02

Оптические характеристики пленок титаната стронция, полученных золь-гель методом

© Н.И. Стаськов¹, А.Б. Сотский¹, Л.И. Сотская², И.В. Ивашкевич¹, А.И. Кулак³, Н.В. Гапоненко^{4,5}, М.В. Руденко⁴, А.Н. Петлицкий⁶

¹ Могилевский государственный университет имени А.А. Кулешова,

212022 Могилев, Беларусь

² Белорусско-Российский университет,

212000 Могилев, Беларусь

³ Институт общей и неорганической химии НАН Беларуси,

220076 Минск, Беларусь

⁴ Белорусский государственный университет информатики и радиоэлектроники,

220000 Минск, Беларусь

⁵ Национальный исследовательский ядерный университет "МИФИ",

115409 Москва, Россия

⁶ НТЦ БМС "Интеграл",

220108 Минск, Беларусь

e-mail: ni_staskov@mail.ru

Поступила в редакцию 06.03.2018 г. В окончательной редакции 30.06.2018 г.

По данным многоугловой спектрофотометрии и спектроэллипсометрии в УФ и видимой областях рассчитаны спектры показателей преломления, поглощения и ширины запрещенной зоны однослойной и пятислойных пленок титаната стронция, полученных золь-гель методом. Послойное осаждение золя на кварцевые подложки от одного до пяти слоев приводит к увеличению пористости пленок от 4 до 33%. Это вызывает уменьшение показателей преломления в средней части видимого спектра от 2.33 до 1.87, приводящее к уменьшению отражательной способности и увеличению пропускательной способности или "прозрачности" пятислойных пленок. При увеличении температуры прогрева таких пленок от 500 до 750°C максимум полосы поглощения смещается от 239 к 253 nm, а оптическая ширина запрещенной зоны 3.96 eV.

DOI: 10.21883/OS.2018.10.46697.69-18

Введение

Титанат стронция SrTiO₃ — широкозонный оксидный полупроводник перовскитной структуры, характеризующийся уникальным сочетанием высокой диэлектрической проницаемости и оптической прозрачности в видимой области, химической и композиционной стабильности и ряда других физических свойств, которые определяют его перспективность для опто- и микроэлектроники. Пленки на основе SrTiO₃ представляют интерес для создания структур МДП и конденсаторов динамической оперативной памяти DRAM, монолитных микроволновых интегральных схем MMICs и датчиков ИК излучения [1]. Обратимый переход SrTiO₃ из высокоомного состояния в низкоомное под действием УФ и видимого излучения открывает перспективу применения этого материала в качестве мемристоров — элементов энергонезависимой памяти [2-6]. Интенсивная фото-, катодо- и радиолюминесценция обнаружена у пленок SrTiO₃, легированных лантаноидами [7,8].

Пленки SrTiO₃ получают как физическими (магнетронным, импульсным лазерным осаждением), так и химическими методами, среди которых наиболее распространенной является золь-гель технология [9–15]. Этим методом при относительно невысоких температурах можно получать качественные пленки, имеющие высокую степень кристалличности и соответствующие стехиометрии SrTiO₃ [16]. Для достижения необходимой толщины пленок применяют последовательное многослойное осаждение, что, однако, приводит к повышению их пористости и изменению оптических свойств [17]. Кроме того, повышение температуры термообработки от 500 до 750°C приводит к изменению их толщины и уменьшению ширины запрещенной зоны Eg. Известно, что значение Е_g для прямых оптических переходов в кристаллических пленках SrTiO₃ варьирует от 3.43 до 3.62 eV [18], в аморфно-кристаллических — от 3.68 до 3.94 eV [19], а в аморфных пленках увеличивается до 4.07 eV [20].

В настоящее время для оценки ширины запрещенной зоны полупроводниковых пленок используются методики [17,21–26], основанные на следующих предположениях:

— в области полосы поглощения пленки подложка не поглощает свет (ее показатель поглощения $k_s = 0$);

— коэффициент поглощения $\alpha_f(\lambda)$ пленки, зависящий от ее показателя поглощения $k_f(\lambda)$ [27] и длины волны λ как

$$\alpha_f(\lambda) = \frac{4\pi k_f(\lambda)}{\lambda},\tag{1}$$

можно определить на основании приближенных формул, в которых учитывают потери света только из-за поглощения (закон Бугера) [17,21],

$$\alpha_f(\lambda) = \frac{1}{h_f} \ln \frac{1}{T_t(\lambda)},\tag{2}$$

поглощения и однократного отражения [22,23],

$$\alpha_f(\lambda) = \frac{1}{h_f} \ln \frac{1 - R_t(\lambda)}{T_t(\lambda)},$$
(3)

поглощения и двукратного отражения [24],

$$\alpha_f(\lambda) = \frac{1}{h_f} \ln \frac{[1 - R_t(\lambda)]^2}{T_t(\lambda)}.$$
 (4)

Расчет коэффициента поглощения в области края полосы собственного поглощения полупроводников выполняют [25] и по более сложной формуле:

$$\alpha_f(\lambda) = \frac{1}{h_f} \ln \frac{[1 - R_t(\lambda)]^2}{2T_t(\lambda)} + \sqrt{([R_t(\lambda)]^2 + \frac{[1 - R_t(\lambda)]^4}{4[T_t(\lambda)]^2})}.$$
(5)

В формулах (2)–(5) параметр h_f — измеренная в сантиметрах толщина пленки, $T_t(\lambda)$ и $R_t(\lambda)$ — измеренные пропускательная и отражательная способности пленки на подложке при нормальном ($\varphi = 0$) падении неполяризованного света на образец. После расчета спектра коэффициента поглощения появляется возможность на основании экстраполяции Тауца [28],

$$[\alpha_f(\lambda)E]^2 = B(E - E_g), \tag{6}$$

определить ширину запрещенной энергетической зоны SrTiO₃. В формуле (6) *В* — постоянная, $E = 1240\lambda^{-1}$ — энергия фотона в электронвольтах (длина волны λ берется в нанометрах). Пересечение линейного участка зависимости $[\alpha_f(\lambda)E]^2$ с осью *E* дает оценку E_g .

Формулы (2)–(5) получены для толстых слоев в пренебрежении интерференцией света в них.Для того чтобы исключить в (2) влияние отраженного света для тонкой пленки при наличии интерференции, обратимся к закону сохранения энергии $T_t(\lambda) + R_t(\lambda) + A_t(\lambda) = 1$, где $A_t(\lambda)$ — поглощательная способность структуры пленка–подложка. В области отсутствия поглощения света подложкой $k_s(\lambda) = 0$ на основании закона Бугера можно допустить $A_t(\lambda) = h_f \alpha_f(\lambda)$. Тогда вне полосы собственного поглощения пленки, где $h_f \alpha_f(\lambda) \ll 1$, имеем $T_t(\lambda) + R_t(\lambda) = \exp[h_f \alpha_f(\lambda)]$. В этом приближении

$$\alpha_f(\lambda) = \frac{1}{h_f} \ln \frac{1}{T_t(\lambda) + R_t(\lambda)}.$$
(7)

В отличие от выражения (1), где предполагается, что показатель поглощения пленки $k_f(\lambda)$ определяется из строгого решения обратной задачи спектрофотометрии, приближения (2)–(5), (7) содержат неизвестный параметр — толщину пленки. Для определения h_f используют методы поверхностной профилометрии [22,23] и спектральной эллипсометрии [26]. Все эти методы характеризуются разной точностью определения величины h_f . Для непоглощающих сред $\alpha_s(\lambda) = 0$, $k_f(\lambda) = 0$, $T_t(\lambda) + R_t(\lambda) = 1$, и из (3), (7) имеем $\alpha_f(\lambda) = 0$. Однако соотношения (2), (4), (5) дают $\alpha_f(\lambda) \neq 0$, что ставит под сомнение применимость выражений (2), (4), (5) для определения показателя поглощения пленок SrTiO₃.

В настоящей работе для исследования причин изменения оптической прозрачности и ширины запрещенной зоны SrTiO₃ при последовательном многослойном осаждении золя на кварцевые пластины с помощью разработанного алгоритма решены обратные задачи многоугловой спектрофотометрии для однородных пленок на плоскопараллельных кварцевых подложках конечной толщины. Определены толщины, спектры показателей преломления $n_f(\lambda)$ и поглощения $k_f(\lambda)$ однослойной и пятислойных пленок. На этой основе проанализированы возможности использования известных приближенных формул для оценок ширины запрещенной зоны и показателя поглощения.

Для расчета спектров $T_t(\lambda)$ и $R_t(\lambda)$ однородной пленки на плоскопараллельной подложке конечной толщины (прямая задача спектрофотометрии) мы использовали решение электродинамической задачи о пропускании и отражении от данной структуры частично когерентного света. Разработаны две компьютерные программы. В первой из них гауссову аппаратную функцию монохроматора интегрировали в свертке с когерентными отражательными и пропускательными способностями структуры. Во второй программе функции $T_t(\lambda)$ и $R_t(\lambda)$ рассчитывались суммированием лучевых рядов. Первая программа служила для оценки границ применимости второй, менее точной, но с существенно меньшим объемом вычислений. Алгоритм последней был положен в основу построения целевых функций для численного отыскания спектров $n_s(\lambda)$ и $k_s(\lambda)$ подложки с последующим восстановлением методом наименьших квадратов функций $n_f(\lambda)$, $k_f(\lambda)$ и толщины пленки h_f . Разработанные программы [29] позволяют учесть конечность толщины подложки, поглощение света во всей структуре и увеличение длины пути света в пленке и подложке при наклонном падении. При этом какие-либо ограничения на толщину пленки и подложки не накладываются. Для численного определения пяти основных характеристик h_f , $n_f(\lambda)$, $k_f(\lambda)$, $n_s(\lambda)$ и $k_s(\lambda)$ (обратная задача спектрофотометрии) надо вначале измерить спектры $T_s(\lambda)$ и $R_s(\lambda)$ подложки без пленки, а затем спектры $T_t(\lambda)$ и $R_t(\lambda)$ подложки с пленкой. Контроль функций $n_s(\lambda)$ и $k_s(\lambda)$ необходим ввиду их заметного отклонения от известных из литературы дисперсионных таблиц в условиях реального эксперимента.

Эксперимент

Для получения пленок титаната стронция использовали золь, приготовленный смешиванием растворов ацетата стронция в уксусной кислоте и тетраизопропоксида титана Ti(OCH(CH₃)₂)₄ в монометиловом эфире этиленгликоля в присутствии ацетона в качестве стабилизатора [6]. Пленки наносили на кварцевые подложки центрифугированием со скоростью вращения 2700 об/мин. Каждый слой SrTiO₃ высушивали и подвергали предварительной термообработке при 200°С. После нанесения пяти слоев осуществляли заключительную термообработку структуры при температурах 500–750^{'°}С на воздухе в течение 60 min.

Толщина кварцевой подложки $h_s = 3.50 \,\mathrm{mm}$ измерена на горизонтальном оптиметре ИКГ 1. Спектры отражения и пропускания подложки $T_s(\lambda)$, $R_s(\lambda)$ и подложки с однослойной пленкой $T_t(\lambda)$, $R_t(\lambda)$ для света TE- и TMполяризации (векторы электрического поля света ТМ- и ТЕ- поляризаций лежат в плоскости падения и перпендикулярно ей соответственно) регистрировали при углах падения 8°, 24° и 40° на спектрофотометре Photon RT в спектральной области от 250 до 700 nm. Спектры $T_t(\lambda)$ пятислойных пленок на кварцевой подложке получали на спектрофотометре Cary-500 в диапазоне от 200 до 700 nm при $\varphi = 0$ [17]. Спектры эллипсометрических углов подложки $\psi_s(\lambda)$ и $\Delta_s(\lambda)$ и подложки с однослойной пленкой $\psi_t(\lambda)$ и $\Delta_t(\lambda)$ измеряли соответственно при углах падения 60° и 65° на спектральном эллипсометре Horiba UVISEL в области 200-700 nm.

Результаты

На рис. 1 приведены спектры пропускательных (а) и отражательных (b) способностей трех исследуемых пленок на кварцевых подложках. Спектры $n_s(\lambda)$ и $k_s(\lambda)$ подложки восстанавливали по спектрам $T_s(\lambda)$ и $R_s(\lambda)$, измеренным при трех вышеуказанных углах падения и двух поляризациях света. На рис. 2 приведены спектры показателей преломления (a) и поглощения (b) трех исследуемых пленок. При определении $n_f(\lambda)$ и $k_f(\lambda)$ (кривые 1) однослойной пленки использовали модель однородная пленка-подложка, в которой обрабатывались восемь спектров $T_t(\lambda)$ и $R_t(\lambda)$, измеренные с использованием ТЕ- и ТМ-поляризации света при углах падения 8° и 24°. Рассчитанная в этом случае толщина пленки оказалась равной 33.6 nm. Расчет толщин и оптических функций $n_f(\lambda)$ и $k_f(\lambda)$ двух пятислойных пленок осуществили по формулам для $T_t(\lambda)$ из работы [30], в которые для $\varphi = 0$ подставляли спектры 2 и3 (рис. 1, *a*). Толщины пятислойных термически обработанных при 500 и 750°С пленок SrTiO₃ оказались соответственно равными 186 и 194 nm. Полученное из строгих расчетов значение толщины пленки, обработанной при 750°С, близко к определенному методом электронной микроскопии $\sim 190 \,\mathrm{nm}$ [17]. Рассчитанные спектры показателей преломления и поглощения двух термически обработанных пленок представлены кривыми 2 и 3 на рис. 2. Решения обратной задачи спектрофотометрии для пятислойных пленок позволили по формулам для $R_t(\lambda)$ из работы [30] при $\varphi = 0$ рассчитать их отражательные способности (кривые 2 и 3 на рис. 1, *b*).

Одним из критериев корректности численного решения вышерассмотренной обратной оптической задачи является соответствие решений, полученных разными методами, например, спектрофотометрии и спектральной эллипсометрии. С помощью программного обеспечения DeltaPsi2 к эллипсометру Horiba UVISEL по измеренным спектрам $\psi_s(\lambda)$, $\Delta_s(\lambda)$ и $\psi_t(\lambda)$, $\Delta_t(\lambda)$ мы рассчитали параметры подложки и однослойной пленки SrTiO₃. Дисперсионная зависимость показателей преломления и поглощения SrTiO₃ от энергии фотона *E* в программном обеспечении DeltaPsi2 определялась по формулам [31]

$$n_f(E) = n_\infty + [B(E - E_j) + C][(E - E_j)^2 + \Gamma_j^2]^{-1}, \quad (8)$$

$$k_f(E) = \begin{cases} (f_j(E - E_g)^2 [(E - E_j)^2 + \Gamma_j^2]^{-1}, & E > E_g \\ 0, & E < E_g, \end{cases}$$
(9)

где $B = f_j \Gamma_j^{-1} [\Gamma_j^2 - (E_j - E_g)^2], \quad C = 2 f_j \Gamma_j (E_j - E_g),$ n_{∞} — показатель преломления, соответствующий нулевой энергии фотона, E_j — энергия фотона, на которую приходится максимум полосы поглощения, f_i упругая постоянная осциллятора, Г_і — полуширина полосы поглощения, Eg — энергия фотона, на которую приходится край полосы поглощения. Наименьшая невязка рассчитанных и измеренных спектров $\psi_t(\lambda)$ и $\Delta_t(\lambda)$ достигнута для модели шероховатый слойпленка-подложка. Толщина шероховатого слоя составила (4.1 ± 0.4) nm. Слой моделировался эффективной средой Бруггемана [32], которая включала 50% воздуха и 50% SrTiO₃. Параметры вышеприведенных дисперсионных формул (8) и (9) для материала пленки оказались равными: $n_{\infty} = 2.00 \pm 0.04$, $E_g = (3.1 \pm 0.1) \, \text{eV}$, $f_j =$ $= 0.41 \pm 0.02, E_i = (4.39 \pm 0.05) \text{ eV}, \Gamma_i = (0.84 \pm 0.05) \text{ eV}.$ Толщина однослойной пленки без шероховатого слоя (31.4 ± 0.6) nm, что удовлетворительно подтверждает величину, определенную выше методом спектрофотометрии. На рис. 2 приведены рассчитанные по формулам (8) и (9) соответствующие спектры показателей преломления и поглощения (кривые 4) этой пленки. В видимой области, где $E < E_g$, спектры $n_f(\lambda)$ и $k_f(\lambda)$, рассчитанные по данным двух оптических методов, находятся в удовлетворительном соответствии (кривые 1 и 4).

В работе [33] для описания оптических свойств тонкой кристаллической эпитаксиальной пленки SrTiO₃ в видимой области спектра использовали дисперсионную модель Лорентца:

$$n(\lambda) - ik(\lambda) = \sqrt{\varepsilon_{\infty} + \frac{A}{E_g^2 - E^2 + i\Gamma_0 E}}.$$
 (10)

Рис. 1. Спектры пропускания (*a*) и отражения (*b*) однослойной (*I*) и пятислойных, термически обработанных при 750 (*2*) и 500°С (*3*) пленок SrTiO₃ на кварцевых подложках.

Рис. 2. Спектры показателей преломления (*a*) и поглощения (*b*) пленок SrTiO₃: однослойная (*1*, *4*, *7*, *8*); пятислойные, обработанные при 500 (*2*) и 750°С (*3*); модельная (*5*); эпитаксиальная (*6*) [30].

Кривая 5 на рис. 2, *а* построена по параметрам $\varepsilon_{\infty} = 3.077, E_g = 4.466 \text{ eV}, A = 41.874 \text{ eV}^2, \Gamma_0 = 0$, приведенным в работе [33]. Мы численно рассчитали параметры модели Лорентца $\varepsilon_{\infty} = 3.98 \pm 0.02, E_g = (4.14 \pm 0.06) \text{ eV}, A = (19.4 \pm 0.1) \text{ eV}^2, \Gamma_0 = 0$ для интерполяции в области от 400 до 700 nm функцией (10) (кривая 6, рис. 2, *a*) экспериментального показателя преломления (кривая *I*) однослойной пленки SrTiO₃. Обратим внимание, во-первых, на равенство нулю параметров Γ_0 в (10) и k(E) в (9). Это является следствием того, что исследуемая однослойная пленка SrTiO₃ практически не поглощает видимый свет. Во-вторых, для модели (10) значение параметра $n_{\infty} = 1.994$ практически

совпадает со значением этого параметра, рассчитанного для модели (8). Расположение кривых 1-4 и 5 на рис. 2, *а* в видимой области спектра можно объяснить тем, что плотность эпитаксиальной пленки больше плотности пленок, полученных золь-гель методом.

В приближении модели эффективной среды Бруггемана определим процентное содержание воздуха и SrTiO₃ в исследуемых пленках. Для этого допустим, что эпитаксиальная пленка не содержит воздух. Так как в видимой области показатели поглощения всех исследованных пленок близки к нулю, то по их эффективным показателям преломления (кривые 1-3, рис. 2, a) находим, что в однослойной пленке содержится око-

Рис. З. Функции Тауца для однослойной (1), пятислойных, термически обработанных при 750 (2) и 500°C (3) пленок SrTiO₃.

Ширина запрещенной зоны однослойной пленки SrTiO₃

E_g , eV	3.89	3.98	4.08	4.08	3.96
Формула	(2)	(3)	(4)	(5)	(1)

ло 4% воздуха (96% SrTiO₃). В пятислойных пленках, полученных при разных температурах термообработки, содержится около 33% воздуха и 67% SrTiO₃.

С увеличением температуры термообработки пятислойных пленок от 500 до 750°С максимумы полос поглощения и максимумы дисперсионной зависимости $n_f(\lambda)$ (кривые 2, 3 на рис. 2) увеличиваются и смещаются в длинноволновую область. Адекватно смещаются и края полос поглощения.

Для определения ширины запрещенной зоны трех исследуемых пленок SrTiO₃ по показателям поглощения (кривые 1-3, рис. 2, b) на основании формулы (1) рассчитывали коэффициенты поглощения и по (6) построили функции Тауца (рис. 3). Из рис. 3 видно, что для однослойной пленки (кривая 1) $E_g = 3.96 \text{ eV}$, а для пятислойных пленок, термически обработанных при температурах 750°C (кривая 2), $E_g = 4.20 \text{ eV}$, и 500°C (кривая 3), $E_g = 4.63 \text{ eV}$.

Проанализируем возможности использования для оценок ширины запрещенной зоны однослойной пленки титаната стронция известных приближенных формул (2)– (5). При угле падения 8° увеличением длины пути света в пленке и подложке можно пренебречь. Поэтому для расчета $\alpha_f(\lambda)$ однослойной пленки будем использовать $h_f = 33.6$ nm. В таблице приведены величины E_g (первая строчка таблицы), которые были рассчитаны графически на основании приближенных формул (2)–(5) (вторая

Оптика и спектроскопия, 2018, том 125, вып. 4

строчка таблицы) по измеренным спектрам $T_t(\lambda)$ и $R_t(\lambda)$ (кривые *1*, рис. 1).

Для однослойной пленки SrTiO₃ формула (3) позволяет получить значение E_g практически совпадающее с таковым, рассчитанным на основании выражения (1). Это можно объяснить тем, что в области полосы собственного поглощения SrTiO₃ $k_f(\lambda)$ велико и изза этого свет проходит через пленку не более двух раз. Формула (2) позволяет оценить минимальное значение ширины запрещенной зоны, а формулы (4) и (5) — ее максимальное значение.

Решения обратных задач спектрофотометрии, приведенные на рис. 2, b, показывают, что в области 380 < λ < 700 nm исследуемые пленки титаната стронция не поглощают свет ($k_f(\lambda) = 0$). Мы рассмотрели возможность определения $k_f(\lambda)$ однослойной пленки по спектрам коэффициентов поглощения, которые были рассчитаны в выделенной спектральной области по приближенным формулам (2)-(5), (7). Для этого из выражения (1) получили $k_f(\lambda) = \lambda \alpha_f(\lambda) (4\pi)^{-1}$. Формула (2) приводит к завышенным значениям показателя поглощения ($k_f(\lambda) > 0$). Формулы (4), (5) на отдельных участках спектра приводят к отрицательным значениям $k_f(\lambda)$. В отличие от формулы (3) минимальные значения показателей поглощения можно получить с помощью формулы (7). Соответствующие спектры $k_f(\lambda)$ представлены кривыми 7 и 8 на вставке рис. 2, b. В области полосы поглощения для оценки показателя поглощения можно использовать формулу (3).

Таким образом, послойное осаждение золя на кварцевые подложки от одного до пяти слоев приводит к увеличению пористости пленок титаната стронция от 4 до 33%. Это вызывает уменьшение показателя преломления пленок в средней части видимого спектра от 2.33 до 1.87 (кривые 1-4 на рис. 2, *a*). Уменьшение показателя преломления пятислойных пленок в сравнении с показателем преломления однослойной пленки приводит соответственно к уменьшению их отражательной способности (кривые 1-3, рис. 1, *b*) и увеличению пропускательной способности (кривые 1-3, рис. 1, *a*). Прозрачность пленок SrTiO₃ в видимой области спектра определяется дисперсией показателя преломления.

Заключение

Тонкие однослойные пленки SrTiO₃, полученные зольгель методом, имеют малую пористость ($\approx 4\%$). Их полоса поглощения с максимумом k (252 nm) = 1.148 обусловлена прямозонными переходами электронов на экситонные уровни в запрещенной зоне. Пятислойные пленки имеют высокую пористость ($\approx 33\%$). При увеличении температуры прогрева пятислойных пленок от 500 до 750°C полоса поглощения уширяется, а ее максимум увеличивается от k(239 nm) = 0.603 до k(253 nm) = 1.237 и смещается в длинноволновую область. Полосы находятся в области аномальной дисперсии показателей преломления.

С увеличением температуры термообработки пятислойных пленок увеличивается показатель преломления, соответствующий длине волны максимума полосы поглощения, от n(239 nm) = 1.730 до n(253 nm) = 2.204. Уменьшение показателя преломления многослойных пленок (n = 1.872) в сравнении с таковым для однослойной пленки (n = 2.331) в области отсутствия поглощения ($\lambda = 632.8 \text{ nm}$) приводит к увеличению их пропускательной способности или прозрачности.

Ширина запрещенной зоны, рассчитанная строго по спектру $k_f(\lambda)$ пленки, находится в пределах, которые задают известные приближенные формулы. Нижний предел E_g можно оценить по формуле, которая не учитывает отражение света от структуры пленкаподложка. Верхний предел величины E_g определяется формулами, которые дважды учитывают отражение света. В области полосы поглощения лучшее приближение ($\delta E_g/E_g \approx 1\%$) к спектру $\alpha_f(\lambda)$ тонкой пленки SrTiO₃ дает эмпирическая формула (3), которая учитывает разовое отражение света от структуры пленка-подложка. При золь-гель наслоении пленок SrTiO₃ ширина запрещенной зоны увеличивается от 3.96 до 4.63 eV.

Работа выполнена при поддержке Государственной программы научных исследований Республики Беларусь "Фотоника, опто- и микроэлектроника 1.3.03" (2016–2017 гг.).

Список литературы

- Brebner J.L., Jandl S., Lépine Y. // Phys. Rev. B. 1981. V. 23. P. 3816.
- [2] Pontes F.M., Lee E.J.H., Leite E.R., Longo E., Varela J.A. // J. Mat. Science. 2000. V. 35. P. 4783.
- [3] Amy F., Wan A., Kahn A., Walker F.J., McKee R.A. // J. Appl. Phys. 2004. V. 96. N 3. P. 1601.
- Sakyo Hirose, Akinori Nakayama, Hideaki Niimi, Keisuke Kageyama, Hiroshi Takagi // J. Appl. Phys. 2008.
 V. 104. P. 053712. doi 10.1063/1.2975316
- [5] Tarun M.C., Selim F.A., McCluskey M.D. // Phys. Rev. Lett. 2013. V. 111. P. 187403.
- [6] Сохраби Анараки Х., Гапоненко Н.В., Литвинов В.Г., Ермачихин А.В., Колос В.В., Петлицкий А.Н., Иванов В.А. // ФТТ. 2015. Т. 57. № 10. С. 1977.
- [7] Gaponenko N.V., Kortov V.S., Rudenko M.V., Pustovarov V.A., Zvonarev S.V., Slesarev A.I., Molchan I.S., Thompson G.E., Khoroshko L.S., Prislopskii S.Ya. // J. Appl. Phys. 2012.
 V. 111. P. 103101.
- [8] Podhorodecki A., Gaponenko N.V., Banski M., Rudenko M.V., Khoroshko L.S., Sieradzki A., Misiewicz J. // Opt. Mater. 2012. V. 34. N 9. P. 1570.
- [9] Singha S.B., Sharma H.B. // Eur. Phys. J. Appl. Phys. 2009.
 V. 45. P. 30602.
- [10] Hiibert T., Beck U., Kleinke H. // J. Non-Cryst. Solids. 1996. V. 196. P. 150.
- [11] Fuentes S., Zarate R.A., Chavez E., Munoz P.,Diaz-Droguett D., Leyton P. // J. Mater. Sci. 2010. V. 45. P. 1448.

- [12] Reji T., Dube D.C., Kamalasanan M.N., Subhas Chandra, Bhalla A.S. // J. Appl. Phys. 1997. V. 82. P. 4484.
- [13] Reji T., Dube D.C. // Jpn. J. Appl. Phys. 2000. V. 39. P. 1771.
- [14] Kamalasanan M.N., Deepak Kumar N., Subhas Chandra // J. Appl. Phys. 1993. V. 74. P. 679.
- [15] Dinghua Bao, Xi Yao, Naoki Wakiya, Kazuo Shinozaki, Nobuyasu Mizutani // Appl. Phys. Lett. 2001. V. 79. P. 3767.
- [16] Kosola A., Putkonen M., Johansson L.-S., Nünisto L. // Appl. Surf. Sci. 2003. V. 211. P. 102.
- [17] Кулак А.И., Сохраби Анараки Х., Гапоненко Н.В., Хорошко Л.С., Холов П.А., Райченок Т.Ф. // ЖПС. 2017. Т. 84. № 1. С. 150.
- [18] Du Y., Zhang M.-S., Wu J., Kang L., Yang S., Wu P., Yin Z. // Appl. Phys. A. 2003. V. 76. P. 1105.
- [19] Roy D., Peng C.J., Krupanidhi S.B. // Appl. Phys. Lett. 1992.
 V. 60. N 3. P. 2478.
- [20] Baba S., Numata K., Miyake S. // Sci. Technol. Adv. Mater. 2000. V. 1. P. 211.
- [21] *Уханов Ю.И.* Оптические свойства полупроводников. М.: Наука, 1977. 368 с.
- [22] Kim Y.H., Lee K.S., Lee T.S., Cheong B., Seong T.-Y., Kim W.M. // Appl. Surf. Science. 2009. V. 255. P. 7251.
- [23] Lee S.H., Lee T.S., Lee K.S., Cheong B., Kim Y.D., Kim W.M. // J. Phys. D. 2008. V. 41. P. 095303.
- [24] Новодворский О.А., Горбатенко Л.С., Панченко В.Я. // ФТП. 2009. Т. 43. № 4. С. 439.
- [25] *Edward D. Palik.* Handbook of optical constants of solids. Academic Press, 1988. P. 230.
- [26] Li Q.H., Zhu D., Liu W., Liu Y., Ma X.C. // Appl. Surf. Science. 2008. V. 254. P. 2922.
- [27] Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 856 с.
- [28] Tauc J., Grigorovici R., Vancu A. // Phys. Stat. Sol. 1966. V. 15. P. 627.
- [29] Сотский А.Б., Кривецкий К.Н., Федотко А.А., Дзен И.С., Парашков С.О., Стаськов Н.И., Сотская Л.И. // Материалы Всероссийской научной Интернет-конференции с международным участием "Спектрометрические методы анализа". Казань, 26 сентября 2013. С. 103.
- [30] Minkov D. // JOSA. A. 1991. V. 8. N 2. P. 306.
- [31] Eunice S.M. Goh, Chen T.P., Sun C.Q., Liu Y.C. // J. Appl. Phys. 2010. V. 107. P. 024305.
- [32] Головань Л.А., Тимошенко В.Ю., Кашкаров П.К. // УФН. 2007. Т. 177. № 6. С. 619.
- [33] Stefan Zollner, Demkov A.A., Liu R., Fejes P.L., Gregory R.B., Prasad Alluri, Curless J.A., Yu Z., Ramdani J., Droopad R., Tiwald T.E., Hilfiker J.N., John A. Woollam // J. Vac. Sci. Technol. B. 2000. V. 18. N 4. P. 2242.