06

Синтез, кристаллическая структура и магнитные свойства соединения YbFeTi₂O₇

© Т.В. Дрокина¹, Г.А. Петраковский¹, М.С. Молокеев^{1,2,3}, Д.А. Великанов¹

¹ Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН,

Красноярск, Россия

² Дальневосточный государственный университет путей сообщения,

Хабаровск, Россия

³ Сибирский федеральный университет,

Красноярск, Россия

E-mail: tvd@iph.krasn.ru

(Поступила в Редакцию 28 июня 2017 г.)

Описаны условия синтеза и результаты экспериментального исследования кристаллической структуры и магнитных свойств нового магнитного соединения YbFeTi₂O₇. Методом рентгеновской дифракции установлено, что кристаллическая структура исследуемого образца описывается ромбической пространственной группой *Pcnb* с параметрами элементарной ячейки: a = 9.8115(1) Å; b = 13.5106(2) Å; c = 7.31302(9) Å и имеет место атомный беспорядок в распределении ионов железа Fe³⁺ по пяти структурным позициям. Результаты магнитных измерений в низкотемпературной области показывают излом на температурной зависимости магнитных позициям. Полученные экспериментальные данные позволяют предположить, что при понижении температуры происходит переход из парамагнитного состояния в спинстекольное магнитное состояние, характеризуемое температурой замерзания $T_f = 4.5$ К в образце с преимущественно антиферромагнитным обменным взаимодействием в спиновой системе. Варьирование химического давления при замещении редкоземельного иона $R \rightarrow$ Yb в системе *R*FeTi₂O₇ не изменяет симметрию кристаллической решетки и магнитное состояние.

DOI: 10.21883/FTT.2018.03.45557.209

1. Введение

В связи с неослабевающим интересом к поиску новых материалов, перспективных для использования в различных областях техники и химической промышленности, синтез веществ с разнообразными магнитными свойствами и типами магнитного упорядочения остается одной из актуальных задач физики конденсированного состояния. В этом аспекте представляет интерес разработка и создание магнитных материалов, в том числе оксидных соединений, содержащих редкоземельные магнитные ионы и ионы переходных металлов и характеризуемых конкуренцией магнитных взаимодействий.

Известно, что новые магнитные соединения с общей формулой $RFeTi_2O_7$ (редкоземельный ион $R^{3+} = Sm$, Gd, Dy, Tu, Tb, Lu), кристаллическая симметрия которых описывается ромбической пространственной группой Pcnb, характеризуются атомным беспорядком в распределении магнитных ионов железа по различным структурным позициям и обладают магнитным состоянием спинового стекла [1–5]. Представляет интерес варьирование химического состава в системе $RFeTi_2O_7$, структурная и магнитная характеризация образцов с катионным замещением, приводящим к изменению химического давления.

В настоящей работе авторы приводят результаты синтеза и изучения свойств нового магнитного материала YbFeTi₂O₇. Представлены результаты рентгеновских и магнитных измерений.

2. Синтез образцов и техника эксперимента

Соединение YbFeTi₂O₇ получено реакцией в твердой фазе из смеси окислов Fe_2O_3 , Yb₂O₃ и TiO₂ при следующем соотношении, масс.%: $Fe_2O_3 - 25.2$; TiO₂ — 12.6; Yb₂O₃ — 62.2. Образцы в виде таблеток диаметром 10 mm и толщиной 1.5–2.0 mm, подвергались высокотемпературной обработке при температурах 1200–1250°С и нормальном давлении. Процедура синтеза включает четыре отжига с промежуточным мокрым помолом в спиртовой среде и повторными этапами прессования. Химический и фазовый состав полученных образцов контролировался методом рентгеноструктурного анализа.

Порошковая рентгенограмма YbFeTi₂O₇ получена на дифрактометре D8 ADVANCE фирмы Bruker с использованием линейного детектора VANTEC и излучения линии CuK_α. В эксперименте использовалась методика переменной скорости сканирования (VCT) и переменного шага (VSS). Время экспозиции увеличивалось с увеличением угла 2θ , приводя к значительному улучшению качества отснятой рентгенограммы [6–8]. Как правило, на полуширине пика (FWHM) должно укладываться 5–8 экспериментальных точек. Однако пики значительно уширяются с увеличением угла 2θ . Поэтому шаг был увеличен в высокоугловых областях 2θ с целью уменьшения затрат времени эксперимента [9]. Далее экспериментальные данные были конвертированы в один общепринятый в рентгенографии *XYE* файл, содержащий координаты $2\theta_i$, интенсивность I_i и стандартное отклонение $\sigma(I_i)$ для каждой экспериментальной точки. Уточнение Ритвельда, реализованное, например в программе TOPAS 4.2 [10], учитывает стандартное отклонение каждой точки посредством расчета веса для каждой точки $w_i = 1/\sigma(I_i)^2$. Таким образом, увеличение времени экспозиции для точки приводит к уменьшению стандартного отклонения $\sigma(I_i)$, и как следствие, к большему ее весу w_i в уточнении методом наименьших квадратов. В методике VCT происходит выравнивание между собой весов слабых высокоугловых и сильных низкоугловых рефлексов, тогда как в обыкновенном эксперименте веса неравноценны и информация о структуре, содержащаяся в высокоугловой области теряется.

Экспериментальная рентгенограмма исследуемого образца YbFeTi₂O₇ была отснята по методике VCT/VSS и разбита на четыре части: $5-38.7^{\circ}$ (экспозиция в точке 3 s, шаг 0.016°); $38.7-61.6^{\circ}$ C (экспозиция в точке 9 s, шаг 0.024°); $61.6-97.5^{\circ}$ (экспозиция в точке 15 s, шаг 0.032°); $97.5-140^{\circ}$ (экспозиция в точке 24 s, шаг 0.040°). Общее время эксперимента составило 16 h. Разбиение эксперимента на части было проведено в программе XRD Wizard [9]. Положение пиков определялось в программе EVA (2004 release) из программного пакета DIFFRAC-PLUS, поставляемого Bruker.

Эксперименты по определению температурного поведения магнитного момента выполнены на магнитометре MPMS-XL Сибирского федерального университета в интервале температур 2–300 К в магнитном поле 500 Ос.

3. Экспериментальные результаты

0.8

0.7

6

5

4

3

2

0

20

Intensity, counts $\cdot 10^4$

Структурные свойства поликристаллического соединения YbFeTi₂O₇ изучены методом рентгеновской дифракции, рентгенограмма показана на рис. 1. Данные

 $YbFeTi_{2}O_{7} - 96.7(2)\%$

120

120

140

140

 $Fe_{2}TiO_{5} - 3.3(2)\%$

100

100

(i) (i) and (ii) (i) (i) (iii) (i

80

 2θ , deg

Рис. 1. Рентгенограмма поликристаллического соединения YbFeTi₂O₇ при комнатной температуре. Разностная рентгенограмма — нижняя кривая. Исследуемое вещество содержит 5.87% примеси состава Fe₂TiO₅.

60

40

рентгеновского исследования синтезированного образца свидетельствуют о том, что кроме основной фазы YbFeTi₂O₇ исследуемый образец содержит в небольшом количестве (3.3(2)%) примесь состава Fe₂TiO₅.

Так как исследуемое соединение изоструктурно GdGaTi₂O₇ [11], то в качестве начальной модели кристаллической структуры материала YbFeTi₂O₇ была взята структура соединения GdGaTi₂O₇. Согласно данным рентгеновского исследования, кристаллическая симметрия образца YbFeTi₂O₇ при комнатной температуре описывается ромбической пространственной группой *Pcnb*. Следует отметить, что ион Yb³⁺ обладает наименьшим ионным радиусом (R = 1.00 Å [12]) среди магнитных редкоземельных ионов. Сравнение с другими известными соединениями системы *R*FeTi₂O₇ [1–5] показывает, что изменение химического давления, вызванного катионным замещением $R \rightarrow$ Yb, а также Sm, Gd, Dy, Tu, Tb, Lu, не изменяет симметрию кристаллической решетки цирконолитов.

Таблица 1. Основные кристаллографические характеристики YbFeTi₂O₇ и параметры рентгеновского эксперимента

Пространственная группа	Pcnb
a, Å	9.8115(1)
b, Å	13.5106(2)
c, Å	7.31302(9)
$V, Å^3$	969.41(2)
Z	8
$D_x, g/cm^3$	5.963
μ , mm ⁻¹	84.016
$2 heta$ -интервал, $^{\circ}$	5-140
Число рефлексов	927
Число уточняемых параметров	74
$R_{wp}, \%$	1.911
$R_{\rm exp}, \%$	0.671
$R_p, \%$	1.751
$GOF(\chi^2)$	2.850

Атом	Кратность позиции	x	у	Z	р	$B_{iso}, \mathrm{\AA}^2$
Yb	8	0.2459 (3)	0.13233 (12)	0.0040 (5)	1	0.57 (8)
Ti1	8	0.2454 (11)	0.3847 (4)	0.4867 (12)	0.94 (2)	0.5 (1)
Fe1	8	0.2454 (11)	0.3847 (4)	0.4867 (12)	0.06 (2)	0.5 (1)
Ti2	4	0.5	0.25	0.248 (3)	0.59 (5)	0.5 (2)
Fe2	4	0.5	0.25	0.248 (3)	0.41 (5)	0.5 (2)
Ti3	8	0.0060 (8)	0.4858 (4)	0.2548 (17)	0.77 (3)	0.9 (2)
Fe3	8	0.0060 (8)	0.4858 (4)	0.2548 (17)	0.23 (3)	0.9 (2)
Fe	4	0	0.25	0.327 (2)	0.78	0.7 (2)
Fei	8	0.025 (6)	0.278 (4)	0.175 (9)	0.11	0.7 (2)
01	8	0.1624 (9)	0.3909 (11)	0.248 (6)	1	1.0 (2)
O2	8	0.4027 (19)	0.1112 (15)	0.252 (6)	1	1.0 (2)
O3	8	0.109 (2)	0.1509 (10)	0.245 (5)	1	1.0 (2)
O4	8	0.366 (4)	0.277 (3)	0.449 (5)	1	1.0 (2)
O5	8	0.370 (4)	0.280 (3)	0.060 (5)	1	1.0 (2)
O6	8	0.374 (3)	0.494 (2)	0.427 (4)	1	1.0 (2)
07	8	0.381 (3)	0.483 (2)	0.050 (4)	1	1.0 (2)

Таблица 2. Координаты атомов, заселенности позиций p и тепловые параметры B_{iso} в соединении YbFeTi₂O₇

Основные кристаллографические характеристики и параметры эксперимента для соединения YbFeTi₂O₇ представлены в табл. 1. Координаты атомов и результаты уточнения заселенностей позиций атомов p в материале YbFeTi₂O₇ содержатся в табл. 2. На рис. 2 приведена кристаллическая структура соединения YbFeTi₂O₇. Из табл. 2 следует, что в кристаллической структуре YbFeTi₂O₇ имеется пять неэквивалентных позиций атомов железа, причем три из них являются смешанными (Fe/Ti). Это способствует их хаотическому заселению ионами Fe³⁺.

Всего в элементарной кристаллической ячейке исследуемого соединения содержится $0.94 \times 8 + 0.59 \times 4 + 0.77 \times 8 = 16$ атомов титана Ті и $0.06 \times 8 + 0.41 \times 4 + 0.23 \times 8 + (0.78 \times 4 + 0.11 \times 8) = 8$ атомов железа Fe.

Рис. 3. Температурная зависимость обратной магнитной восприимчивости образца YbFeTi₂O₇, охлажденного в поле H = 0.05 T. Масса образца m = 0.045 g. Асимптотическая температура Нееля $\theta = -127$ K.

Рис. 4. Низкотемпературная зависимость магнитного момента YbFeTi₂O₇, полученная в двух режимах измерения: FC — охлаждение образца в магнитном поле H = 0.05 T и ZFC — охлаждение без поля (H = 0). Измерения проведены в магнитном поле H = 0.05 T. Масса образца m = 0.045 g. Температура замерзания $T_f = 4.5$ K.

Таким образом, учитывая относительные заселенности индивидуальных позиций, суммарную формулу можно записать в виде YbFe_{1.00(5)}Ti_{2.00(5)}O₇.

Ионы титана в многоатомном кристалле YbFeTi₂O₇ находятся в диамагнитном состоянии Ti⁴⁺. Магнитная подсистема изучаемого соединения формируется ионами двух типов: редкоземельными ионами иттербия Yb³⁺ (электронная конфигурация $4f^{14} 6s^2$) и ионами железа Fe³⁺ (электронная конфигурация $3d^5$). На рис. 3 и 4 представлены результаты магнитных измерений соединения YbFeTi₂O₇.

Таблица 3. Значения асимптотической температуры Нееля θ , константы Кюри–Вейсса *C* в законе Кюри–Вейсса, расчетные и экспериментальные величины эффективного момента для соединения YbFeTi₂O₇

Соединение	YbFeTi ₂ O ₇
Значение температуры замерзания T_f , К	4.5
Значение асимптотической температуры Нееля θ , К	-127
Константа Кюри-Вейсса С, К	0.016
$\mu_{ m eff cal} = (\mu_1^2 + \mu_2^2)^{1/2},$ где $\mu_i = g_i [J_i (J_i + 1)]^{1/2}, \mu_{ m B}$	7.49
$\mu_{ m effexp},\mu_{ m B}$	7.48

Температурный ход обратной магнитной восприимчивости $\gamma^{-1}(T)$ для YbFeTi₂O₇ в диапазоне температур 2-300 К при условии охлаждения образца в магнитном поле H = 500 Ое показан на рис. 3. Анализ температурной зависимости обратной магнитной восприимчивости $\chi^{-1}(T)$ в высокотемпературной области ($T > 100 \, {\rm K}$) показал, что она описывается законом Кюри-Вейсса. В образце в области высоких температур реализуется парамагнитное состояние, характеризуемое отрицательной асимптотической температурой Нееля $\theta = -127 \, \text{K}$, что свидетельствует о преимущественно антиферромагнитном взаимодействии в сложной магнитной подсистеме исследуемого образца с d- и f-элементами. В табл. 3 приведены экспериментальные значения асимптотической температуры Нееля θ , константы Кюри–Вейсса С в законе Кюри-Вейсса, расчетные и экспериментальные величины эффективного момента для интервала температур, в котором магнитная восприимчивость подчиняется закону Кюри-Вейсса. Расчетное значение эффективного магнитного момента формульной единицы YbFeTi₂O₇: $\mu_{eff \, cal} = 7.48 \, \mu_{B} \, \left(\mu_{eff \, cal}^{Fe^{3+}} = 5.91 \, \mu_{B} \right.$ и $\mu_{\rm eff \, cal}^{\rm Yb^{3+}} = 4.59\,\mu_{\rm B}$). Константа Кюри-Вейсса $C = 0.016\,{\rm K},$ что соответствует значению эффективного магнитного момента (молярное значение) $\mu_{effexp} = 4.58 \,\mu_{B}$. Определенная из экспериментальных данных величина эффективного магнитного момента сравнима с его расчетным числовым значением.

Магнитные измерения, результаты которых приведены на рис. 4, показывают, что ниже температуры $T_f = 4.5$ К температурная зависимость магнитного момента M(T) образца YbFeTi₂O₇ зависит от предыстории: проводилось ли охлаждение в магнитном поле H = 0.05 Т или и без него. Таким образом, наблюдаемые зависимости M(T) показывают, что при низких температурах ($T < T_f = 4.5$ К) имеется несколько значений магнитного момента в зависимости от условий охлаждения образца. Необходимо отметить, что результаты магнитных измерений в области низких температур характерны для образцов с магнитным состоянием спинового стекла. По-видимому, атомный беспорядок в распределении железа в кристаллической решетке и случайно изменяющиеся взаимодействия магнитных атомов приводят к образованию при температурах ниже температуры замерзания $T_f = 4.5$ К спинстекольного магнитного состояния.

Полученные экспериментальные данные, характеризующие магнитные свойства исследуемого соединения, согласуются с результатами экспериментов, выполненных на различных образцах при замещении редкоземельного катиона R^{3+} в системе RFeTi₂O₇, где R =Sm, Gd, Dy, Tu, Tb, Lu [1–5].

На основании указанных выше особенностей распределения ионов железа в кристаллической решетке, данных магнитных измерений и сравнения со свойствами других соединений ряда RFeTi₂O₇ (R =Sm, Gd, Dy, Tu, Tb, Lu), можно предположить в образце YbFeTi₂O₇ при температуре ниже $T_f = 4.5$ К формирование "замороженного" пространственного распределения ориентаций спиновых магнитных моментов, обусловленного наличием в системе хаотически расположенных магнитных моментов, конкурирующих взаимодействий и, по-видимому, вызванной ими фрустрации магнитных моментов. Отметим, что оценка уровня фрустраций ($F = |\theta|/T_f$ [13]) показывает высокое его значение, равное 28.2.

Таким образом, как симметрия кристаллической решетки, так и магнитное состояние в системе $RFeTi_2O_7$ (R = Yb, Sm, Gd, Dy, Tu, Tb, Lu) не зависят от ионного радиуса редкоземельного иона. Формирование магнитных свойств в YbFeTi₂O₇ как одного из представителей ряда соединений с общей формулой $RFeTi_2O_7$ обусловлено сложной игрой конкурирующих обменных взаимодействий между магнитными атомными соседями.

4. Заключение

Методом твердофазной реакции синтезировано новое магнитное соединение YbFeTi₂O₇.

Определена кристаллическая структура и доказана неэквивалентность кристаллографических позиций высокоспинового катиона Fe^{3+} и наличие атомного беспорядка в его распределении в кристаллической решетке YbFeTi₂O₇ при комнатной температуре. С учетом относительных заселенностей индивидуальных позиций, кристаллохимическая формула исследуемого соединения имеет вид: Yb³⁺Fe³⁺_{1.00(5)} Ti⁴⁺_{2.00(5)}O²⁻₇.

Исследование магнитных свойств в интервале температур 2–300 К показало, что парамагнитное состояние при температурах выше 100 К описывается законом Кюри–Вейсса и характеризуется отрицательным значением асимптотической температуры Нееля, свидетельствующей о преимущественно антиферромагнитном обменном взаимодействии в спиновой системе соединения YbFeTi₂O₇. В области низких температур имеет место зависимость намагниченности образца не только от температуры, но и от условий охлаждения (в магнитном поле и без поля). На основании совокупности полученных экспериментальных данных и сравнения со свойствами других ранее изученных соединений ряда $RFeTi_2O_7$ (R = Sm, Gd, Dy, Tu, Tb, Lu) предполагаем, что в магнетике YbFeTi_2O₇ реализуется магнитное состояние спинового стекла с температурой замерзания $T_f = 4.5$ K.

Экспериментальные данные также свидетельствуют, что варьирование химического давления за счет катионного замещения R^{3+} в системе RFeTi₂O₇ не приводит к изменениям симметрии кристаллической структуры и, по-видимому, магнитного состояния.

Полученный новый магнитный материал расширяет класс соединений с высоким уровнем фрустрации и требует проведения дальнейших исследований.

Список литературы

- Г.А. Петраковский, Т.В. Дрокина, А.Л. Шадрина, Д.А. Великанов, О.А. Баюков, М.С. Молокеев, А.В. Карташев, Г.Н. Степанов. ФТТ 53, 1757 (2011).
- [2] Г.А. Петраковский, Т.В. Дрокина, Д.А. Великанов, О.А. Баюков, М.С. Молокеев, А.В. Карташев, А.Л. Шадрина, А.А. Мицук. ФТТ 54, 1701 (2012).
- [3] T. Drokina, G. Petrakovskii, M. Molokeev, A. Arauzo, J. Bartolome. Phys. Procedia 12, 580 (2015).
- [4] T. Drokina, G. Petrakovskii, D. Velikanov, M. Molokeev. Solid State Phenomena 215, 470 (2014).
- [5] Т.В. Дрокина, Г.А. Петраковский, М.С. Молокеев, Д.А. Великанов, О.Н. Плетнев, О.А. Баюков. ФТТ 55, 1922 (2013).
- [6] I.C. Madsen, R.J. Hill. Adv. X-ray Anal. 35, 39 (1992).
- [7] I.C. Madsen, R.J. Hill. J. Appl. Cryst. 27, 385 (1994).
- [8] W.I.F. David. Abstract P2.6, NIST Special Publication 846, 210 (1992).
- [9] Diffrac-Plus Basic XRD Wizard. Bruker AXS GmbH, Karlsruhe, Germany (2002–2007).
- [10] Bruker AXS: TOPAS V4: General profile and structure analysis software for powder diffraction data. — User's Manual, Bruker AXS, Karlsruhe, Germany (2008).
- [11] Е.А. Генкина, В.И. Андрианов, Е.Л. Белоконева, Б.В. Милль, Б.А. Максимов, Р.А. Тамазян. Кристаллография 36, 1408 (1991).
- [12] К.П. Белов, М.А. Белянчикова, Р.З. Левитин, С.А. Никитин. Редкоземельные ферро- и антиферромагнетики. Наука, М. (1965).
- [13] J.A. Mydosh. Spin-Glasses: An Experimental Introduction, Taylor and Francis, N.Y. (1993). 268 p.