Зонная структура сверхпроводящих додэкаборидов YB₁₂ и ZrB₁₂

© И.Р. Шеин, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: shein@ihim.uran.ru

(Поступила в Редакцию в окончательном виде 28 января 2003 г.)

Самосогласованным полно-потенциальным методом линейных muffin-tin орбиталей изучена зонная структура сверхпроводников: кубических (типа UB₁₂) додэкаборидов YB₁₂ и ZrB₁₂. Анализ параметров их электронной подсистемы проведен в сопоставлении с аналогичными величинами для гипотетических "додэкаборидов" $\Box B_{12}$ (\Box — металлическая вакансия) и BB₁₂, а также слоистых (типа AlB₂) диборидов — несверхпроводящих YB₂ и ZrB₂ и нового сверхпроводника MgB₂.

Открытие критического перехода $T_C \approx 40 \text{ K}$ в MgB₂ [1] и создание новых сверхпроводящих материалов на его основе (в виде пленок, керамики, протяженных проводов и лент, см. обзоры [2,3]) стимулировали развитие работ по детальному исследованию сверхпроводимости (СП) для других боридов металлов.

Сравнительный анализ различных классов бинарных (полу- (M₂B), моно- (MB), ди- (MB₂), тетра- (MB₄) и ряда высших боридов (гекса- (MB₆), додэка- (MB₁₂) и MB₆₆-подобных боридов), тройных и четырехкомпонентных боридов [3] показывает, что большинство известных сверхпроводников найдено среди фаз с достаточно низким содержанием бора (B/M $\leq 2-2.5$). В этих кристаллах атомы бора присутствуют в виде изолированных атомов либо образуют линейные или плоские структуры (цепи или сетки атомов бора).

Гораздо менее характерны СП свойства для высших боридов (B/M \geq 6), структурообразующими элементами которых являются устойчивые полиэдрические группировки атомов бора — октаэдры B₆ (MB₆), икосаэдры B₁₂ (MB₁₂) или их комбинации (MB₆₆). Например, среди большого числа боридов металлов, содержащих B₁₂-полиэдры, низкотемпературная СП обнаружена лишь у четырех фаз MB₁₂ (M = Sc, Y, Zr, Lu) [3].

Важно подчеркнуть, что наиболее стабильные кристаллические модификации элементарного бора (α -B₁₂, β -B₁₀₅), имеющие в качестве основных структурных единиц борные полиэдры (икосаэдры или "гигантские" икосаэдры B₈₄), в равновесных условиях являются полупроводниками [4–7]. Лишь недавно в рамках экспериментнов по сверхвысоким сжатиям найдено, что поликристаллический ромбоэдрический β -B₁₀₅ переходит в СП состояние ($T_C \sim 11.2$ K) при давлениях выше 250 GP [8].

Цель настоящей работы — изучение зонной структуры двух из упомянутых высших боридов — низкотемпературных сверхпроводников YB_{12} и ZrB_{12} — и анализ электронных факторов, ответственных за их СП свойства. Для этого проведены расчеты энергетических зон, плотностей электронных состояний (ПС) и парциального состава прифермиевских зон додэкаборидов Y и Zr, которые сравниваются с аналогичными параметрами для боридных фаз этих же металлов с низким содержанием бора (B/M = 2) — слоистых (AlB₂-типа) диборидов YB₂ и ZrB₂, у которых сверхпроводимость отсутствует [3], а также MgB₂.

Как отмечалось, базисными полиэдрами изоструктурных (типа UB₁₂, пр. гр. O_h^5 -*F* m3m) кубических YB₁₂ и ZrB₁₂ фаз являются полиатомные кластеры икосаэдрической симметрии — B₁₂. Структуру этих додэкаборидов можно формально представить [9] как простую структуру типа каменной соли, где атомы металлов (M = Y, Zr) занимают позиции натрия, а икосаэдры B₁₂ центрированы на позициях хлора. Элементарная ячейка содержит 52 атома (Z = 4), атомы в ячейке имеют координаты: 4M (a) 0, 0, 0; 48B (i) 1/2, x, x (x = 0.166).

Для исследования роли атомов металла и полиздров B_{12} в формировании зонной структуры MB_{12} мы выполнили также расчет гипотетических кристаллов, получаемых при: 1) удалении атомов M из решетки MB_{12} ($\Box B_{12}$, где \Box — металлическая вакансия) и 2) замещении атомов M на атомы бора (BB_{12}). Для этих модельных "додэкаборидов" использованы структурные параметры YB_{12} .

Расчеты зонной структуры перечисленных систем выполнены скалярно-релятивистским самосогласованным полно-потенциальным методом линейных muffin-tin орбиталей (ПП–ЛМТО) [10,11], где обменно-корреляционные эффекты учитывались в рамках обобщенной градиентной аппроксимации [12,13]. ПС вычислялись методом тетраэдров. Для рассмотренных боридов проведена оптимизация их структурных параметров. Полученные данные приведены в табл. 1.

Результаты расчетов зонной структуры додэкаборидов Y, Zr представлены на рис. 1, 2. Обсудим особен-

Таблица 1. Критические температуры переходов (T_C, K) [3] и решеточные параметры (Å) YB₁₂, ZrB₁₂, YB₂ и ZrB₂

Борид	T_C	[9]		Наши данные		
		а	С	а	С	
YB ₁₂	4.7	7.506	_	7.469	_	
ZrB_{12}	5.8	7.408	—	7.419	—	
YB_2		3.303	3.842	3.212	4.008	
ZrB_2	—	3.165	3.547	3.170	3.532	

Рис. 1. Энергетические зоны $YB_{12}(a)$, $ZrB_{12}(b)$ и модельной структуры — "додэкаборида" $\Box B_{12}(c)$.

ности формирования их энергетических зон в сравнении с гипотетическим "додэкаборидом" $\Box B_{12}$ (рис. 1). Для последнего энергетическая дисперсия зон определена достаточно сложной системой внутри- и межикосаэдрических В–В-связей. Общая ширина валентной зоны (В3) $\Box B_{12}$ (без учета низкоэнергетических квазиостовных В2*s*-зон, расположенных на ~ 14 eV ниже уровня Ферми (*E_F*)) составляет ~ 10.3 eV. ВЗ содержит две груп-

пы гибридных B2s, 2p-зон в интервалах -11.0 - 8.80 и -8.45 - 0 eV, разделенных щелью ~ 0.4 eV. Нижние зоны составлены в основном B2s-, верхние — B2s, 2p-состояниями. Последние в зависимости от их участия в эффектах межатомного связывания в кристалле можно разделить на три типа.

Первый тип — связывающие B2s, 2p-состояния. Они ответственны за формирование "внутрикластерных" ковалентных взаимодействий — трехцентровых связей В–В в плоскостях граней икосаэдров. Эти связи отвечают за стабилизацию отдельных B_{12} -полиэдров и мало зависят от типа их упаковки в кристалл (симметрии B_{12} -подрешетки) и икосаэдры (B_{12} – B_{12}). Аналогичные зоны присутствуют в полиморфных модификациях элементарного бора, решетки которых составлены кластерами B_{12} [4–7] и практически сохраняют свой вид для YB_{12} и Zr B_{12} (рис. 1).

Второй тип — связывающие B2s, 2*p*-состояния — осуществляет межикосаэдрические связи. B2s, 2*p*-состояния третьего типа относятся к несвязывающим. Они локализованы вблизи "пустых" узлов $\Box B_{12}$. Эти состояния образуют, в частности, квазиплоские частично занятые зоны вблизи E_F . На профиле ПС им соответствуют узкие резонансные пики B' и B'' (рис. 3). В результате спектр $\Box B_{12}$ имеет металлоподобный характер в отличие от спектра стабильного полупроводника α -B₁₂ [4–7], где зоны полностью заполнены.

"Металлизация" гипотетического $\Box B_{12}$ связана с "дефицитом" электронов, возникающим за счет перехода части электронной плотности в область "пустых" сфер в позициях атомов иттрия структуры YB₁₂. Эти сферы аккумулируют, по нашим оценкам, до ~ 0.95*e* каждая. В результате верхние валентные зоны частично свободны, и система имеет высокую плотность состояний на уровне Ферми ($N(E_F) = 6.177$ 1/eV · cell) на ~ 96% составленных B2*p*-орбиталями.

Спектр $\Box B_{12}$ содержит запрещенную щель (~ 1.36 eV, прямой переход в точке *X*), сравнимую с запрещенной щелью α -B₁₂ (~ 1.43–1.70 eV, непрямые переходы $Z \rightarrow \Gamma$ [4–7]).

Мы рассчитали также гипотетический "додэкаборид" BB_{12} , изоэлектронный YB_{12} , где атомы иттрия замещены на "сверхстехиометрические" атомы бора. Получено, что валентные *s*, *p*-состояния этих атомов локализованы вблизи E_F и частично заполнены, они формируют металлоподобный тип спектра BB_{12} с величиной $N(E_F) = 3.034 \text{ 1/eV} \cdot \text{cell}$. Основной вклад в $N(E_F)$ также вносят B2p-состояния (~ 72%).

Таким образом, прифермиевские области гипотетических кристаллов $\Box B_{12}$ и BB_{12} имеют подобное строение. Первый из них может быть интерпретирован как структурная модель элементарного бора с "разупорядоченной" решеткой B_{12} -икосаэдров. Второй — имитирует наличие "межикосаэдрических" атомов бора в кристалле. Обе системы имеют металлоподобный энергетический спектр с высокой плотностью B2p-состояний на уровне Ферми.

Рис. 2. Полные (*I*) и локальные плотности валентных состояний (*1-s*, *2-p*, *3-d*) подрешеток Y, Zr (*II*) и бора (*III*) для YB₁₂ (*a*) и ZrB₁₂ (*b*).

Аналогичную структуру прифермиевских состояний авторы [14] считают ответственной за возникновение сверхпроводимости в боре при его барической обработке. Однако выводы [14] основаны на расчетах зонного спектра гипотетической ГЦК-фазы бора.

Полученные результаты позволяют предположить, что наблюдаемый [8] СП переход для β -бора может явиться следствием как решеточных искажений, так и частичного "разрушения" исходных В₁₂-икосаэдров с переходом части В-атомов в межикосаэдрические позиции в условиях высоких внешних давлений. Вследствие высоких когезионных свойств элементарного бора [4–7] эти эффекты могут стать более вероятными, чем фазовый переход β -В \rightarrow ГКЦ-В [14]. Естественно, что окончательный вывод о наиболее предпочтительных механизмах структурных перестроек решетки бора и стабилизации его возможных кристаллических структур в условиях высокого сжатия требует проведения оценок энергетических эффектов.

Основные отличия зонной структуры YB_{12} и "додэкаборида" $\Box B_{12}$ определены валентными *s*, *p*, *d*-состояниями иттрия, которые гибридизованы с внешними B2p-состояниями, формирующими в системе $\Box B_{12}$ межикосаэдрические связи, а также несвязывающие квазиплоские зоны вблизи *E_F*. Ширина B3 YB_{12} составляет ~ 12.98 eV. В3 включает две группы полностью занятых гибридных B2s, 2*p*-зон с ширинами 2.82 и 8.89 eV, разделенных псевдощелью (полосы *A*, *B* на рис. 2). Прифермиевские зоны гибридного Y–В-типа обладают значительной энергетической дисперсией.

При переходе $YB_2 \rightarrow ZrB_2$ общая структура зон изменяется незначительно, основной эффект связан с заполнением зон за счет увеличения электронной концентрации в системе (рис. 1).

Важно отметить, что для YB_{12} и $ZrB_{12} E_F$ расположен в области "плато" ПС между связывающими и антисвязывающими полосами B2s, 2p-состояний (рис. 2). Изменение типа металлической подрешетки ($YB_2 ZrB_2$) достаточно мало влияет как на общий профиль ПС этих фаз, так и на величину и состав $N(E_F)$: из данных табл. 2 видно, что в указанной последовательности

Таблица 2. Полная плотность состояний и орбитальные вклады на уровне Ферми (1/eV · cell)

Борид	Полная плотность состояний	Ms	Mp	Md	Bs	Вр
$\begin{array}{c} YB_{12}\\ ZrB_{12}\\ YB_2 \end{array}$	1.458	0.005	0.003	0.532	0.033	0.885
	1.687	0.008	0.006	0.743	0.042	0.888
	1.665	0.042	0.106	0.983	0.001	0.294
$ZrB_2 \\ MgB_2$	0.163	0.001	0.002	0.130	0.001	0.030
	0.719	0.040	0.083	0.138	0.007	0.448

Рис. 3. Полные (*I*) и локальные плотности состояний (*I-s*, 2-p) "пустой" сферы \Box (*II*) и бора (*III*) для модельной структуры — "додэкаборида" $\Box B_{12}$.

 $N(E_F)$ возрастает не более чем на ~ 16%, сохраняется и доминирующий вклад в $N(E_F)$ М4*d*-состояний.

Следовательно, исходя из вида полученных электронных спектров, можно заключить, что попытки допирования бинарных додэкаборидов (например, путем получения твердых растворов $Y_x Zr_{1-x}B_{12}$) с целью оптимизации их СП свойств, оказывающиеся весьма эффективными при регулировании величин T_C для других сверхпроводящих боридов (например, MgB₂ [2,3] или YNi₂B₂C [7,15]), для MB₁₂-фаз будут малоперспективными.

С другой стороны, особенности электронного спектра MB_{12} указывают на устойчивость их СП свойств по отношению к химическому составу системы. Иными словами, процедура синтеза низкотемпературных MB_{12} -сверх-проводников не будет содержать столь строгих требований по отношению к стехиометрии получаемых образцов, как при получении, например, сверхпроводящих MgB_2 или YNi_2B_2C .

Известно, что YB₁₂ и ZrB₁₂ являются "классическими" БКШ-системами с электрон-фононным механизмом сверхпроводимости [3], поэтому важным параметром формирования их СП свойств является орбитальный состав $N(E_F)$ [16]. Тогда, согласно нашим данным, повышение T_c от 4.7 (YB₁₂) до 5.8 К (ZrB₁₂) [3] можно отнести за счет роста вклада в $N(E_F)$ М4*d*-состояний: с 0.532 (YB₁₂) до 0.743 1/eV · cell (ZrB₁₂). При этом вклады всех остальных валентных состояний остаются практически неизменными (табл. 2).

Сравним особенности зонной структуры MB_{12} со слоистыми (типа AlB_2) диборидами данных металлов, а также изоструктурным сверхпроводником MgB_2 , рассчитанными нами в рамках используемого метода. Зонная структура двух последних диборидов описана в работе [17]. Как показано в [2,3,17–20], особенности зон-

Рис. 4. Энергетические зоны $MgB_2(a)$, $YB_2(b)$ и $ZrB_2(c)$.

ной структуры сверхпроводящего MgB₂ определяются $\sigma(2p_{x,y})$ - и $\pi(p_z)$ -состояниями бора. Квазидвумерные зоны В $2p_{x,y}$ -типа пересекают E_F , являясь ответственными за металлоподобные свойства MgB₂ (табл. 2). Одной из важнейших особенностей MgB₂ является наличие дырочных В2Р_{x,y}-состояний: в направлении $\Gamma - A$ они находятся выше E_F и образуют цилиндрические элементы поверхности Ферми дырочного типа [17-20]. Сравнивая зонные структуры диборидов в ряду $MgB_2 \rightarrow YB_2 \rightarrow ZrB_2$ (рис. 4) можно отметить принципиальные отличия СП YB2 и ZrB2 от СП MgB₂, которые заключаются в заполнении связывающих В2 $p_{x,y}$ -зон и отсутствии дырочных σ -состояний, увеличении взаимодействий между слоями бора и металла за счет гибридизации В2р-Мd-состояний (росте дисперсии σ -зон бора в направлении Γ -A зоны Бриллюэна) и изменении величин и орбитального состава $N(E_F)$, где основную роль для YB2 и ZrB2 играют валентные 4*d*-состояния металлов (табл. 2).

В ряду $MgB_2 \rightarrow YB_2 \rightarrow ZrB_2$ вклады B2p-состояний в $N(E_F)$ систематически уменьшаются; наоборот, изменение вкладов M4d-состояний происходит немонотонно, достигая максимума для YB_2 . Минимальное значение имеет величина $N(E_F)$ ZrB_2 , в спектре которого уровень Ферми расположен в псевдощели между связывающими и антисвязывающими состояниями. Это обстоятельство указывает на то, что СП свойства наименее вероятны для ZrB_2 . Данный факт соответствует результатам работы [21], где критический переход в ZrB_2 не обнаружен вплоть до T < 0.7 K.

Таким образом, в работе изучены параметры зонной структуры UB₁₂-подобных додэкаборидов Y и Zr и показано, что рост T_C (на ~ 1.1 K) при переходе YB₂ \rightarrow ZrB₂ коррелирует с увеличением вклада M4*d*-состояний в прифермиевскую область. Примечательной особенностью зонной структуры этих боридов является положение E_F в области протяженного "плато" плотности состояний между связывающими и антисвязывающими зонами, что указывает на достаточную устойчивость СП свойств этих фаз по отношению к изменениям их химического состава.

Отсутствие сверхпроводимости для боридов этих металов с малым содержанием бора — слоистых диборидов Y и Zr — объясняется рядом принципиальных отличий их зонного спектра от изоструктурного сверхпроводника — MgB₂.

На основе расчетов гипотетических "додэкаборидов" $\Box B_{12}$ и BB_{12} высказано предположение, что наблюдаемый в условиях высоких давлений переход β -бора в сверхпроводящее состояние [8] может быть обусловлен "металлизацией" системы в результате искажений кристаллической решетки и (или) частичным "разрушением" образующих ее полиэдров B_{12} с переходом части атомов бора в межикосаэдрические позиции.

Список литературы

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature 410, 6824 (2001).
- [2] А.Л. Ивановский. Успехи химии 70, 9, 711 (2001).
- [3] C. Buzea, T. Yamashita. Superconductors, Science and Technol. 14, 11, R115 (2001).
- [4] S. Lee, D.M. Bylander, L. Kleinman. Phys. Rev. B42, 2, 1316 (1990).
- [5] C. Maihiot, J.B. Grant, A.K. McMahan. Phys. Rev. B42, 14, 9033 (1990).
- [6] D. Li, Y.-N. Xu, W.Y. Ching. Phys. Rev. B45, 11, 5895 (1992).
- [7] А.Л. Ивановский, Г.П. Швейкин. Квантовая химия в материаловедении. Бор, его сплавы и соединения. Изд-во "Екатеринбург", Екатеринбург (1997).
- [8] M.L. Eremets, V.V. Struzhkin, H.-K. Mao, R.J. Hemley. Science 203, 272 (2001).
- [9] Ю.Б. Кузьма. Кристаллохимия боридов. Изд-во "Вища Школа", Львов (1983).
- [10] M. Methfessel, C. Rodriquez, O.K. Andersen. Phys. Rev. B40, 3, 2009 (1989).
- [11] S.Y. Savrasov. Phys. Rev. B54, 23, 16470 (1996).
- [12] J.P. Perdew, Y. Wang. Phys. Rev. B45, 23, 13 244 (1992).
- [13] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 18, 3865 (1996).
- [14] D.A. Papaconstantopoulos, M.J. Mehl. Cond-matter/0111385 (2001).
- [15] А.Л. Ивановский. Успехи химии 67, 5, 403 (1998).
- [16] С.В. Вонсовский, Ю.А. Изюмов, Э.З. Курмаев. Сверхпроводимость переходных металлов, из сплавов и соединений. Наука, М. (1977).
- [17] И.Р. Шеин, А.Л. Ивановский. ФТТ 44, 10, 1752 (2002).
- [18] J. Kortus, I.I. Mazin, K.D. Belaschenko, V.P. Antropov, L.L. Boyer. Phys. Rev. Lett. 86, 20, 4656 (2001).
- [19] J.M. An, W.E. Pickett. Phys. Rev. Lett. 86, 19, 4366 (2001).
- [20] N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, A.J. Freeman. Phys. Rev. B64, 2, R020502 (2001).
- [21] L. Leyarovska, E. Leyarovski. J. Less Common Metals 67, 2, 249 (1979).