Влияние металлических вакансий на зонную структуру диборидов Nb, Zr и Y

© И.Р. Шеин, Н.И. Медведева, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: shein@ihim.uran.ru

(Поступила в Редакцию 21 ноября 2002 г.)

Самосогласованным полнопотенциальным методом ЛМТО впервые проведены расчеты зонной структуры нестехиометрических слоистых диборидов $M_{0.75}B_2$ (M=Nb, Zr и Y) и получены численные оценки энергий формирования М-вакансий. Установлены принципиальные различия влияния М-вакансий на спектры электронных состояний диборидов металлов III–V групп. С учетом полученных результатов обсуждаются сверхпроводящие свойства данных диборидов.

Работа поддержана Российским фондом фундаментальных исследований (проект № 02-03-32971).

Обнаружение сверхпроводимости (СП) в Мд2В2 $(T_c \approx 39 \,\mathrm{K})$ [1] и получение на его основе сверхпроводящих материалов в виде пористой и плотной керамики, пленок (в том числе наноструктурированных), проводов и лент (см. обзоры [2–5]) привлекли большое внимание к изучению гексагональных (типа AlB₂) диборидов переходных *d*-металлов (М), изоструктурных MgB₂. На ранних этапах исследований для большинства диборидов *d*-металлов (Ti, Zr, Hf, V, Ta, Cr, Mo, Nb) сверхпроводящий переход не был обнаружен вплоть до температуры $T \sim 0.6 \, \text{K}$ [6]. В ряде экспериментальных и теоретических работ последних лет [7-17] показано, что для бинарных диборидов МВ2 эффект СП с критическим переходом $T_c \ge 40 \,\mathrm{K}$ невозможен, за исключением MgB₂, где высокое значение T_c достигается за счет сильного электрон-фононного взаимодействия с определяющим участием состояний *σ*-зон бора, допированных дырками.

Недавно появились сообщения о наличии сравнительно высоких T_c для ZrB₂ (5.5 K [7]), TaB₂ (9.5 K [8]), NbB₂ (5.2 K [9]). С другой стороны, согласно результатам [10], СП в TaB₂ отсутствует при температурах выше 1.5 K, в NbB₂ — выше ~ 2 K [7,8]. Оценки параметров электрон-фононного взаимодействия для MB₂ привели к выводу о несверхпроводящем состоянии ZrB₂ [14] и о возможности СП-переходов для TaB₂ при $T_c \sim 0.1$ K [13] и для NbB₂ при $T_c \sim 3$ K [12].

Важно подчеркнуть, что во всех исследованиях [7-17] состав диборидов полагался строго стехиометрическим (В/M = 2).

Как известно, одним из наиболее распространенных типов дефектов кристаллов являются решеточные вакансии, присутствие которых приводит к существенным изменениям комплекса свойств нестехиометрических соединений в области гомогенности. К классу так называемых сильно нестехиометрических фаз с исключительно широкими областями гомогенности (до 30–55 at.%) относятся, например, кубические (типа B1) карбиды, нитриды и оксиды *d*-металлов III–V групп [18]. В отличие от них дибориды *d*-металлов III–V групп в равновесных условиях имеют очень узкие области гомогенности [19]. В результате эффекты нестехиометрии при изучении свойств данных систем обычно игнорируются. Нам неизвестны также теоретические работы, посвященные изучению влияния решеточных вакансий на свойства MB₂-фаз.

Недавно авторы [20] сообщили о твердофазном синтезе (при $T = 900-1300^{\circ}$ С и давлениях 1–5 GPa) нестехиометрических образцов диборидов Nb_{1-x}B₂ и Ta_{1-x}B₂ (структурный тип AlB₂, $0 \le x \le 0.48$). Было установлено, что Nb_{1-x}B₂ переходит в СП-состояние при значениях *x* выше 0.04, причем с возрастанием концентрации Nb-вакансий T_c растет, достигая максимума (~9 K) для составов с $x \sim 0.24$.

В данной работе сообщаются результаты первых исследований влияния *М*-вакансий на электронные свойства и энергетические состояния диборидов *d*-металлов.

1. Модель и метод расчета

В качестве моделей нестехиометрических диборидов *d*-металлов были выбраны гексагональные NbB₂, ZrB₂ и YB₂, содержащие 25% М-вакансий. Такой выбор объектов позволяет обсудить роль металлических вакансий в перестройке электронных свойств изоструктурных диборидов при всех возможных типах заполнения их энергетических зон.

Данные фазы имеют гексагональную структуру P6/mmn, состоящую из слоев тригональных призм атомов металла, центрированных атомами бора. Последние в свою очередь формируют плоские графитоподобные сетки. Нестехиометрические фазы $M_{0.75}B_2$ моделировались 12-атомными сверхъячейками $(2 \times 2 \times 1)$. Расчеты проводились скалярно-релятивистским полнопотенциальным методом ЛМТО (ПЛМТО) в рамках обобщенной градиентной аппроксимации обменно-корреляционных эффектов [21]. Параметры решетки комплексных NbB₂, ZrB₂ и YB₂ соответ-

	$N(E_{ m F})$								γ	
	Total	Ms	Mp	Md	Mf	Bs	Bp		[24]	
NbB ₂	1.012	0.002	0.012	0.653	0.036	0.009	0.125	2.39	2.42	
$Nb_{0.75}B_2$	0.993	0.009	0.021	0.544	0.022	0.010	0.146	2.34	—	
ZrB_2	0.300	0.001	0.003	0.170	0.009	0.000	0.042	0.71	0.67	
$Zr_{0.75}B_2$	1.220	0.005	0.027	0.426	0.019	0.018	0.331	2.87	—	
YB ₂	0.900	0.008	0.018	0.364	0.014	0.002	0.136	2.12	2.03	
$Y_{0.75}B_2$	0.409	0.004	0.012	0.121	0.004	0.002	0.080	0.96	-	

Таблица 1. Плотности состояний на уровне Ферми state/eV \cdot atomic formula и коэффициенты электронной теплоемкости γ (mJ \cdot mol⁻¹ \cdot K⁻²) для комплексных и нестехиометрических диборидов Nb, Zr и Y

ствовали данным [22]. Поскольку экспериментально определенные [20] параметры решетки $Nb_{0.75}B_2$ (a = 3.098 Å, c/a = 1.072) отличаются от таковых для стехиометрического NbB_2 не более чем на ~ 0.3%, для гипотетических дефектных структур $Zr_{0.75}B_2$ и $Y_{0.75}B_2$ величины a, c приняты равными таковым для соответствующих комплектных фаз [22].

Рис. 1. Полные плотности состояний NbB₂, ZrB₂ и YB₂. $E_F = 0$.

2. Результаты и их обсуждение

На рис. 1,2 приводятся полные плотности состояний (ПС) комплектных NbB₂, ZrB₂, YB₂ и дефектных Nb_{0.75}B₂, Zr_{0.75}B₂, Y_{0.75}B₂ фаз. Видно, что валентная зона AlB₂-подобных диборидов 4*d*-металлов содержит полосы связывающих B2*s*- и B2*p*-M*d*-состояний (полосы *A*

и *B* на рис. 1), отделенные от полосы антисвязывающих состояний (*C*) псевдощелью. В зависимости от типа металлической подрешетки (числа валентных электронов n_e) в MB₂ возможны три варианта заполнения зон. Для ZrB₂ ($n_e = 3.33$ e/atom) уровень Ферми E_F располагается в псевдощели (минимуме ПС), что соответствует максимальной химической устойчивости данного диборида, когда все связывающие состояния полностью за-

Рис. 2. Полные плотности состояний Nb_{0.75}B₂, $Zr_{0.75}B_2$ и Y_{0.75}B₂. $E_F = 0$.

Рис. 3. Карта зарядовой плотности в плоскости гексагонального Nb-слоя в Nb_{0.75}B₂.

няты, а антисвязывающие вакантны (см. также [23–25]). Для NbB₂ ($n_e = 3.66 \text{ e/atom}$) часть антисвязывающих зон заполнена, ПС на уровне Ферми $N(E_F)$ возрастает (табл. 1). Наоборот, для YB₂ ($n_e = 3.0 \text{ e/atom}$) некоторые из связывающих гибридных d-p-состояний остаются вакантными. Эта упрощенная схема качественно объясняет экспериментально наблюдаемое [19] понижение когезионных характеристик NbB₂ и YB₂ по сравнению с ZrB₂ и подтверждается результатами *ab initio* зонных расчетов [23–25] (см. также далее).

Обсудим основные эффекты, возникающие при введении M-вакансий и влияющие на зонную структуру диборидов, общее действие которых при переходе $MB_2 \rightarrow M_{0.75}B$ будет связано 1) с понижением n_e ; 2) с локальными перестройками электронных состояний атомов, соседствующих с вакансией.

Проведенные расчеты показывают, что эти эффекты для диборидов *d*-металлов III–V групп оказываются различными. Присутствие вакансий в подрешетке Nb в NbB₂ приводит к заметной перестройке ПС в перифермиевской области и возникновению нового пика ПС (рис. 2). При этом "вакансионные" состояния *s*-типа расположены ниже $E_{\rm F}$. Деформация зарядовой плотности в Nb_{0.75}B видна из рис. 3: новых связей Nb–Nb, проходящих через центр вакансии, не возникает, а деформация контуров зарядовой плотности отражает ее рост вдоль линий связей Nb–Nb вблизи дефекта. Величина $N(E_{\rm F})$ для Nb_{0.75}B₂ по сравнению с таковой для NbB₂ незначительно (на ~ 1.9%) убывает.

По сравнению с NbB₂ изменения зонной структуры ZrB₂ под действием вакансий носят гораздо более радикальный характер (рис. 2). Наличие Zr-дефектов индуцирует возникновение нового интенсивного пика ПС в области псевдощели, в результате $N(E_{\rm F})$ нестехиометрического Zr_{0.75}B₂ резко растет: с 0.30 (для ZrB₂) до 1.22 state/eV · cell. Противоположный эффект получен для $Y_{0.75}B_2$: E_F расположен в локальном минимуме ПС, $N(E_F)$ уменьшается более чем вдвое (с 0.900 (для YB₂)) до 0.409 state/eV · cell.

По-разному присутствие вакансий влияет и на распределение парциальных плотностей состояний атомов бора и металла в рассматриваемых фазах (табл. 1). Для Nb_{0.75}B₂ некоторое понижение $N(E_{\rm F})$ достигается за счет понижения вкладов Nb4*d*-состояний ($N^{\rm Nb}(E_{\rm F})$), тогда как вклады 2*p*-состояний бора ($N^{\rm B}(E_{\rm F})$) увеличиваются. Наоборот, резкий рост для Zr_{0.75}B₂ величины $N(E_{\rm F})$ обусловлен одновременным возрастанием вкладов $N^{\rm Zr}(E_{\rm F})$ и $N^{\rm B}(E_{\rm F})$, тогда как уменьшение $N(E_{\rm F})$ для Y_{0.75}B₂ вызвано убыванием вкладов как $N^{\rm Y}(E_{\rm F})$, так и $N^{\rm B}(E_{\rm F})$.

Указанные особенности перестройки зонной структуры некомплектных диборидов должны отражаться на их свойствах, зависящих, в частности, от величины прифермиевской плотности электронных состояний. В качестве примера мы провели оценки коэффициентов низкотемпературной электронной теплоемкости γ (табл. 1) комплектных MB_2 и дефектных $M_{0.75}B_2$ боридов (в приближении свободных электронов $\gamma = (\pi^2/3)N(E_F)k_B^2$). Видно, что если для MB_2 величина γ убывает в ряду $NbB_2 \rightarrow YB_2 \rightarrow ZrB_2$, то для нестехиометрических фаз эта последовательность иная: $Zr_{0.75}B_2 \rightarrow Nb_{0.75}B_2 \rightarrow Y_{0.75}B_2$.

Как отмечалось, действие М-вакансий на величину $N(E_{\rm F})$ наиболее заметно для ZrB₂. Это позволяет предположить, что СП-переход при $T_c \sim 5.5$ К для ZrB₂ [7] может быть обусловлен не только присутствием в образцах примесей ZrB₁₂ [17], но и их нестехиометрией по Zr-подрешетке. Для Nb_{0.75}B₂ наши расчеты существенных изменений $N(E_{\rm F})$ не обнаруживают. Возможно, важную роль в наблюдаемом росте T_c для некомплектных Nb_{1-x}B₂ [20] играют изменения спектра фононных частот системы при понижении ее стабильности в присутствии решеточных вакансий. Наконец, значительное уменьшение $N(E_{\rm F})$ для Y_{1-x}B₂ не позволяет ожидать СП для диборида иттрия в области его гомогенности.

В заключение обсудим изменения стабильности MB_2 -фаз в присутствии дефектов. Для этого сравним результаты численных ПЛМТО-расчетов энергий когезии $E_{\rm coh}$ и образования ΔH MB₂- и M_{0.75}B₂-фаз. Энергии когезии определялись как

$$egin{aligned} &E_{ ext{coh}}^{ ext{MB}_2} = E_{ ext{tot}}^{ ext{MB}_2} - \left(E_{ ext{at}}^{ ext{M}} + 2E_{ ext{at}}^{ ext{B}}
ight), \ &E_{ ext{coh}}^{ ext{M}_0.75 ext{B}_2} = E_{ ext{tot}}^{ ext{M}_0.75 ext{B}_2} - \left(0.75E_{ ext{at}}^{ ext{M}} + 2E_{ ext{at}}^{ ext{B}}
ight). \end{aligned}$$

где $E_{\text{att}}^{\text{M}}$, E_{at}^{B} — полные энергии свободных атомов M и B, $E_{\text{tot}}^{\text{MB}_2}$, $E_{\text{tot}}^{\text{M}_{0.75}\text{B}_2}$ — полные энергии (на формульную единицу) кристаллов MB₂ и M_{0.75}B₂. Энергии образования

Таблица 2. Энергии образования ΔH , когезии $E_{\rm coh}$ и формирования М-вакансий $E_{\rm vf}$ (eV/atomic formula)для комплектных и нестехиометрических диборидов Nb, Zr и Y

	$E_{ m coh}^{ m MB_2}$	$\Delta H^{\rm MB_2}$	$E_{ m coh}^{ m M_{0.75}B_2}$	$\Delta H^{\rm M_{0.75}B_2}$	$E_{ m vf}$
Nb-B	1.82	0.27	1.57	0.19	0.08
Zr-B	1.72	0.35	1.46	0.22	0.13
Y-B	1.42	0.26	1.23	0.16	0.10

диборидов рассчитывались как

$$\Delta H^{\mathrm{MB}_2} = \left(E^{\mathrm{M}}_{\mathrm{tot}} + 2E^{\mathrm{B}}_{\mathrm{tot}}
ight) - E^{\mathrm{MB}_2}_{\mathrm{tot}},$$
 $\Delta H^{\mathrm{M}_{0.75}\mathrm{B}_2} = \left(0.75E^{\mathrm{M}}_{\mathrm{tot}} + 2E^{\mathrm{B}}_{\mathrm{tot}}
ight) - E^{\mathrm{M}_{0.75}\mathrm{B}_2}_{\mathrm{tot}},$

где $E_{\rm tot}^{\rm M}$, $E_{\rm tot}^{\rm B}$ — полные энергии соответствующих кристаллов "чистых" металлов и α -бора, полученные в рамках ПЛМТО-вычислений. Как видно из табл. 2, величины $\Delta H^{\rm MB_2}$ уменышаются в ряду ${\rm ZrB_2} \rightarrow {\rm NbB_2} \rightarrow {\rm YB_2}$, что полностью согласуется с экспериментальными данными по энтальпиям их образования [19]. Величины энергии когезии (характеризующие энергетический эффект распада систем на атомы) находятся в ином соотношении: $E_{\rm coh}^{\rm NbB_2} > E_{\rm coh}^{\rm YB_2}$. Присутствие М-вакансий заметно понижает устойчи-

Присутствие М-вакансий заметно понижает устойчивость боридов (величины ΔH , табл. 2). Важнейшим энергетическим параметром, позволяющим прогнозировать вероятность возникновения вакансий, является энергия их формирования, которая вычислялась как

$$E_{\rm vf} = E_{\rm tot}^{\rm MB_2} - E_{\rm tot}^{\rm M_{0.75}B_2} - 0.25 E_{\rm tot}^{\rm M}.$$

Результаты (табл. 2) свидетельствуют о том, что $E_{\rm vf}$ в NbB₂ меньше, чем в ZrB₂ и YB₂. Следовательно, наиболее затруднено введение вакансий в состав ZrB₂, который является самой устойчивой фазой среди рассмотренных.

Таким образом, проведенные расчеты позволили впервые изучить влияние решеточных вакансий на зонную структуру слоистых диборидов Nb, Zr, Y и выявить основные закономерности перестройки электронных состояний диборидов, которые в зависимости от природы металлической подрешетки (типа заполнения спектральных полос) могут резко различаться. В частности, с ростом числа вакансий в составе $M_x B_2$ величина $N(E_F)$ может уменьшаться (YB₂), расти (ZrB₂) или оставаться почти постоянной (NbB₂). Эффекты нестехиометрии (по М-подрешетке) более характерны для диборов *d*-металлов III и V групп Периодической системы.

Список литературы

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature (London) 410, 63 (2001).
- [2] А.Л. Ивановский. Успехи химии 70, 9, 811 (2001).
- [3] C. Buzea, T. Yamashita. Supercond. Sci. Technol. 14, R115 (2001).

- [4] А.Л. Ивановский, Н.И. Медведева, И.Г. Зубков, В.Г. Бамбуров. ЖНХ 47, 4, 661 (2002).
- [5] P.C. Canfield, S.L. Bud'ko. Phys. Word 15, 29 (2002).
- [6] L. Leyarovsky, E. Leyarovski. Less. Common. Met. 67, 249 (1979).
- [7] В.А. Гаспаров, Н.С. Сидоров, И.И. Цверкова, М.П. Кулаков. Письма в ЖЭТФ 73, 10, 532 (2001).
- [8] D. Kraczorwski, A.J. Zaleski, O.J. Zogal, J. Klamut. Condmat/0103571 (2001).
- [9] N. Ogita, T. Kariya, H. Hiraoka, J. Nagamatsu, T. Muranaka, H. Takagiva, J. Akimitsu, M. Udagava. Cond-mat/0106147 (2001).
- [10] H. Rosner, W.E. Pickett, S. Drechsler, A. Handstein, G. Behr, G. Fuchs, K. Nevkov, K. Muller, H. Eschring. Phys. Rev. B 64, 144 516 (2001).
- [11] N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, A.J. Freeman. Phys. Rev. B 64, 20 502 (2001).
- [12] P.P. Singh. Cond-mat/0210091 (2002).
- [13] H. Rosner, W.E. Pickett. Cond-mat/0106062 (2001).
- [14] H. Rosner, J.M. An, W.E. Pickett, S. Drechsler. Phys. Rev. B 66, 24 521 (2002).
- [15] S. Elgazzar, P.M. Oppeneer, S. Drechsler, R. Hayn, H. Rosner. Cond-mat/0201230 (2002).
- [16] I.R. Shein, A.L. Ivanovskii. Cond-mat/0109445 (2001).
- [17] I.R. Shein, S.V. Okatov, N.I. Medvedeva, A.L. Ivanovskii. Cond-mat/0202015 (2002).
- [18] A.I. Gusev, A.A. Rempel, A.J. Margel. Disorder and Order in Strongly Non-Stoichmetric Compounds: Transition Metal Carbides, Nitrides and Oxides. Springer (2001).
- [19] Г.В. Самсонов, И.М. Виницкий. Тугоплавкие соединения. Справочник. Металлургия, М. (1976).
- [20] A. Yamamoto, C. Takao, T. Masui, M. Izumi, S. Tajima. Condmat/0208331 (2002).
- [21] M. Methfessel, M. Scheffler. Physica B 172, 175 (1991).
- [22] P. Villars. Pearson's Handbook: Crystallographic Data for Intermetallic Phases. ASM International (1997).
- [23] А.Л. Ивановский, Н.И. Медведева, Ю.Е. Медведева. Металлофизика и новейшие технологии 21, 12, 19 (1999).
- [24] P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani. Phys. Rev. B 63, 5115 (2001).
- [25] T. Oguchi. J. Phys. Soc. Jpn. 71, 1495 (2002).