции трехвалентного гольмия в германате общего состава $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2$: Ho^{3+} .

2. Методика эксперимента

Твердые растворы состава $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2$:Ho³⁺ $(0.025 \le x \le 0.5)$ и Sr₃La_{1.8-y}Nd_{0.2}Ho_y(Ge₃O₉)₂ (y = 5 · 10⁻⁶, 5 · 10⁻⁵, 5 · 10⁻⁴, 5 · 10⁻²) получали прекурсорным методом с использованием лимонной кислоты в качестве комплексообразователя [18]. Заключительный отжиг проводили на воздухе в режиме конвекционного нагрева при 1100°С (20 h). В качестве исходных веществ использовали La₂O₃ (ЛаО-Д; 99.996 mass%), Nd₂O₃ (HO-E; 99.996 mass%), Ho₂O₃ (ГоО-Е; 99.996 mass%), SrCO₃ (осч) и GeO₂ (осч). Методом масс-спектрометрии с индуктивно связанной плазмой показано, что исходные оксиды лантана и неодима содержат микроколичества гольмия. Съемку проводили на приборе Perkin Elmer Elan 9000. Содержание Ho^{3+} в La_2O_3 составляет $1 \cdot 10^{-6}$ mass%, в $Nd_2O_3 - 4 \cdot 10^{-4}$ mass%. В процессе синтеза гольмий количественно переносится в конечные образцы. Поскольку содержание гольмия в La2O3 меньше, чем в Nd₂O₃, то по мере замещения лантана неодимом концентрация Ho^{3+} в $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2$: Ho^{3+} растет. Наименьшее количество гольмия содержится в образце $Sr_3La_{1.975}Nd_{0.025}(Ge_3O_9)_2$ (6 · 10⁻⁸ mole fraction), наибольшее — в $Sr_3La_{1.5}Nd_{0.5}(Ge_3O_9)_2$ $(1 \cdot 10^{-6} \text{ mole})$ fraction). В отличие от $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2:Ho^{3+}$, в твердые растворы с постоянным содержанием неодима Sr₃La_{1.8-v}Nd_{0.2}Ho_v(Ge₃O₉)₂ гольмий вводили специально в заданных количествах $y = 5 \cdot 10^{-6}$, $5 \cdot 10^{-5}$, $5 \cdot 10^{-4}, 5 \cdot 10^{-2}.$

Рентгенофазовый анализ (РФА) продуктов отжига осуществляли с помощью автоматизированного дифрактометра STADI-Р (STOE, Германия). Идентификацию фаз проводили с использованием картотеки PDF2 (ICDD, 2009). Параметры решетки и массовые доли примесной фазы определяли методом Ритвельда с использованием программного пакета GSAS [28].

Спектры диффузного отражения регистрировали в диапазоне длин волн 200-850 nm с помощью спектрофотометра UV-3600 (Shimadzu, Япония), оснащенного приставкой ISR-3100 с интегрирующей сферой. В качестве эталона использовали BaSO₄ (осч).

Спектры люминесценции в инфракрасной области получали методом синхронной съемки с использованием монохроматора МДР-204 (90° геометрия, дифракционная решетка 300 lines/mm; оптический затвор, осуществляющий модуляцию с частотой 200 Hz, оптический фильтр ИКС7) и PbS фотосопротивления (ЛОМО-фотоника, Россия). Для возбуждения люминесценции использовали диодный лазер, $\lambda_{\rm ex} = 808$ nm, P = 150 mW (KLM-H808-120-5, ФТИ-оптроник, Россия). Мощность лазерного излучения контролировали прибором 13 РЕМ

001 (Melles Griot, США). Спектры регистрировали без корректировки на спектральную чувствительность детектора.

3. Экспериментальные результаты и их обсуждение

Дифрактограммы твердых растворов $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2:Ho^{3+}$ $(0.025 \le x \le 0.5)$ и $(y = 5 \cdot 10^{-6})$ $Sr_{3}La_{1.8-v}Nd_{0.2}Ho_{v}(Ge_{3}O_{9})_{2}$ $5 \cdot 10^{-5}$, $5 \cdot 10^{-4}$, $5 \cdot 10^{-2}$) имеют профиль характерный для силиката $Sr_3Er_2(Si_3O_9)_2$ [5]. В качестве примеси во всех образцах присутствует фаза La₈Sr₂Ge₆O₂₆ со структурой апатита (PDF2 № 01-073-9210), содержание которой не превышает 2 mass%. Рентгенограммы $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2:Ho^{3+}$ проиндицированы В моноклинной сингонии (пространственная группа C2/c, Z = 4). Кристаллические параметры твердых растворов $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2: Ho^{3+}$ приведены в таблице. При замещении ионов La³⁺ ионами Nd³⁺, имеющими меньший кристаллический радиус [29], наблюдается монотонное уменьшение параметров a, b, c и объема элементарной ячейки V.

На рис. 1 приведены спектры диффузного отражения $Sr_{3}La_{1.8}Nd_{0.2}(Ge_{3}O_{9})_{2}:Ho^{3+}$ и $Sr_{3}La_{1.5}Nd_{0.5}(Ge_{3}O_{9})_{2}$: Ho³⁺, зарегистрированные В УФ, видимом и ближнем ИК диапазонах. Представлены также спектры германата Sr₃La₂(Ge₃O₉)₂ и образца состава $Sr_3La_{1.75}Nd_{0.2}Ho_{0.05}(Ge_3O_9)_2.$ Видно, что незамещенный неодимом германат Sr₃La₂(Ge₃O₉)₂ в данной области прозрачен и не имеет полос поглощения. Спектры отражения твердых растворов $Sr_3La_{1.8}Nd_{0.2}(Ge_3O_9)_2$:Ho³⁺, $Sr_3La_{1.5}Nd_{0.5}(Ge_3O_9)_2$:Ho³⁺ Sr₃La_{1.75}Nd_{0.2}Ho_{0.05}(Ge₃O₉)₂, напротив, состоят и из большого числа неоднородно уширенных

Рис. 1. Спектры диффузного отражения образцов: $I - Sr_3La_2(Ge_3O_9)_2$, $2 - Sr_3La_{1.75}Nd_{0.2}Ho_{0.05}(Ge_3O_9)_2$, $3 - Sr_3La_{1.8}Nd_{0.2}(Ge_3O_9)_2$: Ho³⁺, $4 - Sr_3La_{1.5}Nd_{0.5}(Ge_3O_9)_2$: Ho³⁺.

Кристаллические параметры твердых растворов $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2$: Ho^{3+} (0.025 $\leq x \leq$ 0.5) (пр. гр. C2/c)

x	<i>a</i> , Å	<i>b</i> , Å	<i>c</i> , Å	eta , $^{\circ}$	V, Å ³
0.025	14.180(3)	8.257(2)	15.642(3)	90.597(15)	1831.3(5)
0.05	14.174(3)	8.255(2)	15.633(3)	90.596(15)	1829.0(5)
0.075	14.170(3)	8.248(2)	15.635(3)	90.625(15)	1827.1(5)
0.1	14.167(3)	8.241(2)	15.634(3)	90.624(15)	1825.3(5)
0.125	14.164(3)	8.238(2)	15.630(3)	90.647(15)	1823.7(5)
0.15	14.161(3)	8.239(2)	15.623(3)	90.644(15)	1822.7(5)
0.2	14.156(3)	8.236(2)	15.609(3)	90.675(15)	1819.7(5)
0.3	14.156(3)	8.236(2)	15.606(3)	90.704(15)	1819.3(5)
0.4	14.155(3)	8.236(2)	15.601(3)	90.728(15)	1818.6(5)
0.5	14.159(3)	8.235(2)	15.587(3)	90.744(15)	1817.3(5)

линий, обнаруживающих частично разрешенную тонкую структуру. Наблюдаемые линии связаны с поглощением Nd³⁺, вызванным переходами внутри 4f³-конфигурации [30]. Наиболее интенсивные полосы при ~ 580 , 750 и 800 nm соответствуют переходам неодима из основного состояния ${}^{4}I_{9/2}$ на возбужденные уровни ${}^{4}G_{5/2}$, ${}^{4}F_{7/2}$ и ${}^{4}F_{5/2}$. В областях 550-600 и 800-850 nm присутствуют также полосы от переходов на уровни ${}^{2}G_{7/2}$ и ${}^{2}H_{9/2}$. Из представленных данных видно, что в диапазоне 200-850 nm гольмий не имеет интенсивных полос поглощения. Оптическим переходам в Ho³⁺ в этой области соответствуют лишь слабые линии при ~ 450 nm, связанные с переходами ${}^{5}I_{8} \rightarrow {}^{5}G_{6}$ ${}^{5}I_{8} \rightarrow {}^{5}F_{1}$ в $4f^{10}$ -конфигурации [31]. Величина И оптической щели Eg рассматриваемых образцов $Sr_{3}La_{1.8}Nd_{0.2}(Ge_{3}O_{9})_{2}$: Ho^{3+} , $Sr_{3}La_{1.5}Nd_{0.5}(Ge_{3}O_{9})_{2}$: Ho^{3+} $Sr_3La_{1.75}Nd_{0.2}Ho_{0.05}(Ge_3O_9)_2$, определенная И по фундаментального поглощения, краю близка к установленной ранее для недопированого соединения $Sr_3La_2(Ge_3O_9)$ ($E_g = 4.96 \pm 0.07 \, eV$) и составляет 4.88, 4.93 и 4.96 eV соответственно. Аппроксимацией прямолинейной зависимостью экспериментальных прямонинсиной зависимоство экспериментальных спектров, приведенных к виду $[F(R_{\infty})hv]^{1/n} = f(hv)$ (где $F(R_{\infty})$ — функция Кубелки–Мунка, n = 1/2, 3/2, 2, 3),было показано, что край поглощения Sr₃La₂(Ge₃O₉) формируется непрямыми межзонными переходами [18].

Спектры люминесценции $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2$: Ho³⁺ и Sr₃La_{1.8-v}Nd_{0.2}Ho_v(Ge₃O₉)₂ при возбуждении лазерным диодом с $\lambda_{ex} = 808 \text{ nm}$ представлены серией узких линий в области 1-3.4 µm (рис. 2,3), связанных с 4f-4f переходами в ионах РЗЭ. Наиболее интенсивные линии в диапазонах длин волн 2.0-2.3, 2.5-2.9 и 3.1-3.3 μ m относятся к переходам ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$, ${}^5I_6
ightarrow {}^5I_7$ и ${}^5I_5
ightarrow {}^5I_6$ в Ho $^{3+}$ [32]. Переходы Nd $^{3+}$ с метастабильного мультиплета ${}^{4}F_{3/2}$ на уровни ${}^{4}I_{11/2}$, ⁴*I*_{13/2}, ⁴*I*_{15/2} сопровождаются испусканием в области 1-1.8 µm [30,33]. По техническим причинам, из-за спектральных характеристик оптического фильтра ИКС7, переход ${}^4F_{3/2} \rightarrow {}^4I_{9/2}$ (0.86-0.93 μ m) не был зарегистрирован. Как видно из рис. 2 (вставка), интенсивность эмиссии гольмия при повышении концентрации неодима в Sr₃La_{2-x}Nd_x (Ge₃O₉)₂: Ho³⁺ (0.025 $\leq x \leq 0.5$) первоначально возрастает, проходит через максимум и затем затухает. Максимум испускания наблюдается при x = 0.2 (концентрация $\text{Ho}^{3+} = 4 \cdot 10^{-7}$ mole fraction). Концентрационное тушение эмиссии Ho^{3+} в твердых растворах с фиксированным составом по неодиму $\text{Sr}_3\text{La}_{1.8-y}\text{Nd}_{0.2}\text{Ho}_y(\text{Ge}_3\text{O}_9)_2$ ($y = 5 \cdot 10^{-6}$, $5 \cdot 10^{-5}$, $5 \cdot 10^{-4}$, $5 \cdot 10^{-2}$) происходит при содержании активатора $y > 5 \cdot 10^{-6}$.

Неизменность положения всех эмиссионных линий от концентрации Nd³⁺ свидетельствует об отсутствии структурных изменений в координационном окружении неодима. Наблюдаемое расщепление линий можно отнести к различным межуровневым переходам [33]. Из-за явной асимметрии полос излучения эффективная ширина линии была определена как соотношение интегральной интенсивности линии к пиковой интенсивности. Эффективная ширина эмиссионных линий для состава

Рис. 2. Спектры люминесценции твердых растворов $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2:Ho^{3+}$ (0.025 $\leq x \leq 0.5$). На вставке зависимость интенсивности линии при 2.1 μ m, связанной с переходом ${}^5I_7 \rightarrow {}^5I_8$ (Ho³⁺), от содержания неодима в $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2:Ho^{3+}$ (0.025 $\leq x \leq 0.5$).

Рис. 3. Спектры люминесценции твердых растворов $Sr_3La_{1.8-y}Nd_{0.2}Ho_y(Ge_3O_9)_2$ ($y = 5 \cdot 10^{-6}$, $5 \cdot 10^{-5}$, $5 \cdot 10^{-4}$, $5 \cdot 10^{-2}$).

 $Sr_3La_{1.8}Nd_{0.2}(Ge_3O_9)_2:Ho^{3+}$ при 2.1 и 2.7 μ m составляет 97.9 и 135.8 nm соответственно. Данные значения превышают таковые для германатных (67.5 nm) и халькогенидных стекол (56 nm) [34], а также для тетрагонального граната Li₇La₃Hf₂O₁₂:Nd³⁺, Ho³⁺ (63.6 и 82.6 nm) [22], что делает германаты Sr₃La_{2-x}Nd_x(Ge₃O₉)₂:Ho³⁺ перспективными в качестве широкополосного усилителя коротковолнового ИК-диапазона.

Присутствие в спектрах люминесценции твердых растворов $\operatorname{Sr}_{3}\operatorname{La}_{2-x}\operatorname{Nd}_{x}(\operatorname{Ge}_{3}\operatorname{O}_{9})_{2}:\operatorname{Ho}^{3+}$ И $Sr_{3}La_{1,8-v}Nd_{0,2}Ho_{v}(Ge_{3}O_{9})_{2}$ эмиссионных линий ОТ трехвалентных неодима и гольмия указывает на многостадийный процесс миграции энергии между расположение активными центрами. Учитывая энергетических уровней этих ионов [35], можно предложить следующий механизм передачи энергии (рис. 4). При поглощении излучения лазерного диода $(\lambda_{ex} = 808 \, nm)$ совершается переход Nd³⁺ из основного состояния ${}^{4}I_{9/2}$ в возбужденные состояния ${}^{4}F_{5/2}$ и ${}^{2}H_{9/2}$. Последующий безызлучательный переход приводит к заселению нижележащего метастабильного мультиплета ${}^4F_{3/2}$ ($E \sim 11\ 500\ {\rm cm}^{-1}$), с которого происходят излучательные переходы ${}^4F_{3/2} \to {}^4I_{9/2}$ (0.86–0.93 μ m), ${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$ ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ $(1.05 - 1.10 \,\mu m),$ $(1.3-1.4\,\mu\text{m}), \quad {}^4F_{3/2} \rightarrow {}^4I_{15/2} \quad (1.7-1.9\,\mu\text{m}).$ Второй процесс связан с f-f переходами внутри гольмия. Прямое его возбуждение лазерным излучением с длиной волны $\lambda_{\rm ex} = 808~{\rm nm}~(E = 12\,367\,{\rm cm}^{-1})$ невозможно, так как ближайший уровень ${}^{5}I_{5}$ расположен в диапазоне энергий 11165-11408 сm⁻¹. Наиболее близким по энергии к энергии возбуждения является метастабильный уровень ${}^4F_{3/2}$ Nd³⁺, с которого возможна передача части энергии гольмию по резонансно-индуктивному (мультипольному) механизму и переходу его из основного состояния ${}^{5}I_{8}$ в возбужденное ${}^{5}I_{5}$. Критическое расстояние $R_c = 16$ Å между оптическими центрами для состава Sr₃La_{1.8}Nd_{0.2}(Ge₃O₉)₂, вычисленное по формуле Blasse [36], благоприятствует этому процессу:

$$R_C = 2 \left[\frac{3V}{4\pi x_C N} \right]^{\frac{1}{3}},$$

где V — объем ячейки, χ_c — доля оптических центров, N — число формульных единиц в ячейке. Дальнейшие переходы ${}^5I_5 \rightarrow {}^5I_6$, ${}^5I_6 \rightarrow {}^5I_7$ и ${}^5I_7 \rightarrow {}^5I_8$ в Ho³⁺ сопровождаются эмиссией при 3.2, 2.7 и 2.1 μ m соответственно. Таким образом, при содержании гольмия в образцах Sr₃La_{1.8-y}Nd_{0.2}Ho_y(Ge₃O₉)₂ y ~ 10⁻⁷-10⁻⁵ неодим проявляет сенсибилизирующие свойства по отношению к гольмию, инициируя в нем каскадную люминесценцию. Мы предполагаем, что аномально высокая интенсивность эмиссии Ho³⁺ в диапазоне длин волн 2.0-2.3 μ m указывает на существование дополнительного кросс-релаксационного механизма его возбуждения.

В практическом плане этот механизм был вначале реализован в концентрированных системах $La_{1-x}Ce_xF_3:Nd^{3+}$ и $La_{1-x}Ce_xF_3:Er^{3+}$ [37], а затем в $La_{1-x}Ce_xF_3:Ho^{3+}$ и $La_{1-x}Ce_xF_3:Tm^{3+}$ [38]. Несмотря на то что во фторидных системах $h\omega' \sim 400$ cm⁻¹ и можно

Рис. 4. Схема межуровневых переходов и переноса энергии в $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2$: Ho³⁺.

было ожидать распада возбужденного ${}^{2}F_{7/2}(\text{Ce}^{3+})$ состояния с испусканием фотонов, процесс диссипации энергии в виду высокой концентрации акцепторов (> 10%) идет с испусканием фононов. Эффект кооперативной безызлучательной кросс-релаксации был использован для подавления апконверсии и усиления эмиссии при 1.5–1.6 μ m в люминофоре Y₂O₂S:Er³⁺, Ce³⁺ [39]. В твердых растворах Y_{1.7-x}Er_{0.3}Ce_xO₂S при возбуждении излучением в диапазоне длин волн 0.90–0.98 μ m кросс-релаксационный процесс

$$\operatorname{Er}^{3+}({}^{4}I_{11/2}) + \operatorname{Ce}^{3+}({}^{2}F_{5/2}) \Rightarrow \operatorname{Er}^{3+}({}^{4}I_{13/2}) + \operatorname{Ce}^{3+}({}^{2}F_{7/2})$$

подавляет видимую антистоксовую люминесценцию и повышает стоксовую ИК люминесценцию в области $1.5-1.6\,\mu$ m. Несмотря на низкое содержание акцепторов в этих твердых растворах, распад возбужденного ${}^{2}F_{7/2}(\text{Ce}^{3+})$ состояния происходит с испусканием фононов. Это связано с величиной фононной энергии для оксисульфидной матрицы $h\dot{\omega} \sim 750 \text{ cm}^{-1}$ [40], которая стимулирует переход ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ с $\Delta E \sim 2200-2400 \text{ cm}^{-1}$ ($\sim 3h\dot{\omega}$), сопровождающийся испусканием трех фононов. Рассмотренные выше примеры указывают на генерацию фононов при диссипации возбужденного состояния акцептора.

Возникает вопрос: а в каких случаях возможен переход от фононного механизма к фотонному? Для реализации фотонного распада возбужденных состояний доноры и акцепторы должны иметь хорошо разветвленную структуру близко расположенных уровней в ИК области с большими вероятностями спонтанных переходов, оптическая матрица должна характеризоваться пониженной фононной энергией hώ, а ожидаемый излучательный переход должен происходить между состояниями с $\Delta E > 3h\dot{\omega}$. Однако приведенный выше пример с Y₂O₂S:Er³⁺, Ce³⁺ позволяет сформулировать дополнительное условие: для увеличения квантового выхода люминесценции в ИК области необходимо подавление апконверсионных процессов в видимой области. Эти условия были реализованы при конвертации УФ-излучения (340 nm) в ближнее ИК (1000 nm) в матрицах Y₈V₂O₁₇ [41] и Ba₄La₆(SiO₄)₆O [42], соактивированных ионами Eu³⁺ и Yb³⁺. Было установлено, что перенос энергии осуществляется преимущественно при кроссрелаксации по схеме

$$\mathrm{Eu}^{3+}({}^{5}D_{0}) + \mathrm{Yb}^{3+}({}^{2}F_{7/2}) \Rightarrow \mathrm{Eu}^{3+}({}^{7}F_{6}) + \mathrm{Yb}^{3+}({}^{7}F_{5/2}).$$

Основываясь на изложенном выше, мы полагаем, что в основе ИК люминесценции в диапазоне $2.0-2.3\,\mu m$ в $Sr_3La_{1.8}Nd_{0.2}(Ge_3O_9)_2$: Но $^{3+}$ лежит кросс-релаксационный механизм передачи энергии от Nd^{3+} к Ho $^{3+}$ по схеме

$$\mathrm{Nd}^{3+}({}^{4}F_{3/2}) + \mathrm{Ho}^{3+}({}^{5}I_{8}) \Rightarrow \mathrm{Nd}^{3+}({}^{4}I_{15/2}) + \mathrm{Ho}^{3+}({}^{5}I_{7}).$$

Однако, для экспериментального доказательства этого утверждения требуются дополнительные кинетические исследования распада возбужденных состояний.

4. Заключение

В результате работы впервые получены твердые растворы $Sr_3La_{2-x}Nd_x(Ge_3O_9)_2:Ho^{3+}$ изоструктурные кольцевому силикату $Sr_3Er_2(Si_3O_9)_2$. Показано, что данные соединения перспективны в качестве материалов для люминофоров ближнего и среднего ИК-диапазонов. При возбуждении в полосе поглощения неодима образцы обнаруживают люминесценцию не только Nd^{3+} , но и люминесценцию содержащегося в микроколичествах Ho^{3+} . Это обстоятельство позволяет рассматривать неодим в качестве эффективного сенсибилизатора люминесценции гольмия в полученных оптических средах. Максимальная эмиссия Ho^{3+} наблюдается для состава $Sr_3La_{1.8-y}Nd_{0.2}Ho_y(Ge_3O_9)_2, y = 5 \cdot 10^{-6}$.

Список литературы

- Y.-C. Li, Y.-H. Chang, B.-S. Tsai, Y.-C. Chen, Y.-F. Lin. J. Alloys Comp. 416, 199 (2006).
- [2] Y.-C. Li, Y.-S. Chang, Y.-C. Lai, Y.-J. Lin, C.-H. Laing, Y.-H. Chang. Mater. Sci. Eng. B 146, 225 (2008).
- [3] V.G. Zubkov, I.I. Leonidov, A.P. Tyutyunnik, N.V. Tarakina, L.L. Surat, L.A. Perelyaeva, I.V. Baklanova, O.V. Koryakova. J. Lumin. **129**, 1625 (2009).
- [4] H.C.G. Verhaar, W.M.P. van Kemenade. Mater. Chem. Phys. 31, 213 (1992).
- [5] A.P. Tyutyunnik, I.I. Leonidov, L.L. Surat, I.F. Berger, V.G. Zubkov. J. Solid State Chem. 197, 447 (2013).
- [6] О.А. Липина, Л.Л. Сурат, М.А. Мелкозерова, А.П. Тютюнник, И.И. Леонидов, В.Г. Зубков. Оптика и спектроскопия 116, 751 (2014).
- [7] V.R. Bandi, Y.-T. Nien, T.-H. Lu, I.-G. Chen. J. Am. Ceram. Soc. 92, 2953 (2009).
- [8] V.R. Bandi, B.K. Grandhe, K. Jang, H.-S. Lee, S.-S. Yi, J.-H. Jeong. Ceram. Int. 37, 2001 (2011).
- [9] K.V. Ivanovskikh, A. Meijerink, F. Piccinelli, A. Speghini, E.I. Zinin, C. Ronda, M. Bettinelli, J. Lumin. 130, 893 (2010).
- [10] F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo, M. Bettinelli. J. Rare Earths. 27, 555 (2009).
- [11] H. Yamane, T. Nagasawa, M. Shimada, T. Endo. Acta Crystallogr. C 53, 1533 (1997).
- [12] Y.-C. Chiu, W.-R. Liu, Y.-T. Yeh, S.-M. Jang, T.-M. Chenb. J. Electrochem. Soc. 156, J221 (2009).

- [13] M. Müller, T. Jüstel. J. Lumin. 155, 398 (2014).
- [14] Li Naixu, Li Shuqiang, W. Yueming, Z. Bingyao, S. Yueming, Z. Jiancheng. J. Rare Earths. 32, 933 (2014).
- [15] M. Zhang, Y. Liang, R. Tang, D. Yu, M. Tong, Q. Wang, Y. Zhu, X. Wu, G. Li. RSC Adv. 4, 40626 (2014).
- [16] A. Dobrowolska, E. Zych. J. Solid State Chem. 184, 1707 (2011).
- [17] Z. Yang, H. Dong, X. Liang, C. Hou, L. Liu, F. Lu. D. Trans. 43, 11474 (2014).
- [18] M.A. Melkozerova, O.A. Lipina, Y.V. Baklanova, A.P. Tyutyunnik, V.G. Zubkov. J. Phys. Chem. Solids. 103, 76 (2017).
- [19] J. Qiu, M. Shojiya, Y. Kawamoto. J. Appl. Phys. 86, 909 (1999).
- [20] Y. Zhang, L. Sun, Y. Chang, W. Li, C. Jiang. Front. Optoelectron. 7, 74 (2014).
- [21] О.А. Липина, Л.Л. Сурат, А.П. Тютюнник, В.Г. Зубков. Оптика и спектроскопия. 121, 562 (2016).
- [22] Y.V. Baklanova, O.A. Lipina, L.G. Maksimova, A.P. Tyutyunnik, I.I. Leonidov, T.A. Denisova, V.G. Zubkov. Spectrochim. Acta. A 180, 105 (2017).
- [23] Y.Y. Guo, M. Li, Y. Tian, R.R. Xu, L.L. Hu, J.J. Zhang. J. Appl. Phys. **110**, 013512 (2011).
- [24] G.X. Bai, L.L. Tao, K.F. Li, L.L. Hu, Y.H. Tsang. Opt. Mater. 35, 1247 (2013).
- [25] Yu.V. Orlovskii, T.T. Basiev, K.K. Pukhov, O.K. Alimov, N.A. Glushkov, V.A. Konyushkin. Opt. Mater. 32, 599 (2010).
- [26] I.A. Khodasevich, A.S. Grabtchikov, A.A. Kornienko, E.B. Dunina. Opt. Spectrosc. 119, 759 (2015).
- [27] I.A. Khodasevich, A.A. Kornienko, E.B. Dunina, A.S. Grabtchikov. J. Appl. Spectrosc. 81, 1056 (2015).
- [28] A.C. Larson, R.B. Von Dreele. General Structure Analysis System (GSAS). Los Alamos, NM, 2004. Los Alamos National Laboratory Report LAUR 86–748.
- [29] R.D. Shannon, C.T. Prewitt. Acta Crystallogr. B 25, 925 (1969).
- [30] J.B. Gruber, D.K. Sardar, R.M. Yow, T.H. Allik, B. Zandi. J. Appl. Phys. 96, 3050 (2004).
- [31] U. Hümmerich, O. Oyebola, E. Brown, S.B. Trivedi, A.G. Bluiett, J.M. Zavada. Mater. Res. Soc. Symp. Proc. 1111, D07 (2009).
- [32] I. Földvairi, A. Baraldi, R. Capelletti, N. Magnani, R. Sosa F, A. Munoz F, L.A. Kappers, A. Watterich. Opt. Mater. 29, 688 (2007).
- [33] M. Pokhrel, N. Ray, G.A. Kumar, D.K. Sardar. Opt. Mater. Express. 2, 235 (2012).
- [34] T. Wei, F.Z. Chen, X.F. Jing, F.C. Wang, Y. Tian, S.Q. Xu. Solid State Sci. 31, 54 (2014).
- [35] А.А. Каминский. Лазер. материалы. Наука, М. (1975)ю 256 с.
- [36] G. Blasse. Phys. Lett. A 28, 444 (1968).
- [37] T.T. Basiev, M.E. Doroshenko, V.V. Osiko. JETP Lett. 71, 8 (2000).
- [38] T.T. Basiev, M.E. Doroshenko, V.V. Osiko, A.M. Prokhorov. JETP 93, 1178 (2001).
- [39] А.Н. Георгобиани, В.Б. Гутан, М.А. Казарян, А.В. Кротов, О.А. Манаширов, Ю.П. Тимофеев. Неорган. материалы 45, 1243 (2009)
- [40] G.A. Kumar, M. Pokhrel, A. Martinez, R.C. Dennis, I.L. Villegas, D.K. Sardar. JALCOM 513, 559 (2012).
- [41] Y. Dwivedi, S.C. Zilio. Opt. Express. 21, 4717 (2013).
- [42] W.J. Zhang, X.B. Li, L.J Wu, Y.Y. Yu, X.Z. Wang, S.Q. Liu, Z. Wang, W.C. Wang, Y. Liu. Physica B 508, 22 (2017).