## 14,15

# Особенности релаксации тензора напряжения в микроскопическом объеме нематической фазы под действием сильного электрического поля

#### © А.В. Захаров

Институт проблем машиноведения РАН, Санкт-Петербург, Россия E-mail: alexandre.zakharov@yahoo.ca

#### (Поступила в Редакцию 30 мая 2017 г.)

Предложено численное исследование новых режимов переориентации поля директора  $\hat{\mathbf{n}}$ , скорости  $\mathbf{v}$  и компонент тензора напряжения  $\sigma_{ij}$  (ij = x, y, z) нематического жидкого кристалла (ЖК), инкапсулированного в прямоугольный канал, под действием сильного электрического поля  $\mathbf{E}$ , направленного под углом  $\alpha \ (\sim \frac{\pi}{2})$  к горизонтальным ограничивающим поверхностям ЖК-канала. Численные расчеты, выполненные в рамках нелинейного обобщения классической теории Эриксена–Лесли, показали, что при определенных соотношениях моментов и импульсов, действующих на единицу объема ЖК-фазы, и в случае  $E \gg E_{\rm th}$ , в процессе переориентации  $\hat{\mathbf{n}}$  могут возникнуть переходные периодические структуры, если соответствующая мода искажения обладает наибыстрейшим откликом и, таким образом, подавляет все остальные моды. Возникающие при этом вращающиеся домены способствуют уменьшению скорости диссипации энергии и тем самым создают более выгодные, по сравнению с однородным поворотом, режимы переориентации поля директора.

Работа выполнена при финансовой поддержке РФФИ (грант № 16-02-00041а).

DOI: 10.21883/FTT.2018.02.45400.177

#### 1. Введение

В последнее время все чаще методы микро- и нанофлуидистики находят применение при исследовании процессов транспортировки и сортировки нанолитровых объемов жидкокристаллических (ЖК) материалов в разветвленных каналах и капиллярах (lab-on-chip-system) под действием внешнего электрического поля (электрокинетика) [1,2]. С другой стороны, ЖК-материалы используются при создании новых семейств сенсоров, термоиндикаторов и детекторов давления [3,4]. На формирование течений в этих микро- и наноразмерных каналах и капиллярах оказывают сильное влияние внешние силы, такие как электрические поля и механические воздействия, а также геометрия ЖК-каналов и характер приповерхностной ориентации поля директора. В связи с этим всестороннее исследование динамических режимов переориентации поля директора и релаксации компонент тензора напряжения в микроскопических объемах ЖК-фаз под действием сильного электрического поля  $(\geq 1 \text{ V}/\mu\text{m})$  позволит понять и, как следствие, улучшить динамические характеристики сенсоров, терморегуляторов и датчиков, применяемых в медицинской диагностике и биологических лабораториях на чипах.

Одним из менее затратных, и в тоже время кратчайших, путей к пониманию особенностей динамической переориентации поля директора  $\hat{\mathbf{n}}(\mathbf{r}, t)$  в ЖК-фазе, инкапсулированной в микро- и наноразмерные объемы, под действием сильного электрического поля **E**, является теоретическое моделирование гидродинамических и релаксационных процессов, возникающих в этих молекулярных системах. В случае отсутствия электрического поля (E = 0) ориентация ЖК-фазы, помещенной в канал, определяется граничной ориентацией (гомеотропной, планарной и наклонной) молекул ЖК-материала. В момент включения электрического поля E, направленного, например, практически перпендикулярно планарно ориентированному нематику, молекулы, образующие ЖК-фазу, начинают переориентацию вдоль E (рис. 1). Это приводит к возникновению конкуренции с приповерхностными силами, которые транслируются в объем



**Рис. 1.** Координатная система. Орт  $\hat{\mathbf{i}}$  направлен параллельно, а орт  $\hat{\mathbf{k}}$  перпендикулярно к нижней ограничивающей поверхности ЖК-канала. Вектор электрического поля  $\mathbf{E}$  и вектор поля директора  $\hat{\mathbf{n}}$  направлены под углом  $\alpha$  и  $\theta$  к нижней горизонтальной ограничивающей поверхности ЖК-канала соответственно.



Рис. 2. Три режима включения электрического поля Е.

ЖК-фазы посредством ориентационной упругости, присущей всем ЖК-материалам. При значениях величины поля  $E > E_{\text{th}}$  молекулы ЖК-фазы однородно разворачиваются в сторону вектора Е [5]. Здесь  $E_{th}$  некоторое пороговое значение внешнего электрического поля, при достижении которого начинается переориентация поля директора (переход Фредерикса [5]). Эта величина зависит от конкретного ЖК-материала и его размеров. В случае  $E \gg E_{\rm th}$  ЖК-система может быть выведена из равновесного состояния и любые малые отклонения начальной ориентации поля директора, вызванные, например, термофлуктуациями, могут начать экспоненциально расти со своими коэффициентами роста, которые обратно пропорциональны некоторой эффективной вращательной вязкости ЖК-материала [6]. При классическом переходе Фредерикса однородный поворот молекул ЖК-фазы происходит в плоскости, образованной полем директора  $\hat{\mathbf{n}}$  и полем **E**, и характеризуется сравнительно большим эффективным коэффициентом вращательной вязкости и отсутствием течения ЖК-фазы. С другой стороны, в случае  $E \gg E_{\rm th}$  в процессе переориентации поля директора n могут возникнуть переходные квазипериодические структуры, если соответствующая мода искажения обладает наибыстрейшим откликом и, таким образом, подавляет все остальные моды, в том числе и однородные [7]. При квазипериодическом искажении ЖК-фазы появляется сдвиговая вязкость, уменьшающая общую эффективную вращательную вязкость, связанную с переориентацией поля директора. Возникающие при этом вращающиеся домены способствуют уменьшению эффективной вязкости, характеризующей скорость диссипации энергии, и тем самым создают более выгодные, по сравнению с однородным поворотом, режимы переориентации поля директора.

Исследование этих новых состояний будет проведено в рамках нелинейного обобщения классической теории Эриксена–Лесли [8,9] с учетом балансов массы, импульсов и моментов, действующих на единицу объема ЖК-материала. Численные исследования характера переориентации поля директора и формирование релаксационных режимов компонент тензора напряжения в микроразмерных ЖК-каналах, образованных молекулами 4-п-пентил-4'-цианобифенила (5ЦБ), будут проведены для трех динамических режимов. Первым будет изучен режим (режим I) включения электрического поля  $\mathbf{E} > 0$ , направленного вдоль оси z, в течение времени  $0 < t < t_0$  (см. рис. 2), т.е. практически перпендикулярно планарно ориентированному нематику. Вторым будет изучен режим (режим II), когда электрическое поле (E = 0) выключено в течение времени  $t_0 \le t < t_1$ . И наконец, третим будет изучен режим (режим III) включения электрического поля  $\mathbf{E} < 0$  в отрицательном направлении вдоль оси z, в течение времени  $t_1 \le t < t_2$ (см. рис. 2).

#### 2. Основные уравнения

Рассмотрим длинный прямоугольный ЖК-канал с размерами 2L и 2d  $(L \gg d)$ , ограниченный твердыми горизонтальными и вертикальными поверхностями. Допустим, что директор планарно ориентирован на горизонтальных ограничивающих поверхностях и гомеотропно на вертикальных, причем рассмотрим случай, характеризующийся сильным сцеплением ЖК-молекул со всеми твердыми поверхностями. В этом случае система координат отсчитывается от центра ЖК-канала так, что ось Х и орт і совпадают с направлением директора на нижней горизонтальной поверхности ( $\hat{\mathbf{i}} \parallel \hat{\mathbf{n}}_{z=-d}$ ), в то время как ось Z и орт  $\hat{\mathbf{k}}$  направлены ортогонально ( $\hat{\mathbf{k}} \perp \hat{\mathbf{n}}_{z=-d}$ ), а орт  $\mathbf{j} = \mathbf{k} \times \mathbf{i}$  (см. рис. 1). Таким образом, в начальный момент времени мы имеем дело с планарно и однородно ориентированным ЖК-образцом, образованным молекулами 5ЦБ, притом, что вектор электрического поля  $\mathbf{E} = E_x \mathbf{i} + E_z \mathbf{k} = E(z) \cos \alpha \mathbf{i} + E(z) \sin \alpha \mathbf{k}$  направлен под углом  $\alpha~(\sim rac{\pi}{2})$  к горизонтальным поверхностям ЖК-канала. После включения электрического поля Е, направленного практически ортогонально к планарно и однородно ориентированному ЖК-каналу, в ЖК-фазе начинается переориентация полярных молекул и, как следствие, переориентация  $\hat{\mathbf{n}}(\mathbf{r}, t)$  вдоль направления вектора Е. Этот процесс переориентации сопровождается формированием поля скорости  $v(\mathbf{r}, t)$  в объеме ЖК-фазы.

Будем предполагать, что переориентация поля директора  $\hat{\mathbf{n}} = n_x \hat{\mathbf{i}} + n_z \hat{\mathbf{k}} = \cos \theta(x, z, t) \hat{\mathbf{i}} + \sin \theta(x, z, t) \hat{\mathbf{k}}$  под действием электрического поля **E** осуществляется в плоскости *XOZ*. Здесь  $\theta$  — угол, образованный директором  $\hat{\mathbf{n}}$  и ортом  $\hat{\mathbf{i}}$  (см. рис. 1). Таким образом, формирование гидродинамического течения  $\mathbf{v}(\mathbf{r}, t)$ , обусловленного переориентацией поля директора  $\hat{\mathbf{n}}$ , под действием сильного электрического поля **E** может быть описано в рамках нелинейного обобщения классической теории Эриксена–Лесли [8,9], которое учитывает баланс массы, импульсов и угловых моментов, действующих на единицу ЖК-фазы, а также закон сохранения зарядов. Принимая во внимание микроскопические размеры ЖК-канала, мы можем предположить, что плотность

ЖК-системы постоянна, и мы имеем дело с несжимаемой жидкостью. Условие несжимаемости ЖК-материала  $\nabla \cdot \mathbf{v} = \mathbf{0}$ , или  $u_x + w_z = \mathbf{0}$ , выполняется за счет введения безразмерной функции тока  $\bar{\psi} = \frac{4\gamma_1}{\epsilon_0\epsilon_a} \frac{1}{U^2} \psi$ , где безразмерные компоненты вектора скорости  $\mathbf{v} = u\hat{\mathbf{i}} + w\hat{\mathbf{k}}$ выражены через  $\psi$  как  $u = \frac{\partial \psi}{\partial z} = \psi_{,z}$  и  $w = -\frac{\partial \psi}{\partial x} = -\psi_{,x}$ соответственно. Здесь и далее мы используем безразмерные пространственные переменные  $\bar{x} = x/d$  и  $\bar{z} = z/d$ , а также безразмерное время  $\tau = \frac{\epsilon_0\epsilon_a}{\gamma_1^2} (\frac{U}{2d})^2$ , причем в дальнейшем верхняя черта над пространственными переменными и функцией тока будет опущена,  $\epsilon_0$  диэлектрическая проницаемость вакуума,  $\epsilon_a$  — диэлектрическая анизотропия ЖК-системы,  $\gamma_1$  и  $\gamma_2$  — коэффициенты вращательной вязкости, а U = 2Ed — величина напряжения. Баланс моментов, действующих на единицу объема ЖК-фазы, в безразмерном виде может быть записан как [7,10]

$$\theta_{,\tau} = \left[ \Delta_1 \theta_{,xx} + \Delta_2 \theta_{,zz} + \Delta_3 \left( -2\theta_{,xz} - \theta_{,x}^2 + \theta_{,z}^2 \right) \right. \\ \left. + \Delta_4 \theta_{,x} \theta_{,z} \right] + \frac{1}{2} \bar{E}^2(z) \sin 2 \left( \alpha - \theta \right) + \frac{1}{2} \left( \psi_{,xx} + \psi_{,zz} \right) \\ \left. - \psi_{,z} \theta_{,z} + \psi_{,x} \theta_{,x} + \gamma \left[ \sin 2\theta \psi_{,xz} + \frac{1}{2} \left( \psi_{,xx} - \psi_{,zz} \right) \right],$$

$$(1)$$

где  $\Delta_1 = \sin^2 \theta + K_{31} \cos^2 \theta$ ,  $\Delta_2 = \cos^2 \theta + K_{31} \sin^2 \theta$ ,  $\Delta_3 = \frac{(1-K_{31})}{2} \sin 2\theta$ ,  $\Delta_4 = (K_{31}-1) \cos 2\theta$ ,  $\gamma = \gamma_2/\gamma_1$ ,  $K_{31} = K_3/K_1$ , а  $K_1$  и  $K_3$  — коэффициенты упругости, соответствующие изгибным и продольным деформациям. Безразмерное уравнение Навье–Стокса, записанное с помощью функции тока  $\psi$ , имеет вид [10]

$$\delta_{2}\left[\left(\Delta\psi\right)_{,\tau}+\psi_{,z}\left(\Delta\psi\right)_{,x}-\psi_{,x}\left(\Delta\psi\right)_{,z}\right]=\hat{\mathscr{L}}\psi+\mathscr{F},\quad(2)$$

где  $\Delta \psi = \psi_{,xx} + \psi_{,zz}$ , а оба оператора  $\hat{\mathscr{L}}$  и  $\mathscr{F}$  приведены в Приложении. Здесь

$$\delta_1 = \frac{4K_1}{\epsilon_0 \epsilon_a U^2}, \quad \delta_2 = \frac{\rho \epsilon_0 \epsilon_a}{4\gamma_1^2} U^2$$

два параметра ЖК-системы, а функция

$$\bar{E}(z) = \frac{2d}{U}\sin\alpha E(z)$$

описывает безразмерное электрическое поле. В свою очередь, безразмерное электрическое поле удовлетворяет основному уравнению электростатики для диэлектриков

$$\frac{\partial}{\partial z} \left[ \left( \frac{\epsilon_{\perp}}{\epsilon_a} + \sin \theta \right) \bar{E}(z) \right] = 0, \quad \int_{-1}^{1} \bar{E}(z) dz = 1, \quad (3)$$

где  $\epsilon_{\perp}$  — величина диэлектрической проницаемости ЖК-материала в направлении, перпендикулярном полю директора  $\hat{\mathbf{n}}$ .

Физика твердого тела, 2018, том 60, вып. 2

Мы будем рассматривать ЖК-канал с размерами L/d = 10, помещенный между двумя электродами таким образом, что вектор **E** направлен под углом  $\alpha$  к орту **i**. Будем изучать случай жесткого сцепления, когда граничные условия для угла  $\theta$  могут быть записаны в виде

$$\theta_{-10 < x < 10, z=\pm 1} = \theta_{x=\pm 10, -1 < z < 1} = 0.$$
(4)

Поле скорости v подчиняется условию прилипания на твердых ограничивающих поверхностях ЖК-канала и может быть записано с помощью безразмерной функции тока как

$$(\psi_{,z})_{-10 < x < 10, z = \pm 1} = (\psi_{,z})_{x = \pm 10, -1 < z < 1} = 0,$$
  
$$(\psi_{,x})_{-10 < x < 10, z = \pm 1} = (\psi_{,x})_{x = \pm 10, -1 < z < 1} = 0.$$
 (5)

Уравнения (1)-(3) необходимо дополнить начальными условиями как для поля директора, так и для поля скорости. Начальное условие для угла  $\theta$  мы выберем в виде

$$\theta(x, z, 0) = \theta_0 \cos \theta(q_z z) \cos \theta(q_x x), \qquad (6)$$

где  $\theta_0$  — амплитуда, а  $q_x$  и  $q_z$  — волновые числа соответствующей Фурье-моды. В нашем случае волновые числа  $q_x$  и  $q_z$  соответствующей Фурье-моды имеют вид [7]

$$q_x = \frac{\pi}{20} (2k+1), \ k = 0, 1, 2, \dots,$$
$$q_z = \frac{\pi}{20} (2l+1), \ l = 0, 1, 2, \dots.$$
(7)

В свою очередь, начальное условие для скорости v(x, z, 0) = 0, записанное с помощью функции тока, принимает вид

$$\psi\left(x,z,0\right)=0.\tag{8}$$

Следует отметить, что в процессе переориентации поля директора под действием сильного электрического поля баланс импульсов и угловых моментов, действующих на единицу ЖК-объема, разворачивает поле директора к его равновесному распределению  $\hat{\mathbf{n}}_{eq}$  по всему объему ЖК-фазы, которое описывается углом  $\theta_{eq}(x, z)$ . Время, необходимое для переориентации поля директора в положение  $\theta_{eq}(x, z)$ , есть время релаксации  $\tau_R$  системы. Его величина зависит от величины электрического поля  $\bar{E}$  и углов  $\alpha$  и  $\theta_0$ . В свою очередь, безразмерные волновые числа  $q_x$  и  $q_z$  определяются из условия минимума полной энергии  $W = W_{elast} + W_{el}$ , где

$$\frac{2}{\delta_1} W_{\text{elast}} = \int dx \int dz \left[ \left( (\theta_{eq})_{,x}^2 + (\theta_{eq})_{,z}^2 \right) \right. \\ \left. \times \left( \sin^2 \theta_{eq} + K_{31} \cos^2 \theta_{eq} \right) \right] \\ \left. + \int dx \int dz \left( K_{31} - 1 \right) \sin 2\theta_{eq} (\theta_{eq})_{,x} \left( \theta_{eq} \right)_{,z}$$
(9)

— вклад упругих сил, а

$$W_{\rm el} = -\int dx \int dz E\left(\theta_{eq}\right) \cos^2\left(\theta_{eq} - \alpha\right) \qquad (10)$$

— вклад электрических сил в общую энергию *W* соответственно.

Таким образом, система уравнений (1)-(3), (7)и (9), (10), дополненная граничными (4), (5) и начальными условиями (6) и (8), образует самосогласованную систему нелинейных дифференциальных уравнений в частных производных, описывающих эволюцию как поля директора  $\hat{\mathbf{n}}$ , так и поля скорости **v** к их равновесным распределениям по всему объему микрометрового ЖК-канала под действием сильного электрического поля **E**, направленного под углом  $\alpha$  к горизонтальным ограничивающим поверхностям.

Располагая значениями угла  $\theta(x, z, \tau)$  в процессе его релаксации к равновесному распределению по всему ЖК-каналу, мы можем также расчитать не только эволюцию угловой скорости  $\omega$  поля директора  $\hat{\mathbf{n}}$ 

$$\boldsymbol{\omega} = \hat{\mathbf{n}} \times \hat{\mathbf{n}} = -\dot{\boldsymbol{\theta}} \left( x, z, \tau \right) \hat{\mathbf{j}} = -\boldsymbol{\omega} \left( x, z, \tau \right) \hat{\mathbf{j}}, \qquad (11)$$

но и эволюцию компонент тензора напряжения (TH)

$$\sigma_{xx} = \frac{1}{4} \left( E^2 - \mathcal{A} \right) \sin 2\theta,$$
  
$$\sigma_{zz} = \sigma_{xx} + \frac{1}{2} \mathcal{B} \sin 2\theta + \left( \frac{\epsilon_{\perp}}{\epsilon_a} + \sin^2 \theta \right) E^2,$$
  
$$\sigma_{xz} = \frac{1}{4} \left( -E^2 + \mathcal{A} \right) \sin 2\theta,$$
  
$$\sigma_{zx} = \frac{1}{4} \left( E^2 + \mathcal{A} \right) \sin 2\theta,$$
 (12)

где  $\mathcal{A} = \frac{\gamma_2}{\gamma_1} \cos 2\theta E^2$  и  $\mathcal{B} = \frac{\gamma_2}{\gamma_1} \sin 2\theta E^2$  — безразмерные функции. В нашем случае безразмерные компоненты TH принимают вид

$$\sigma_{ij} = \mathscr{P}\delta_{ij} + \sigma_{ij}^{\mathrm{el}} + \sigma_{ij}^{\mathrm{vis}} + \delta_1 \sigma_{ij}^{\mathrm{elast}},$$

где  $\mathscr{P}$  — гидростатическое давление в ЖК-канале, а  $\sigma_{ij}^{\rm el}$ ,  $\sigma_{ij}^{\rm vis}$  и  $\sigma_{ij}^{\rm elast}$  — безразмерные компоненты ТН, соответствующие электрическим, вязким и упругим силам соответственно.

Для случая нематика, образованного молекулами 5ЦБ, при температуре 300 К и плотности 10<sup>3</sup> kg/m<sup>3</sup>, а также величине напряжения в U = 200 V, приложенного поперек ЖК-канала толщиной в 200  $\mu$ m, значения параметров, которые входят в вышеописанные уравнения, равны:  $\delta_1 = 8.6 \cdot 10^{-6}$ ,  $\delta_2 = 0.19$ ,  $\gamma = -1.1$  и  $K_{31} = 1.17$ . Следует отметить, что величина порогового напряжения в нашем случае равна  $E_{\rm th} \sim 1.05 \times 10^4$  V/m, так что  $E \sim 100E_{\rm th}$ , а толщина и величина напряжения, приложенного поперек ЖК-канала, соответствовали данным, использованным при исследовании эволюции ЯМР-спектров в ЖК-ячейках, образованных молекулами дейтерированного 4-n-пентил-4'-цианобифенила [6].

Принимая во внимание тот факт, что  $\delta_1 \ll 1$ , упругим вкладом в TH можно пренебречь, в то время как вязкий вклад в TH  $\sigma_{ij}$  может быть переписан в виде

$$egin{aligned} &\sigma^{\mathrm{vis}}_{xx} = -rac{1}{4}\,\mathscr{B}\,\mathrm{sin}\,2 heta, \ &\sigma^{\mathrm{vis}}_{xz} = rac{1}{4}\left(-E^2+\mathscr{A}
ight)\sin2 heta, \ &\sigma^{\mathrm{vis}}_{zx} = rac{1}{4}\left(E^2+\mathscr{A}
ight)\sin2 heta, \ &\sigma^{\mathrm{vis}}_{zz} = -\sigma^{\mathrm{vis}}_{xx}. \end{aligned}$$

В нашем случае, когда электрическое поле **E** приложено поперек ЖК-канала, вклад электрических сил в общий ТН  $\sigma_{ij}^{el} = \frac{1}{2} (E_i D_j + D_i E_j)$  имеет только одну компоненту

$$\sigma_{zz}^{\mathrm{el}} = \left(\frac{\epsilon_{\perp}}{\epsilon_a} + \sin^2 \theta\right) E^2,$$

где **D** — вектор электрической индукции. С другой стороны, в нашем случае гидродинамическое давление имеет вид

$$\mathscr{P} = \frac{1}{4} \left( \mathscr{B} - \mathscr{A} + E^2 \right) \sin 2\theta,$$

поскольку оно удовлетворяет уравнению

И

 $\sigma_{xx,x} + \sigma_{xz,x} + \mathscr{P}_{,x} = 0.$ 

## Эволюция поля директора, скорости и компонент ТН в ЖК-канале под действием сильного электрического поля

Когда сильное электрическое поле  $\mathbf{E} = E\mathbf{k} (E \sim 100 E_{\text{th}})$ (в положительном смысле) включено в момент времени au=0, под углом  $lpha~(\sim rac{\pi}{2})$  к горизонтальным ограничивающим поверхностям ЖК-канала, планарно и однородно ориентированный нематический образец, образованный молекулами 5ЦБ, стремится переориентироваться в направлении вектора Е. Этот процесс переориентации описывается углом  $\theta(x, z, \tau)$ , а инициируемое разворотом директора  $\hat{\mathbf{n}}$  поле скорости  $\mathbf{v} = u(x, z, \tau)\mathbf{i} + w(x, z, \tau)\mathbf{k}$ описывается системой нелинейных дифференциальных уравнений в частных производных (1)-(3), (9) и (10),дополненной граничными (4), (5) и начальными (6) и (8)условиями, как для угла  $\theta$ , так и для функции тока  $\psi$ , при том, что значения волновых чисел  $q_x$  и  $q_z$  определяются из условия минимума полной энергии  $W = W_{elast} + W_{el}$ . Для случая нематика, образованного молекулами 5ЦБ, при температуре 300 К и плотности 10<sup>3</sup> kg/m<sup>3</sup>, величина порогового напряжения равна  $E_{\rm th} \sim 1.05 \cdot 10^4 \, {
m V/m}$ , так что  $E \sim 100 E_{\text{th}}$ . Наш предыдущий анализ подобных систем показал, что при определенном балансе упругих, вязких и электрических моментов и импульсов, действующих на единицу объема ЖК-фазы, существует



**Рис. 3.** Эволюция распределения угла  $\theta(x, z = 0, \tau)$  (кривые I) и угловой скорости  $\omega(x, z = 0, \tau)$  (кривые 2) вдоль оси  $x \in [-10, 10]$  к их равновесным распределениям  $\theta_{eq}(x, z = 0, \tau = \tau_R(\text{in}) = 12)$  и  $\omega_{eq}(x, z = 0, \tau = \tau_R(\text{in}) = 12)$  соответственно, под действием сильного электрического поля  $\mathbf{E} = E\hat{\mathbf{k}}$  ( $E \sim 1.05 \ V/\mu m$ ), направленного под углом  $\alpha = 1.57$  (~ 89.96°) к горизонтальным ограничивающим поверхностям ЖК-канала. Промежуточные состояния соответствуют временам  $\tau = 2$  (~ 12 ms), 4 (~ 24 ms), 6 (~ 36 ms), 8 (~ 48 ms) и 12 (~ 72 ms) соответственно.

пороговое значение амплитуды угла  $\theta_0^{\text{th}}$ , выше которого характер переориентации поля директора претерпевает как качественное, так и количественное изменение [10]. Так, было показано, что при всех прочих равных условиях, при  $\theta < \theta_0^{\text{th}}$ , поле директора  $\hat{\mathbf{n}}(x, z, \tau)$  разворачивается в направлении вектора **E** ( $|\mathbf{E}| \sim 100 E_{\text{th}}$ ) как единое целое, т.е. как монодомен. В то же время при значениях  $\theta \geq \theta_0^{\text{th}}$  переориентация поля директора характеризуется формированием квазипериодических структур по всему объему, занимаемому ЖК-фазой [10]. На рис. 3 (кривые 1, точечные линии) представлены результаты расчета эволюции угла  $\theta(x, z = 0, \tau)$  к его равновесному распределению  $heta_{eq}(x, z = 0)$  вдоль оси  $x \in [-10, 10]$ , которое достигается спустя  $\tau_R(in) = 12 ~(\sim 72 \, \mathrm{ms})$  единиц безразмерного времени. Эти расчеты были получены для случая жесткого сцепления ЖК-молекул с ограничивающими поверхностями, при значениях углов  $lpha = 1.57~(\sim 89.96^\circ)$  и  $heta_0 = 0.01~(\sim 1.1^\circ)$ , а критерий сходимости итерационной процедуры был выбран равным  $\epsilon = \left| \left( heta_{(m+1)} - heta_{(m)} 
ight) / heta_{(m)} 
ight| \sim 10^{-4}$  и итерационная процедура продолжалась до достижения заданной точности [11]. Промежуточные состояния соответствуют временам  $\tau = 2 (\sim 12 \text{ ms}), 4 (\sim 24 \text{ ms}), 6 (\sim 36 \text{ ms}),$  $8~(\sim48\,\mathrm{ms})$  и 12 $~(\sim72\,\mathrm{ms})$  соответственно. Здесь безразмерное время  $\tau = \frac{\epsilon_0 \epsilon_a}{\gamma_1} \left(\frac{U}{2d}\right)^2 t$  отсчитывалось с момента включения электрического поля. В этом случае равновесное распределение угла  $\theta_{eq}(x, z = 0)$  вдоль

оси  $x \in [-10, 10]$  характеризуется отчетливо выраженной квазипериодической структурой с узлами в точках  $x = \pm 2.175$  и  $\pm 5.83$ . Отметим, что величины волновых чисел  $q_x$  и  $q_z$ , которые обеспечивают минимум энергии  $W_{\text{elast}} + W_{\text{el}}$ , равны  $q_x = 0.785$  и  $q_z = 64.336$ . Эволюция распределения безразмерной угловой скорости  $\omega(x, z = 0, \tau)$  к ее равновесному распределению  $\omega_{eq}(x, z = 0, \tau = \tau_R(in)) = 0$ , вдоль оси  $x \in [-10, 10]$ , представлена на рис. 3 (кривые 2, сплошные линии). Промежуточные состояния соответствуют безразмерным временам  $\tau = 2$  (~ 12 ms),  $\tau = 4$  (~ 24 ms),  $\tau = 6 \ (\sim 36 \,\mathrm{ms}), \ \tau = 8 \ (\sim 48 \,\mathrm{ms}), \ \tau = 10 \ (\sim 60 \,\mathrm{ms}),$ и  $\tau = \tau_R(in) = 12$  (~ 72 ms) соответственно. В течение первых 4 единиц безразмерного времени ( $\sim 24 \, {\rm ms}$ ) распределение угловой скорости  $\omega(x, z = 0, \tau)$  практически следует за распределением угла  $\theta(x, z = 0, \tau)$ . При этом отчетливо видно, как начинают формироваться в ЖК-канале несколько вихрей, причем положения узлов решетки задают границы формируемых вихрей. Так, согласно нашим расчетам, представленным на рис. 3 (кривые 2), отчетливо наблюдаются три вихря (-10 < x < -5.83, -2.175 < x < 2.175)и 5.83 < x < 10), вращающихся по часовой стрелке, и два вихря (-5.83 < x < -2.175 и 2.175 < x < 5.83), вращающихся против часовой стрелки. Спустя время  $\tau = 10~(\sim 60\,\mathrm{ms})$  вращение вихрей практически полностью прекратилось и установилось равновесное распределение поля директора вдоль оси  $x \in [-10, 10]$ , характеризующееся отчетливо выраженной квазипериодической структурой с узлами в точках  $x = \pm 2.175$  и  $\pm 5.83$ .

Теперь, располагая распределением угла  $\theta(x, z, \tau)$ , мы можем, используя уравнение (12), расчитать безразмерные компоненты TH

$$\sigma_{ij}(x,z,\tau) = \left(rac{4d^2}{\epsilon_0\epsilon_a U^2}
ight)ar{\sigma}_{ij}(x,z, au),$$

где  $\bar{\sigma}_{ii}(x, z, \tau)$  — размерные значения тензора напряжения. Эволюция безразмерных сдвиговых компонент ТН  $\sigma_{xz}(x, z = 0, \tau)$  и  $\sigma_{zx}(x, z = 0, \tau)$  (рис. 4, *a*, *b*) и нормальной компоненты  $\sigma_{xx}(x, z = 0, \tau)$  (рис. 5, b) к их равновесным значениям в шести точках, отстоящих на расстояниях x = 0.5 (кривая 1), 1.6 (кривая 2), 2.16 (кривая 3), 2.18 (кривая 4), 2.32 (кривая 5) и 3.42 (кривая 6) от центра ЖК-канала, в течение первых 20 единиц безразмерного времени показаны на рис. 4 и 5. Расчеты свидетельствуют о том, что абсолютные величины двух сдвиговых компонент TH  $|\sigma_{zx}|$  и  $|\sigma_{xz}|$ , а также нормальной компоненты  $|\sigma_{xx}|$  на начальном этапе эволюции, соответствующем временам  $\tau \sim 4 \div 6$  (~ 24 ÷ 36 ms), достигают максимальных значений  $\sim 0.3~(\sim 6.6\,{\rm Pa})$ , а затем быстро убывают к нулю. В свою очередь, безразмерная нормальная компонента TH  $\sigma_{zz}(x, z = 0, \tau)$ (рис. 5, a) на начальном этапе эволюции, соответствующем временам  $\tau \sim 4 \div 7$  (~  $24 \div 42 \text{ ms}$ ), осциллирует около значения  $\sim 0.5~(\sim 10\,{
m Pa}),$  для всех вышеуказанных значений расстояния вдоль оси x, а затем



Рис. TH 4. Эволюция сдвиговых компонент  $\sigma_{zx}(x, z = 0, \tau)$  (a) и  $\sigma_{xz}(x, z = 0, \tau)$  (b) в точках x = 0.5(кривые 1), x = 1.6 (кривые 2), x = 2.16 (кривые 3), x = 2.18 (кривые 4), x = 2.32 (кривые 5) и x = 3.42(кривые 6) соответственно к их равновесным распределениям  $\sigma_{zx}^{eq}$  и  $\sigma_{xz}^{eq}$  под действием сильного электрического поля  $\mathbf{E} = E\mathbf{k}$  ( $E \sim 1.05 \,\mathrm{V}/\mu\mathrm{m}$ ), направленного углом пол  $\alpha = 1.57~(\sim 89.96^\circ)$  к горизонтальным ограничивающим поверхностям ЖК-канала.



**Рис. 5.** То же, что на рис. 4, только для нормальных компонент ТН  $\sigma_{zz}(x, z = 0, \tau)$  (*a*) и  $\sigma_{xx}(x, z = 0, \tau)$  (*b*) соответственно.

монотонно возрастает и на конечном этапе эволюции давление растяжения  $\sigma_{zz}$ , обусловленное сильным электрическим полем  $\mathbf{E} = E\hat{\mathbf{k}}$  ( $E \sim 1.05 \text{ V}/\mu\text{m}$ ), достигает величины ~ 1.5 (~ 33 Ра). Следует отметить, что вблизи узла x = 2.175, в точках x = 2.16 (кривые 3) и x = 2.18 (кривые 4), как сдвиговые компоненты TH  $\sigma_{xz}(x, z = 0, \tau)$  (рис. 4, b) и  $\sigma_{zx}(x, z = 0, \tau)$  (рис. 4, a), так и нормальная компонента  $\sigma_{xx}(x, z = 0, \tau)$  (рис. 5, b) меняют знак, что свидетельствует о том, что в окрестности узла x = 2.175 возникли разнонаправленные вихревые течения, инициируемые сильным электрическим полем  $E \sim 100E_{\text{th}}$ .

Предположим далее, что в момент времени  $\tau = 20$  $(\sim 0.12 \, \text{s})$  электрическое поле будет выключено, т.е. E = 0. В этом случае поле директора  $\hat{\mathbf{n}}(x, z, \tau)$  под действием вязких, упругих и поверхностных сил и моментов, действующих на единицу объема ЖК-фазы, начинает переориентироваться из состояния, характеризующегося углом  $\theta_{eq}(x, z)$ , в состояние, характеризующееся планарной ориентацией ЖК-канала. При этом угол  $\theta(x, z, \tau)$  должен стремиться к нулю. Следует отметить, что время релаксации  $\tau_R(\text{off})$ , в связи с малостью вязких, упругих и поверхностных сил и моментов, по сравнению с электрическими, значительно больше времен  $\tau_R(in)$ . На рис. 6 (кривые 1) представлены результаты расчетов эволюций угла  $\theta(x, z = 0, \tau)$  вдоль оси  $x \in [-10, 10]$  для случая жесткого сцепления ЖК-молекул с ограничивающими поверхностями для следующих, после выключения электрического поля, 20 единиц безразмерного времени. Здесь представлены состояния, соответствующие време-Ham  $\tau = 22 \ (\sim 0.132 \,\text{s}), \ 24 \ (\sim 0.144 \,\text{s}), \ 26 \ (\sim 0.156 \,\text{s}),$ 30 ( $\sim$  0.18 s), 35 ( $\sim$  0.21 s), и  $\tau = 40$  ( $\sim$  0.24 s). Результаты расчетов указывают на то, что быстрее релаксируют области, удаленные от положений узлов квазипериодической структуры, т.е. вблизи точек  $x = \pm 2.175$ и  $\pm 5.83$ . Безразмерное время релаксации  $\tau_R(\text{off})$  поля директора к планарно ориентированному распределению по всему объему ЖК-канала равно 400, или  $\sim 2.4$  s. Эволюция распределения безразмерной угловой скорости  $\omega(x, z = 0, \tau)$  к ее равновесному распределению



**Рис. 6.** Эволюция распределения угла  $\theta(x, z = 0, \tau)$  (кривые I) и угловой скорости  $\omega(x, z = 0, \tau)$  (кривые 2) вдоль оси  $x \in [-10, 10]$  к их равновесным распределениям  $\theta_{eq}(x, z = 0, \tau = \tau_R(\text{off}))$  и  $\omega_{eq}(x, z = 0, \tau = \tau_R(\text{off}))$  соответственно, с момента отключения электрического поля  $\mathbf{E} = 0$ . Промежуточные состояния соответствуют временам  $\tau = 22$  (~ 0.132 s), 24 (~ 0.144 ms), 26 (~ 0.156 s), 30 (~ 0.18 s), 35 (~ 0.21 s) и 40 (~ 0.24 s) соответственно.

 $\omega_{eq}(x, z = 0, \tau = \tau_R(\text{off})) = 0$ , вдоль оси  $x \in [-10, 10]$ , в течение следующих 20 единиц времени после выключения электрического поля показана на рис. 6 (кривые 2). Представлены состояния, соответствующие тем же безразмерным временам, что и для угла  $\theta(x, z = 0, \tau = \tau_R(\text{off}))$ . Следует отметить, что в течение первых 6 единиц безразмерного времени после выключения электрического поля абсолютная величина угловой скорости  $|\omega(x, z, \tau)|$  достигает незначительного максимального значения вблизи узлов квазипериодической структуры в точках  $x = \pm 2.175$  и  $\pm 5.83$ , а затем, в течение следующих 14 единиц безразмерного времени, быстро релаксирует к нулю. При этом абсолютная величина угловой скорости  $\omega(\text{off})$  примерно на 6 порядков меньше абсолютной величины  $\omega(\text{in})$ .

Наконец, рассмотрим третий случай, когда сильное электрическое поле  $\mathbf{E} = -E\hat{\mathbf{k}}~(E \sim 1.05\,\mathrm{V}/\mu\mathrm{m})$  включено в момент времени  $\tau = 248$  (случай A) или 250 (случай В) (в отрицательном смысле), под углом  $\alpha(\sim -\frac{\pi}{2})$  к горизонтальным ограничивающим поверхностям ЖК-канала. Следует отметить, что в обоих случаях А и В отсчет времени начался с момента включения электрического поля  $\mathbf{E} = E\mathbf{k}$ . Этот процесс переориентации поля директора из положения  $\hat{\mathbf{n}}^{\mathrm{off}}$  в направлении вектора **E** описывается углом  $\theta(x, z, \tau)$ . Здесь  $\hat{\mathbf{n}}^{\text{off}}$  — ориентация поля директора спустя время  $\tau$  (off), т.е. ориентация, соответствующая планарно и однородно ориентированному нематическому образцу. Как и в случае  $\mathbf{E} = E\mathbf{k}$ , процесс переориентации  $\hat{\mathbf{n}}$ описывается системой нелинейных дифференциальных уравнений в частных производных (1)-(3), (9) и (10),дополненной граничными (4), (5) и начальными (6) и (8)условиями, как для угла  $\theta$ , так и для функции тока  $\psi$ , при том, что значения волновых чисел  $q_x$  и  $q_z$  определяются из условия минимума полной энергии  $W = W_{elast} + W_{el}$ . Выбор двух времен,  $\tau = 248$  (случай A) или 250 (случай *B*), включения электрического поля  $\mathbf{E} = -E\mathbf{k}$  влияет на величину порогового значения амплитуды угла  $\theta_0^{\text{th}}$  и, тем самым, на характер переориентации поля директора под действием сильного электрического поля. Так, в случае  $A (\tau = 248)$  электрическое поле **E** было выключено в течение  $\tau$  (off) = 248 - 20 = 228 единиц безразмерного времени. Таким образом, в случае А начальное условие для угла  $\theta$  принимает вид

$$\theta(x, z, 0) = \theta^{\text{off}}(x, z), \qquad (13)$$

а значение угла  $\alpha = -1.57$ .

На рис. 7 (кривые *1*, точечные линии) представлены результаты расчета эволюции угла  $\theta(x, z = 0, \tau)$  к его равновесному распределению  $\theta_{eq}(x, z = 0)$  вдоль оси  $x \in [-10, 10]$ , которое достигается спустя  $\tau_R(in) = 10$  (~ 60 ms) единиц безразмерного времени после повторного включения электрического поля  $\mathbf{E} = -E\hat{\mathbf{k}}$  ( $E \sim 1.05 \text{ V}/\mu\text{m}$ ). Эти расчеты были получены для случая жесткого сцепления ЖК-молекул с ограничивающими поверхностями, при значении угла  $\alpha = -1.57$ 



**Рис. 7.** Эволюция распределения угла  $\theta(x, z = 0, \tau)$  (кривые 1) и угловой скорости  $\omega(x, z = 0, \tau)$  (кривые 2) вдоль оси  $x \in [-10, 10]$  к их равновесным распределениям  $\theta_{eq}(x, z = 0, \tau = \tau_R(\text{in}) = 10)$  и  $\omega_{eq}(x, z = 0, \tau = \tau_R(\text{in}) = 10)$  соответственно (случай A), под действием сильного электрического поля  $\mathbf{E} = -E\hat{\mathbf{k}}$  ( $E \sim 1.05 \text{ V}/\mu\text{m}$ ), направленного под углом  $\alpha = -1.57$  ( $\sim -89.96^{\circ}$ ) к горизонтальным ограничивающим поверхностям ЖК-канала. Промежуточные состояния соответствуют временам  $\tau = 2$  ( $\sim 12 \text{ ms}$ ), 4 ( $\sim 24 \text{ ms}$ ), 6 ( $\sim 36 \text{ ms}$ ), 8 ( $\sim 48 \text{ ms}$ ) и 10 ( $\sim 60 \text{ ms}$ ) после повторного включения электрического поля.

 $(\sim -89.96^\circ).$  Промежуточные состояния соответствуют временам  $\tau = 2$  (~ 12 ms), 4 (~ 24 ms), 6 (~ 36 ms),  $8~(\sim 48\,\mathrm{ms})$  и 10  $(\sim 60\,\mathrm{ms})$  соответственно. Здесь безразмерное время  $\tau = \frac{\epsilon_0 \epsilon_a}{\gamma_1} \left(\frac{\dot{U}}{2d}\right)^2 t$  отсчитывалось с момента повторного включения электрического поля. В этом случае равновесное распределение угла  $\theta_{eq}(x, z = 0)$ вдоль оси  $x \in [-10, 10]$  характеризуется отчетливо выраженной квазипериодической структурой с узлами в точках  $x = \pm 3.26$  и  $\pm 4.72$ . Эволюция распределения безразмерной угловой скорости  $\omega(x, z = 0, \tau)$  к ее равновесному распределению  $\omega_{eq}(x, z = 0, \tau = \tau_R(in)) = 0$ , вдоль оси  $x \in [-10, 10]$ , представлена на рис. 7 (кривые 2, сплошные линии). Промежуточные состояния соответствуют безразмерным временам  $\tau = 2 ~(\sim 12 \, {\rm ms}),$  $\tau = 4$  (~ 24 ms),  $\tau = 6$  (~ 36 ms),  $\tau = 8$  (~ 48 ms) и  $\tau = \tau_R(in) = 10$  (~ 60 ms) соответственно. При этом отчетливо видно, как спустя бединиц безразмерного времени начинает формироваться в ЖК-канале несколько вихрей, причем положения узлов решетки задают границы формируемых вихрей. Так, согласно нашим расчетам, представленным на рис. 7 (кривые 2), отчетливо наблюдаются три вихря (-10 < x < -4.72), -3.26 < x < 3.26 и 4.72 < x < 10), вращающихся по часовой стрелке, и два вихря (-4.72 < x < -3.26 и 3.26 < x < 4.72), вращающихся против часовой стрелки. Спустя время  $\tau_R(in) = 10$  (~ 60 ms) вращение вихрей практически полностью прекратилось и установилось равновесное распределение поля директора вдоль оси



Рис. 8. То же, что на рис. 7, только для случая В.

 $x \in [-10, 10]$ , характеризующееся отчетливо выраженной квазипериодической структурой с узлами в точках  $x = \pm 3.26$  и  $\pm 4.72$ .

Иначе происходит процесс переориентации поля директора в случае В, когда директор переориентируется из положения  $\hat{\mathbf{n}}^{\text{off}}$  в направлении вектора E, описываемого углом  $\theta(x, z, \tau)$ , под действием сильного электрического поля  $\mathbf{E} = -E\hat{\mathbf{k}} \ (E \sim 1.05 \text{ V}/\mu\text{m})$ , включенного в момент времени  $\tau = 250$ , под углом  $\alpha(\sim -\frac{\pi}{2})$  к горизонтальным ограничивающим поверхностям ЖК-канала. В этом случае электрическое поле E было выключено в течение  $\tau$  (off) = 250 - 20 = 230 единиц безразмерного времени и начальное условие для угла  $\theta$  определялось другой функцией  $\theta^{\text{off}}(x, z)$ , которой соответствовала меньшая величина амплидуды  $\theta_0^{\text{off}}$  (см. уравнение (6)).

На рис. 8 (кривые 1, точечные линии, и 2, сплошные линии) представлены результаты расчета эволюции угла  $\theta(x, z = 0, \tau)$  и безразмерной угловой скорости  $\omega(x, z = 0, \tau)$  к их равновесным распределениям  $\theta_{eq}(x, z = 0)$  и  $\omega_{eq}(x, z = 0)$  вдоль оси  $x \in [-10, 10]$  соответственно. Эти расчеты были получены для случая жесткого сцепления ЖК-молекул с ограничивающими поверхностями, при значении угла  $\alpha = -1.57(\sim -89.96^{\circ})$ . Промежуточные состояния соответствуют временам  $\tau = 2$  (~ 12 ms), 4 (~ 24 ms), 6 ( $\sim$  36 ms), 8 ( $\sim$  48 ms) и 10 ( $\sim$  60 ms) соответственно. Следует отметить, что в обоих выше описанных случаях А и В, в течение первых 4 единиц безразмерного времени после повторного включения электрического поля, эволюция как угла  $\theta(x, z = 0, \tau)$ , так и безразмерной угловой скорости  $\omega(x, z = 0, \tau)$  в точности повторяют друг друга. Различия в поведении как угла  $\theta$ , так и угловой скорости  $\omega$  начинаются с момента времени  $\tau = 6$ . Так, в случае В весь объем, занимаемый ЖК-фазой, вращается как единое целое, правда с различной угловой скоростью. Те домены, которые в случае А вращались против часовой стрелки, в случае В стали вращаться

по часовой стрелке, правда с более высокой скоростью. К моменту времени  $\tau_R(in) = 10$  вращение ЖК-фазы, в обоих случаях A и B, полностью прекратилось, при том, что в случае B директор уже был равномерно сориентирован вдоль направления электрического поля E по всему объему, занимаемому ЖК-фазой.

Эволюция безразмерных сдвиговых компонент ТН  $\sigma_{zx}(x, z = 0, \tau)$  и  $\sigma_{xz}(x, z = 0, \tau)$  (см. рис. 9, *a* и *b*) и нормальной компоненты  $\sigma_{xx}(x, z = 0, \tau)$  (см. рис. 10, *a*), к их равновесным значениям в трех точках, отстоящих на расстояниях x = 2.0 (кривая *1*), 3.0 (кривая *2*) и 3.2 (кривая *3*) от центра ЖК-канала, в течение первых 20 единиц безразмерного времени с момента повторного включения электрического поля



Рис. 9. Эволюция сдвиговых компонент TH  $\sigma_{zx}(x, z = 0, \tau)$  (a) и  $\sigma_{xz}(x, z = 0, \tau)$  (b), в точках (x = 2.0) (кривые I), (x = 3.0) (кривые 2) и (x = 3.2) (кривые 3) соответенно, к их равновесным распределениям  $\sigma_{zx}^{eq}$  и  $\sigma_{xz}^{eq}$ , под действием сильного электрического поля  $\mathbf{E} = -E\hat{\mathbf{k}}$  ( $E \sim 1.05 \text{ V}/\mu\text{m}$ ), направленного под углом  $\alpha = -1.57$  ( $\sim -89.96^{\circ}$ ) к горизонтальным ограничивающим поверхностям ЖК-канала.



**Рис. 10.** То же, что на рис. 9, только для нормальных компонент TH  $\sigma_{xx}(x, z = 0, \tau)$  (*a*) и  $\sigma_{zz}(x, z = 0, \tau)$  (*b*).

 ${f E} = -E\hat{f k}~(E\sim 1.05\,{
m V}/\mu{
m m})~($ случай B) показаны на рис. 9 и 10. Расчеты свидетельствуют о том, что абсолютные величины двух сдвиговых компонент ТН  $|\sigma_{xz}|$  и  $|\sigma_{zx}|$ , а также нормальной компоненты  $|\sigma_{xx}|$ , на начальном этапе эволюции, соответствующем временам  $\tau \sim 3 \div 4 ~(\sim 18 \div 24 \, {\rm ms})$ , достигают максимальных значений  $\sim 0.3 \div 0.8 \ (\sim 6.6 \div 17.6 \, \text{Pa})$ , а затем быстро убывают к нулю. В свою очередь, безразмерная нормальная компонента TH  $\sigma_{zz}(x, z = 0, \tau)$  (рис. 10, b) на начальном этапе эволюции, соответствующем временам  $\tau \sim 3 \div 4$  ( $\sim 18 \div 24 \,\mathrm{ms}$ ), осциллирует около значения  $\sim 1.0~(\sim 20 \,\mathrm{Pa})$ , а затем монотонно возрастает и на конечном этапе эволюции давление растяжения  $\sigma_{zz}$ , обусловленное сильным электрическим полем  $\mathbf{E} = -E\mathbf{k}$  $(E \sim 1.05 \,\mathrm{V}/\mu\mathrm{m})$ , достигает величины  $\sim 1.5 (\sim 33 \,\mathrm{Pa})$ , сравнимым с величиной компоненты ТН  $\sigma_{77}$  для случая поля  $\mathbf{E} = E\mathbf{k}$ , направленного в противоположном направлении.

#### 4. Заключение

В предлагаемой работе представлено численное исследование переориентации как поля директора n и поля скорости v, так и компонент тензора напряжения  $\sigma_{ii}$  (ij = x, y, z) нематического жидкого кристалла (ЖК), инкапсулированного в прямоугольный канал, под действием сильного электрического поля  $\mathbf{E} = E\mathbf{k}$ , направленного под углом относительно нормали k, направленной к планарно ориентированному ЖК-каналу. Численные расчеты, выполненные в рамках нелинейного обобщения классической теории Эриксена-Лесли, показали, что при определенных соотношениях моментов и импульсов, действующих на единицу объема ЖК-фазы, и в случае  $E \sim 1.05 \,\mathrm{V}/\mu\mathrm{m}$  в процессе переориентации n могут возникнуть переходные периодические структуры, если соответствующая мода искажения обладает наибыстрейшим откликом и, таким образом, подавляет все остальные моды, в том числе и однородные. Возникающие при этом вращающиеся домены способствовали уменьшению скорости диссипации энергии и, тем самым, создавали более выгодные, по сравнению с однородным поворотом, режимы переориентации поля директора. При этом были исследованы три динамических режима переориентации поля директора в нематике, образованном молекулами 4-п-пентил-4'-цианобифенила (5ЦБ), под действием сильного электрического поля  $\mathbf{E} = E\mathbf{k}$ . Первый режим соответствовал включению Е, направленному в положительном направлении, перпендикулярно однородно ориентированному нематику, второй соответствовал режиму с выключенным полем, Е = 0, и наконец, третий режим соответствовал повторному включению Е, но направленному в отрицательном направлении относительно нормали к планарно ориентированному ЖК-каналу.

Мы полагаем, что данная работа проливает свет на неизученные аспекты динамики переориентации поля директора в микроскопических ЖК-каналах под действием сильного электрического поля.

## Приложение. Моменты и компоненты тензора напряжений

Мы рассмотрим нематический ЖК, где поле директора задано вектором  $\hat{\mathbf{n}} = (n_x, 0, n_z) = (\cos \theta, 0, \sin \theta)$ , а баланс вращательных моментов, действующих на единицу объема ЖК-фазы, состоит из [7,10]  $\mathbf{T}_{\text{elast}} = T_{\text{elast}}\hat{\mathbf{j}} = \frac{\delta \mathcal{W}_{\text{F}}}{\delta \hat{\mathbf{n}}} \times \hat{\mathbf{n}}$  — упругого,  $\mathbf{T}_{\text{vis}} = T_{\text{vis}}\hat{\mathbf{j}} = \frac{\delta \mathcal{R}^{\text{vis}}}{\delta \hat{\mathbf{n}}_t} \times \hat{\mathbf{n}}$  — вязкого и  $\mathbf{T}_{\text{el}} = T_{\text{el}}\hat{\mathbf{j}} = \frac{\delta \psi_{\text{el}}}{\delta \hat{\mathbf{n}}} \times \hat{\mathbf{n}}$  — электрического вкладов. Здесь  $\mathcal{W}_{\text{F}} = \frac{1}{2} [K_1 (\nabla \cdot \hat{\mathbf{n}})^2 + K_3 (\hat{\mathbf{n}} \times \nabla \times \hat{\mathbf{n}})^2]$  — плотность упругой энергии, приходящейся на единицу объема ЖК-фазы,  $\psi_{el} = -\frac{1}{2} \epsilon_0 \epsilon_a (\hat{\mathbf{n}} \cdot \mathbf{E})^2$  — плотность электрической энергии,

$$\begin{split} \mathscr{R}^{\text{vis}} &= \alpha_1 \left( \hat{\mathbf{n}} \cdot \mathbf{D}_s \cdot \hat{\mathbf{n}} \right)^2 + \gamma_1 \left( \hat{\mathbf{n}}_t - \mathbf{D}_a \cdot \hat{\mathbf{n}} \right)^2 \\ &+ 2\gamma_2 (\hat{\mathbf{n}}_t - \mathbf{D}_a \cdot \hat{\mathbf{n}}) \cdot \left( \mathbf{D}_s \cdot \hat{\mathbf{n}} - (\hat{\mathbf{n}} \cdot \mathbf{D}_s \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \right) \\ &+ \alpha_4 \mathbf{D}_s \colon \mathbf{D}_s + (\alpha_5 + \alpha_6) \left( \hat{\mathbf{n}} \cdot \mathbf{D}_s \cdot \mathbf{D}_s \cdot \hat{\mathbf{n}} \right) \end{split}$$

— вязкий вклад в полную функцию Рэлея  $\mathscr{R}=\mathscr{R}^{\text{vis}}$ . Здесь  $K_1$  и  $K_3$  — коэффициенты упругости Франка, соответствующие поперечному и продольному изгибам,  $\mathbf{D}_s = \frac{1}{2} [\nabla \mathbf{v} + (\nabla \mathbf{v})^T]$  и  $\mathbf{D}_a = \frac{1}{2} [\nabla \mathbf{v} - (\nabla \mathbf{v})^T]$  симметричный и антисимметричный вклады в тензор  $\nabla \mathbf{v}$ ,  $\hat{\mathbf{n}}_t = \frac{d\hat{\mathbf{n}}}{dt}$  — материальная производная,  $\alpha_i (i = 1, ..., 6)$  — коэффициенты вязкости Лесли, а  $\gamma_1 = \alpha_3 - \alpha_2, \gamma_2 = \alpha_3 + \alpha_2$  — коэффициенты вращательной вязкости.

Безразмерный тензор напряжений (TH) представляет собой сумму, состоящую из упругих ( $\sigma^{\text{elast}}$ ), вязких ( $\sigma^{\text{vis}}$ ) и электрических ( $\sigma^{\text{el}}$ ) вкладов за вычетом  $P\mathscr{L}$ . Компоненты упругого TH имеют вид

$$\begin{split} \sigma_{xx}^{\text{elast}} &= \delta_1 \left( -\Delta_1 \theta_{,x}^2 + \Delta_3 \theta_{,x} \theta_{,z} \right), \\ \sigma_{zz}^{\text{elast}} &= \delta_1 \left( -\Delta_2 \theta_{,z}^2 + \Delta_3 \theta_{,x} \theta_{,z} \right), \\ \sigma_{xz}^{\text{elast}} &= \delta_1 \left( -\Delta_1 \theta_{,x} \theta_{,z} + \Delta_3 \theta_{,z}^2 \right), \\ \sigma_{zx}^{\text{elast}} &= \delta_1 \left( \Delta_2 \theta_{,x} \theta_{,z} + \Delta_3 \theta_{,x}^2 \right), \end{split}$$

где

$$\Delta_1 = \sin^2 \theta + K_{31} \cos^2 \theta, \quad \Delta_2 = \cos^2 \theta + K_{31} \sin^2 \theta$$
$$\Delta_3 = \frac{1 - K_{31}}{2} \sin 2\theta, \quad K_{31} = K_3 / K_1.$$

Безразмерные компоненты вязкого ТН имеют вид:

$$\sigma_{ij}^{\text{vis}} = f_{ij}^{1,\text{vis}}\psi_{,xx} + f_{ij}^{2,\text{vis}}\psi_{,zz} + f_{ij}^{3,\text{vis}}\psi_{,xz} + f_{ij}^{4,\text{vis}}\psi_{,zx},$$

где

$$\begin{split} f_{xx}^{1,\text{vis}} &= -\frac{\sin 2\theta}{4} \left( \frac{2a_1}{\gamma_1} + \gamma^2 \cos 2\theta \right), \\ f_{xx}^{2,\text{vis}} &= -f_{xx}^{1,\text{vis}}, \\ f_{xx}^{3,\text{vis}} &= \frac{1}{\gamma_1} \Big[ \alpha_1 \cos 2\theta \cos^2 \theta + (\alpha_5 + \alpha_6) \cos^2 \theta + \alpha_4 \Big] \\ -\frac{\gamma^2}{4} \sin^2 \theta, \\ f_{xx}^{4,\text{vis}} &= -\frac{\gamma}{2} \Big[ \sin 2\theta (\Delta_1 \theta_{,xx} + \Delta_2 \theta_{,zz}) \\ &+ \Delta_5 (\theta_{,x}^2 + 2\theta_{,xz} - \theta_{,z}^2 - 2\theta_{,x} \theta_{,z}) \Big], \\ f_{zz}^{1,\text{vis}} &= -\frac{\sin 2\theta}{4} \left( 2\frac{\alpha_1}{\gamma_1} \cos^2 \theta - \gamma^2 \cos 2\theta \right), \\ f_{zz}^{2,\text{vis}} &= -f_{zz}^{1,\text{vis}}, \\ f_{zz}^{3,\text{vis}} &= \frac{1}{\gamma_1} \Big[ \alpha_1 \cos 2\theta \sin^2 \theta - (\alpha_5 + \alpha_6) \cos^2 \theta - \alpha_4 \Big] \\ &+ \frac{\gamma^2}{4} \sin^2 \theta, \quad f_{zz}^{4,\text{vis}} = -f_{xx}^{4,\text{vis}}, \\ f_{xz}^{1,\text{vis}} &= \frac{1}{4\gamma_1} \Big( -\alpha_1 \sin^2 2\theta + 2\gamma_2 \cos 2\theta - 2\alpha_4 \\ &- \alpha_5 - \alpha_6 - \gamma_1 \Big) + \Delta_6^2, \\ f_{xz}^{2,\text{vis}} &= \frac{1}{4\gamma_1} \left( \alpha_1 \sin^2 2\theta + 2\alpha_4 + \alpha_5 + \alpha_6 - \gamma_1 \right) + \Delta_7, \\ f_{xz}^{4,\text{vis}} &= -\frac{\sin 4\theta}{4} \left( \frac{\alpha_1}{\gamma_1} + \gamma^2 \right), \\ f_{zx}^{4,\text{vis}} &= -\frac{1}{4\gamma_1} \left( \alpha_1 \sin^2 2\theta + 2\alpha_4 + \alpha_5 + \alpha_6 - \gamma_1 \right) + \Delta_6^2, \\ f_{zx}^{2,\text{vis}} &= \frac{1}{4\gamma_1} \left( \alpha_1 \sin^2 2\theta + 2\alpha_4 + \alpha_5 + \alpha_6 - \gamma_1 \right) + \Delta_6^2, \\ f_{zx}^{2,\text{vis}} &= \frac{1}{4\gamma_1} \left( \alpha_1 \sin^2 2\theta + 2\gamma_2 \cos 2\theta + 2\alpha_4 \right) \\ &+ \alpha_5 + \alpha_6 + \gamma_1 - \Delta_8^2, \quad f_{zx}^{3,\text{vis}} &= -f_{xz}^{3,\text{vis}}, \\ f_{zx}^{4,\text{vis}} &= \Delta_8 (\Delta_1 \theta_{,xx} + \Delta_2 \theta_{,zz}) \\ &+ \Delta_8 \Delta_3 (\theta_x^2 + 2\theta_{,xz} - \theta_z^2 - 2\theta_{,x} \theta_z), \end{split}$$

где

$$\Delta_5 = \frac{1 - K_{31}}{2} \sin^2 2\theta, \quad \Delta_6 = \frac{1}{2} \left( 1 - \gamma \cos 2\theta \right),$$
$$\Delta_7 = \frac{1}{4} \left( 1 - \gamma^2 \cos^2 2\theta \right), \quad \Delta_8 = \frac{1}{2} \left( 1 + \gamma \cos 2\theta \right)$$

Безразмерный аналог уравнения Навье–Стокса  $\rho \frac{d\mathbf{v}}{dt} = \nabla \cdot \sigma$  принимает вид

$$\delta_2\big[(\Delta\psi)_{,\tau}+\psi_{,z}(\Delta\psi)_{,x}-\psi_{,x}(\Delta\psi)_{,z}\big]=\hat{\mathscr{L}}\psi+\mathscr{F},$$

где 
$$\Delta \psi = \psi_{,xx} + \psi_{,zz}, \ \mathcal{F} = \mathcal{F}_{elast} + \mathcal{F}_{el}, a$$
  
 $\mathcal{F}_{elast} = (\sigma_{xx}^{elast} + \sigma_{zz}^{elast})_{,xz} + (\sigma_{zx}^{elast})_{,zz} - (\sigma_{xz}^{elast})_{,xx},$   
 $\mathcal{F}_{el} = -(\sigma_{zz}^{el})_{,xz},$   
и  
 $\sigma_{zz}^{el} = \bar{E}^2 \sin \alpha \left(\frac{\epsilon_{\perp}}{\epsilon_a} + \sin^2 \theta\right).$ 

Оператор

$$\begin{aligned} \hat{\mathcal{L}}\psi &= a_1\psi_{,zzzz} + a_2\psi_{,xzzz} + a_3\psi_{,xxzz} + a_4\psi_{,xxxz} \\ &+ a_5\psi_{,xxxx} + a_6\psi_{,zzz} + a_7\psi_{,xzz} + a_8\psi_{,xxz} \\ &+ a_9\psi_{,xxx} + a_{10}\psi_{,zz} + a_{11}\psi_{,xz} + a_{12}\psi_{,xx}, \end{aligned}$$

где

$$a_{1} = f_{zx}^{2,\text{vis}}, \quad a_{2} = f_{zx}^{3,\text{vis}} + f_{xx}^{2,\text{vis}} - f_{zz}^{2,\text{vis}}, \\a_{3} = f_{zx}^{1,\text{vis}} - f_{xz}^{2,\text{vis}} + f_{xx}^{3,\text{vis}} - f_{zz}^{3,\text{vis}}, \\a_{4} = f_{xx}^{1,\text{vis}} - f_{zz}^{1,\text{vis}} - f_{zz,z}^{3,\text{vis}}, \\a_{5} = -f_{xz}^{1,\text{vis}}, \quad a_{6} = f_{xx,z}^{2,\text{vis}} - f_{zz,z}^{2,\text{vis}} + 2f_{zx,z}^{2,\text{vis}}, \\a_{7} = f_{xz,z}^{2,\text{vis}} - f_{zz,z}^{2,\text{vis}} + f_{xx,z}^{3,\text{vis}} - f_{zz,z}^{3,\text{vis}} - 2f_{xz,z}^{3,\text{vis}}, \\a_{8} = f_{xx,x}^{1,\text{vis}} - f_{zz,x}^{1,\text{vis}} + f_{xx,z}^{3,\text{vis}} - f_{zz,z}^{3,\text{vis}} + 2f_{zx,z}^{1,\text{vis}} - 2f_{xz,x}^{3,\text{vis}}, \\a_{9} = f_{xx,z}^{1,\text{vis}} - f_{zz,xz}^{1,\text{vis}} + f_{zx,zz}^{2,\text{vis}} - f_{xz,xx}^{2,\text{vis}}, \\a_{10} = f_{xx,xz}^{2,\text{vis}} - f_{zz,xz}^{2,\text{vis}} + f_{zx,zz}^{2,\text{vis}} - f_{xz,xx}^{3,\text{vis}}, \\a_{11} = f_{xx,xz}^{3,\text{vis}} - f_{zz,xz}^{3,\text{vis}} + f_{zx,zz}^{3,\text{vis}} - f_{xz,xx}^{3,\text{vis}}, \\a_{12} = f_{xx,xz}^{1,\text{vis}} - f_{zz,xz}^{1,\text{vis}} + f_{zx,xz}^{3,\text{vis}} - f_{zz,xx}^{1,\text{vis}}.$$

### Список литературы

- [1] S. Lee, R. An, J.A. Hunt. Nature Nanotech. 5, 412 (2010).
- [2] S. Samitsu, Y. Takanishi, J. Yamamoto. Nature Mater. 9, 816 (2010).
- [3] H. Ren, Su Xu, S-T. Wu. Lab. Chip. 13, 100 (2013).
- [4] R. Daugla, S. Cagri Kayi, Ch.N. Baroud. Proc. Natl. Acad. Sci. 110, 853 (2013).
- [5] P.G. de Gennes, J. Prost. The physics of liquid crystals. Oxford Univ. Press. Oxford (1995). 400 p.
- [6] A. Sugimura, A.V. Zakharov. Phys. Rev. E 84, 021703 (2011).
- [7] A.A. Vakulenko, A.V. Zakharov. Phys. Rev. E 88, 022505 (2013).
- [8] J.L. Ericksen. Arch. Ration. Mech. Anal. 4, 231 (1960).
- [9] F.M. Leslie. Arch. Ration. Mech. Anal. 28, 265 (1968).
- [10] А.В. Захаров, А.А. Вакуленко, С.В. Пасечник. ФТТ 58, 1851 (2016).
- [11] И.С. Березин, Н.Р. Жидков. Методы вычислений. Физматгиз, М. (1964). 464 с.