Поверхностный импеданс сильно индуктивной двухслойной среды

© В.К. Балханов, Ю.Б. Башкуев, Л.Х. Ангархаева

Институт физического материаловедения СО РАН, 670047 Улан-Удэ, Россия, e-mail: ballar@yandex.ru

(Поступило в Редакцию 17 мая 2017 г.)

В зимнее время на Северном Морском пути и на соленых озерах Евразии радиотрассы можно моделировать двухслойной средой, где первая среда (лед) является диэлектрическим слоем, а вторая (море, соленая вода) в СДВ–ДВ–СВ и КВ диапазонах радиоволн является подстилающей проводящей средой. Рассматриваемая двухслойная среда с реальными электрофизическими и геометрическими параметрами будет иметь сильно индуктивный поверхностный импеданс. Большой контраст электрофизических свойств слоев льда и воды позволяет выделить в формулах для расчетов поверхностного импеданса малые величины, благодаря чему удается получить конечные аналитические выражения для приведенного поверхностного импеданса (далее импеданс) в различных приближениях по малым величинам. Установлено, что для рассматриваемой среды фаза импеданса лежит в пределах –45.1°- – 89.9°, что как раз и является критерием сильно индуктивной поверхности.

DOI: 10.21883/JTF.2018.03.45606.2338

Введение

11

Мы рассматриваем распространение электромагнитной волны вдоль двухслойной среды "свободное пространство-диэлектрический слой-проводящая подстилающая среда". Свободное пространство будем маркировать индексом О. Первый диэлектрический слой маркируется индексом 1, имеет толщину h и описывается относительной диэлектрической проницаемостью ε_1 и удельным сопротивлением ρ_1 . Вторая среда маркируется индексом 2, неограничена по глубине и описывается удельным электрическим сопротивлением ρ_2 и диэлектрической проницаемостью ε_2 . Рассматриваемая двухслойная среда является хорошей моделью сильно индуктивной поверхности, служащей радиотрассой для распространяющейся вдоль нее электромагнитной волны. Нашей задачей будет определение аналитического выражения приведенного поверхностного импеданса δ (далее импеданс) для рассматриваемой сильно индуктивной радиотрассы. Всегда лучше иметь дело с аналитическим выражением. Актуальность задачи связана с тем, что знание импеданса подстилающей среды достаточно для определения всех характеристик радиотрассы и характеристик электромагнитного поля в месте приема радиосигнала. Проверка устанавливаемых ниже формул будет проводиться предельным переходом к однородной проводящей среде с известным импедансом. Установленные аналитические формулы для импеданса будут также сравнены с численным расчетом.

Волновое число

В каждом однородном слое квадрат волнового числа k^2 дается следующим известным выражением [1–3]:

$$k^{2} = \frac{\omega^{2}}{c^{2}} \left(\varepsilon + \frac{i}{\varepsilon_{0} \omega \rho} \right).$$

Здесь ω — круговая частота, c — скорость света, ε_0 — диэлектрическая постоянная вакуума. В свободном пространстве $\varepsilon = 1$ и $\rho \to \infty$, тогда квадрат волнового числа

$$k_0^2 = \frac{\omega^2}{c^2}.$$

Для озера Сульфат на юге Сибири первым слоем является лед с диэлектрической проницаемостью $\varepsilon_1 = 3.4$, в марте–апреле месяце имеющий толщину h = 1 m [4]. Удельное сопротивление льда на соленой воде $\rho_1 = 10^4 \Omega \text{m}$. В диапазоне частот 100 kHz–10 MHz величина $1/\varepsilon_0 \omega \rho_1 = 18-0.18$. Она одного порядка с величиной $\varepsilon_1 = 3.4$. Поэтому для первого слоя необходимо полагать

$$k_1^2 = \frac{\omega^2}{c^2} \left(\varepsilon_1 + \frac{i}{\varepsilon_0 \omega \rho_1} \right)$$

Вторым слоем для озера Сульфат является вода глубиной до 7 m, для которой $\varepsilon_2 = 81$ и $\rho_2 = 1.1 \,\Omega$ m. Здесь в диапазоне частот 100 kHz–10 MHz величина $1/\varepsilon_0 \omega \rho_2 = 2 \cdot 10^6 - 2000$, что много больше, чем $\varepsilon_2 = 81$. Поэтому для второго слоя

$$k_2^2 = \frac{i\mu_0\omega}{\rho_2}$$

Здесь магнитная постоянная вакуума $\mu_0 = 1/\varepsilon_0 c^2$. Скинслой [1–3] в диапазоне частот 100 kHz–10 MHz для

рассматриваемой воды

$$\sqrt{\frac{2\rho_2}{\mu_0\omega}} = 1.5 - 0.15 \,\mathrm{m}.$$

Эта величина существенно меньше глубины озера, поэтому второй слой можно считать неограниченным.

Компоненты электромагнитного поля

Приводимые ниже вычисления в предлагаемом разделе во многом повторяют аналогичные вычисления в работе [5]. Здесь только явно учтена двухслойность подстилающей среды.

Выбираем цилиндрическую систему координат, такую, что радиальная координата r лежит на поверхности раздела свободное пространство-среда, ось z направлена по нормали от поверхности раздела в свободное пространство. Распространение поля происходит вдоль радиальной координаты r, вектор магнитного поля **H** вблизи земной поверхности имеет только одну ненулевую компоненту $H_y(r, z)$:

$$\mathbf{H} = (0, H_{y}(r, z), 0).$$
(1)

Компоненты электрического поля будут находиться из следующих выражений:

$$E_r = -\frac{i\mu_0\omega}{k^2}\frac{\partial}{\partial z}H_y, \qquad E_z = -\frac{i\mu_0\omega}{k^2}\frac{1}{r}\frac{\partial}{\partial r}(r,H_y).$$
 (2)

Временная зависимость дается множителем $\exp(-i, \omega, t)$, он одинаков для всех компонент полей и обычно не выписывается. В цилиндрической системе координат при полной угловой симметрии волновое уравнение (уравнение Гельмгольца) для магнитного поля принимает следующий вид:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial H_y}{\partial r}\right) + \frac{\partial^2 H_y}{\partial z^2} + k^2 H_y = 0.$$
(3)

Решение уравнения (3) в каждой из сред в волновой зоне будет следующим:

$$H_{0y}(r,z) = A \frac{1}{\sqrt{r}} \exp\left(i\lambda r - i\sqrt{k_0^2 - \lambda^2 z}\right), \quad (4)$$

$$H_{1y}(r, z) = B \frac{1}{\sqrt{r}} \exp(i\lambda r)$$

$$\times \left(\exp\left(-i\sqrt{k_1^2 - \lambda^2}z\right) + V \exp\left(i\sqrt{k_1^2 - \lambda^2}z\right) \right), \quad (5)$$

$$H_{2y}(r, z) = D \frac{1}{\sqrt{r}} \exp\left(i\lambda r - i\sqrt{k_2^2 - \lambda^2}z\right). \quad (6)$$

Здесь λ — параметр разделения переменных в уравнении (3). Для квадратов волновых чисел, как выше установили, имеем

$$k_0^2 = \frac{\omega^2}{c^2}, \quad k_1^2 = \frac{\omega^2}{c^2} \left(\varepsilon_1 + \frac{i}{\varepsilon_0 \omega \rho_1} \right), \quad k_2^2 = \frac{i\mu_0 \omega}{\rho_2}.$$
(7)

9* Журнал технической физики, 2018, том 88, вып. 3

В диапазоне частот 100 kHz–10 MHz величины $|k_2| = 3 \cdot 10^3 - 3 \cdot 10^4$ и $|k_1| = 3 \cdot 10^{-3} - 3 \cdot 10^{-1}$, т.е. $k_2^2 \gg k_1^2$. Ниже установим, что $\lambda \approx \omega/c$ и в рассматриваемом диапазоне частот $k_2^2 \gg \lambda^2$.

Из (2) находим компоненты электрического поля в свободном пространстве (в волновой зоне дифференцирование множителя $1/\sqrt{r}$ не производится)

$$E_{0z}(r,z) = -\frac{\mu_0 \omega \lambda}{k_0^2} A \frac{1}{\sqrt{r}} \exp\left(i\lambda r - i\sqrt{k_0^2 - \lambda^2}z\right), \quad (8)$$

$$E_{0r}(r,z) = -\mu_0 \omega \frac{\sqrt{k_0^2 - \lambda^2}}{k_0^2} A \frac{1}{\sqrt{r}} \exp\left(i\lambda r - i\sqrt{k_0^2 - \lambda^2}z\right).$$
(9)

В диэлектрическом первом слое

$$E_{1z}(r,z) = -\frac{\mu_0 \omega \lambda}{k_1^2} B \frac{1}{\sqrt{r}} \exp(i\lambda r) \left(\exp\left(-i\sqrt{k_1^2 - \lambda^2}z\right) + V \exp\left(i\sqrt{k_1^2 - \lambda^2}z\right) \right),$$
(10)

$$E_{1r}(r,z) = -\mu\omega \frac{\sqrt{k_1^2 - \lambda^2}}{k_1^2} B \frac{1}{\sqrt{r}} \exp(i\lambda r)$$

$$\times \left(\exp\left(-i\sqrt{k_1^2 - \lambda^2}z\right) - V \exp\left(i\sqrt{k_1^2 - \lambda^2}z\right) \right),$$
(11)

В проводящей неограниченной вглубь среде

$$E_{2z}(r,z) = -\frac{\mu_0 \omega \lambda}{k_2^2} D \frac{1}{\sqrt{r}} \exp\left(i\lambda r - i\sqrt{k_2^2 - \lambda^2}z\right), \quad (12)$$

$$E_{2r}(r,z) = -\mu_0 \omega \frac{\sqrt{k_2^2 - \lambda^2}}{k_2^2} D \frac{1}{\sqrt{r}} \exp\left(i\lambda r - i\sqrt{k_2^2 - \lambda^2}z\right).$$
(13)

Приведенные формулы позволяют определить все характеристики электромагнитного поля в любой из двухслойных сред. Мы ниже найдем основную характеристику подстилающей среды — его импеданс.

Трансцендентное уравнение для параметра разделения

Граничные условия при z = 0 имеют следующий вид:

$$E_{0r}(r, z = 0) = E_{1r}(r, z, = 0),$$

$$H_{0v}(r, z = 0) = H_{1v}(r, z = 0).$$

Из них находим

$$A\frac{\sqrt{k_0^2 - \lambda^2}}{k_0^2} = B\frac{\sqrt{k_1^2 - \lambda^2}}{k_1^2}(1 - V),$$
$$A = B(1 + V).$$

Разделив их друг на друга, находим коэффициент V:

$$V = \frac{1 - Q_{10}}{1 + Q_{10}}, \quad Q_{10} = \frac{k_1^2}{k_0^2} \frac{\sqrt{k_0^2 - \lambda^2}}{\sqrt{k_1^2 - \lambda^2}}.$$
 (14)

При z = -h граничные условия имеют вид

$$E_{2r}(r, z = -h) = E_{1r}(r, z = -h),$$

 $E_{2y}(r, z = -h) = H_{1y}(r, z = -h).$

Отсюда

$$\frac{\sqrt{k_1^2 - \lambda^2}}{k_1^2} B\left(\exp\left(i\sqrt{k_1^2 - \lambda^2}h\right) - V\exp\left(-i\sqrt{k_1^2 - \lambda^2}h\right)\right)$$
$$= \frac{\sqrt{k_2^2 - \lambda^2}}{k_2^2} D\exp\left(i\sqrt{k_2^2 - \lambda^2}h\right),$$
$$B\left(\exp\left(i\sqrt{k_1^2 - \lambda^2}h\right) + V\exp\left(-i\sqrt{k_1^2 - \lambda^2}h\right)\right)$$
$$= D\exp\left(i\sqrt{k_2^2 - \lambda^2}h\right).$$

Разделив их друг на друга, для коэффициента *V* находим другое выражение

$$V = \exp\left(2i\sqrt{k_1^2 - \lambda^2}h\right)\frac{1 - Q_{12}}{1 + Q_{12}},$$
$$Q_{12} = \frac{k_1^2}{k_2^2}\frac{\sqrt{k_2^2 - \lambda^2}}{k_1^2 - \lambda^2}.$$
(15)

Постоянные A, B и D ниже никак не сказываются при вычислении импеданса, и мы их исключили. Приравнивая соотношения (14) и (15), находим уравнение для определения параметра λ :

$$\frac{1-Q_{10}}{1+Q_{10}} = \exp\left(2i\sqrt{k_1^2-\lambda^2}h\right)\frac{1-Q_{12}}{1+Q_{12}}.$$
 (16)

Это уравнение является трансцендентным и решается только численно. Для этого написана программа "Импеданс" [6]. Однако рассматриваемая двухслойная среда имеет большой контраст электрофизических свойств слоев льда и воды, что позволяет выделить величины разного порядка, и при этом становится возможным аналитическое решение уравнения (16). Ниже найдем решение уравнения (16) в двух последовательных приближениях. Для получения первого приближения достаточно пренебречь квадратом импеданса. Во втором приближении для импеданса получим выражение, которое позволяет явно учесть небольшую толщину первого слоя.

Импеданс

Импеданс δ определяется следующим выражением [1–3]:

$$\delta = -\frac{1}{\mu_0 c} \left(\frac{E_r}{H_y}\right)_{z=0}.$$
 (17)

Знак минус связан с выбором ориентации оси z. Подставляя в определение (17) выражения (4) и (9), находим $\delta = \sqrt{1 - \lambda^2/k_0^2}$ или

$$\lambda = k_0 \sqrt{1 - \delta^2}.$$
 (18)

Этим самым параметр разделения волнового уравнения (3) выразили через поверхностный импеданс. По своему определению квадрат модуля импеданса удовлетворяет неравенству $|\delta|^2 \ll 1$. Тогда из (18) следует $\lambda \approx k_0$, что указывалось выше.

Импеданс в первом приближении

Используя неравенство $|\delta^2| \ll 1$ и пренебрегая в трансцендентном уравнении (16) величиной δ^2 , сначала получаем

$$\frac{1-Q_{10}}{1+Q_{10}} = W \frac{1-Q_{12}}{1+Q_{12}} \equiv K.$$
 (19)

Здесь ввели экспоненту

$$W = \exp\left(2i\frac{\omega h}{c}\sqrt{\varepsilon_1 - 1 + \frac{i}{\varepsilon_0\omega\rho_1}}\right).$$
 (20)

Величины Q_{10} и Q_{12} даются выражениями (14) и (15), причем δ^2 отброшено. Далее, используя выражение (7) для k_1^2 , из (19) окончательно находим аналитическое выражение для импеданса

$$\delta = \frac{\sqrt{\varepsilon_1 - 1 + i/\varepsilon_0 \omega \rho_1}}{\varepsilon_1 + i/\varepsilon_0 \omega \rho_1} \frac{1 - K}{1 + K}.$$
 (21)

Полученное выражение (21) еще можно упростить. Для этого надо учесть, что $\lambda \approx k_0$. Кроме того, для проводящей подстилающей среды в широком частотном диапазоне $k_2^2 \gg k_0^2$ и $k_2^2 \gg \lambda^2$. Эти неравенства позволяют для введенных величин Q_{10} и Q_{12} приближенно записать:

$$Q_{10} = \Lambda \delta \ll 1, \qquad Q_{12} = \Lambda \sqrt{i \varepsilon_0 \omega \rho_2} \ll 1,$$

где

$$\Lambda = \frac{\varepsilon_1 + i/\varepsilon_0 \omega \rho_1}{\sqrt{\varepsilon_1 - 1 + i/\varepsilon_0 \omega \rho_1}}.$$
(22)

Тогда из (16) сначала приближенно имеем

$$1 - 2\Lambda\delta = W\left(1 - 2\Lambda\sqrt{-i\varepsilon_0\omega\rho_2}\right)$$

Отсюда находим импеданс

$$\delta = W\sqrt{-i\varepsilon_0\omega\rho_2} + \frac{1-W}{2\Lambda}.$$
 (23)

Это выражение для импеданса верно в предположении, что $|\delta| \ll 1$ и $\sqrt{\varepsilon_0 \omega \rho_2} \ll 1$.

Предельный переход

В отсутствие льда имеем однородную проводящую среду с импедансом $\delta_2 = \sqrt{-i\epsilon_0\omega\rho_2}$ [1]. Здесь учтено, как указывалось выше, что в диапазоне частот 100 kHz-10 MHz для воды $1/\epsilon_0\omega\rho_2 \gg \epsilon_2$. В рассматриваемом нами случае отсутствие первой среды означает либо устремление толщины льда $h \ge 0$, либо диэлектрической проницаемости льда $\epsilon_1 \ge 1$. В первом случае, устремляя $h \to 0$, находим экспоненту $W \to 1$. Тогда из (23) сразу находим, что $\delta \to \sqrt{-i\epsilon_0\omega\rho_2}$, как и должно быть. Во втором случае предельный переход $\epsilon_1 \to 1$ требует более подробного рассмотрения. Чтобы упростить рассмотрение, предположим, что величина $\sqrt{\epsilon_0\omega\rho_1}$ заметно меньше комбинации $\sqrt{\epsilon_1 - 1/\epsilon_1}$. Тогда экспоненту (20) можно приближенно записать как

$$W = \exp\left(2i\sqrt{k_1^2 - \lambda^2}h\right) \approx \exp(2i\Psi)$$
$$= \cos(2\Psi) + i\sin(2\Psi),$$

где

$$\Psi = \sqrt{\varepsilon_1 - 1} \frac{\omega h}{c}.$$
 (24)

Теперь из (16) приближенно имеем

$$1 - 2Q_{10} = (\cos 2\Psi + i \sin 2\Psi)(1 - 2Q_{12}).$$
 (25)

Причем здесь

$$Q_{10} = \frac{\varepsilon_1}{\sqrt{\varepsilon_1 - 1}} \delta \ll 1, \quad Q_{12} = \frac{\varepsilon_1}{\sqrt{\varepsilon_1 - 1}} \sqrt{-i\varepsilon_0 \omega \rho_2} \ll 1.$$

В итоге из (25) находим

$$\begin{split} \delta = &\sqrt{\frac{\varepsilon_0 \omega \rho_2}{2}} \left(\cos 2\Psi + \sin 2\Psi \right) + \frac{\sqrt{\varepsilon_1 - 1}}{2\varepsilon_1} (1 - \cos 2\Psi) \\ &- i \left[\sqrt{\frac{\varepsilon_0 \omega \rho_2}{2}} \left(\cos 2\Psi - \sin 2\Psi \right) + \frac{\sqrt{\varepsilon_1 - 1}}{2\varepsilon_1} \sin 2\Psi \right]. \end{split}$$

Здесь, устремляя $\varepsilon_1 \rightarrow 1$, сначала находим $\Psi \rightarrow 0$, а затем уже $\delta = \sqrt{-i\varepsilon_0 \omega \rho_2}$. И здесь находим правильное предельное выражение.

Импеданс во втором приближении

Выражение (23) допускает дальнейшее упрощение. Как показывают проведенные выше оценки, для первого слоя величины $1/\varepsilon_0 \omega \rho_1$ и ε_1 одного порядка. Поэтому необходимо пользоваться выражением (7) для квадрата волнового числа k_1^2 первой среды. Если предположить, что аргумент в экспоненте (20) мал, то из (23) получаем во втором приближении следующее выражение для импеданса:

$$\delta = \sqrt{-i\varepsilon_0\omega\rho_2} - i\frac{\omega h}{c} \left(1 - \frac{1}{\varepsilon_1 + i/\varepsilon_0\omega\rho_1}\right).$$
(26)

Рис. 1. Зависимость модуля импеданса от частоты для структуры "лед на соленой воде". Сплошная линия с квадратиками *I* — вычисленные по программе "Импеданс" [6], штриховая линия *2* — вычисленные по формуле (21), сплошная линия *3* — вычисленные по формуле (26). Прямоугольная область, ограниченная штриховыми прямыми, — область выполнения импедансных граничных условий Леонтовича.

Рис. 2. Зависимость фазы импеданса от частоты. Обозначения те же, что и для рис. 1.

Отсюда следуют два важных вывода. Если первая среда в некотором частотном диапазоне является проводящей (например, очень грязный лед), т.е. выполняется неравенство

$$1/\varepsilon_0\omega\rho_1\gg\varepsilon_1,$$

то выражением $(\varepsilon_1 + 1/\varepsilon_0 \omega \rho_1)^{-1}$ по сравнению с 1 можно пренебречь. И если обозначить $\delta_2 = \sqrt{-i\varepsilon_0 \omega \rho_2}$, то из (26) получаем

$$\delta = \delta_2 - i \frac{\omega h}{c}.$$
 (27)

Этим самым находим поправку на импеданс при наличии тонкого проводящего слоя [2,7]. Заметим также, что для импеданса δ_2 можно получить точное выражение:

$$\delta_2 = k_0 \sqrt{k_2^2 - k_0^2} / k_2^2.$$

В противоположном предельном случае, когда первый слой является диэлектриком с диэлектрической проницаемостью ε_1 , т.е. для него в некотором частотном диапазоне выполняется неравенство

$$1/\varepsilon_0\omega\rho_1\ll\varepsilon_1,$$

то из (26) следует

$$\delta = \delta_2 - i \frac{\varepsilon_1 - 1}{\varepsilon_1} \frac{\omega h}{c}.$$
 (28)

Этим самым находим поправку на импеданс при наличии тонкого диэлектрического слоя.

Графическое представление импеданса

Важным представлением земной поверхности является его моделирование многослойной средой [8]. Для вычисления поверхностного импеданса написана программа "Импеданс" [6]. Эта программа позволяет численным способом также решать трансцендентное уравнение (16). Результаты вычислений для озера Сульфат, для которого известны $h = 1 \text{ m}, \epsilon_1 = 3.2, \rho_1 = 10^4 \Omega \text{ m}$ и $\rho_2 = 1.1 \,\Omega m$, $\varepsilon_2 = 81$, представлены для модуля импеданса на рис. 1 и для фазы импеданса на рис. 2. Там же показаны результаты, вычисленные по формулам (21) и (26). Анализ рисунков показывает, что для модуля импеданса | δ | результаты совпадают вплоть до 20 MHz. Для фазы импеданса ϕ_{δ} вычисление по формуле (21) несколько хуже, совпадение наблюдается только до 3 MHz. Вычисление по формуле (26) для фазы импеданса φ_{δ} необходимо распространить до 20 MHz. В любом случае фаза импеданса φ_{δ} лежит в пределах -45.1⁰--89.9°. Это указывает, что рассматриваемая поверхность является сильно индуктивной и может служить для целей дальней радиосвязи.

Из рис. 1 и 2 следует, что до частот 20 MHz выполняется условие $|\delta|^2 \ll 1$, при этом результаты вычислений для модуля и фазы импеданса практически совпадают с численным решением и по формуле (26). Поэтому при расчетах импеданса в большинстве случаев достаточно пользоваться формулой (26). Кроме того, укажем, что выполнение условия $|\delta|^2 \ll 1$ является выполнением импедансного граничного условия Леонтовича [5,9]. В работе [9] отмечено, что сравнение точного решения уравнений Максвелла с приближенными возможно только как раз при выполнении условия $|\delta|^2 \ll 1$.

Заключение

Рассмотрена двухслойная среда "свободное пространство-диэлектрический слой конечной толщины-проводящая неограниченная вглубь среда". Такая двухслойная среда в определенном частотном диапазоне радиоволн позволила выделить малые величины и получить конечное аналитическое выражение (26) для приведенного поверхностного импеданса. Это выражение для импеданса сравнили с численным расчетом для многослойной среды, которое показало удовлетворительное согласие.

Работа выполнена в рамках госбюджетной темы "Распространение радиоволн в неоднородных импедансных каналах".

Список литературы

- Балханов В.К., Башкуев Ю.Б. Основы теории метода поверхностного импеданса. Улан-Уде. Изд-во Бурятского научного центра СО РАН, 2005.
- [2] Макаров Г.И., Новиков В.В., Рыбачек С.Т. Распространение электромагнитных волн над земной поверхностью. М.: Наука, 1991.
- [3] *Wait J.R.* Electromagnetic waves in stratified media. Oxford, NY: Pergamon Press, 1996.
- Башкуев Ю.Б., Хаптанов В.Б., Дембелов М.Г. // Письма в ЖТФ. 2010. Т. 36. Вып. 3. С. 88–95.
- [5] Балханов В.К., Башкуев Ю.Б. // ЖТФ. 2017. Т. 87. Вып. 4. С. 599–603.
- [6] Ангархаева Л.Х. Пакет программ "Импеданс" для решения задач радиоимпедансного зондирования: свидетельство об официальной регистрации программы для ЭВМ № 2002610893. РФ / заявл. 11.04.2002; зарегистр. 06.06.2002.
- [7] Башкуев Ю.Б., Нагуслаева И.Б., Хаптанов В.Б., Дембелов М.Г. // ЖТФ. 2016. Т. 86. Вып. 2. С. 153–155.
- [8] Балханов В.К., Башкуев Ю.Б., Ангархаева Л.Х. и др. // ЖТФ. 2014. Т. 84. Вып. 11. С. 101–105.
- [9] Бердник С.Л., Пенкин Д.Ю., Катрич В.А. и др. // Радиофизика и радиоастрономия. 2014. Т. 19. № 1. С. 57-80.