Электронные свойства аморфного сплава FeCuNbSiB

© В.И. Графутин, Ю.В. Фунтиков, Н.О. Хмелевский

Государственный научный центр РФ–Институт теоретической и экспериментальной физики, Москва, Россия

E-mail: khmelevsky@mail.ru

01

(Поступила в Редакцию 29 марта 2011 г. В окончательной редакции 30 мая 2011 г.)

Методами позитронно-аннигиляционной спектроскопии исследованы изменения электронных свойств в аморфных сплавах системы Fe-Cu-Nb-Si-B при кристаллизации. Измерения времени жизни позитрона в образцах и углового распределения аннигиляционных фотонов демонстрируют существенные изменения при кристаллизации. Наблюдается корреляция результатов с проведенными измерениям термоэдс. Результаты экспериментов позволяют предположить, что в исследуемых аморфных сплавах не образуется вырожденный электронный газ, а в проводимости участвуют в основном локализованные электроны. Можно предполагать, что основную роль в формировании структуры аморфного сплава играет ковалентная связь. Спектр импульсного распределения аморфного сплава мало отличается от чистого железа. При облучении в аморфном сплаве образуются комплексы вакансия-медь.

1. Введение

Аморфные сплавы быстро входят в технологическую практику благодаря своим прочностным, корроизонным и электронным свойствам. Интересные состояния с уникальными свойствами, недостижимыми другими способами, получаются при частичной кристаллизации. Природа связи и транспортных свойств до сих пор вызвает вопросы, несмотря на множество предпринятых исследований за последние 30 лет [1].

Аморфный сплав FeCu₁Nb₃Si_{13.5}B₉ был получен традиционным методом спиннингования, и образцы представляли собой ленты толщиной 20 μ m. Образцы аморфных сплавов отжигались в течение часа в вакууме 10⁻⁴ Ра при различных температурах (450–700°C), а также облучались ионами аргона при температуре 400°C, при этом их дифрактограмма существенно изменялась. Состояние образцов контролировалось рентгендифрактометрически с помощью дифрактометра ДРОН-2.0 с компьютерной регистрацией. На фоне "гало", полученном от исходного образца, после отжига при 500°C появлялись дисктертные дифракционные максимумы. Идентификация пиков при помощи обычной процедуры показала, что они принадлежат зародышам твердого раствора металлического железа.

Образцы исследовались методом термоэдс (ТЭДС). Данный метод весьма чувствителен к рассеянию электронов проводимости, подобные измерения могут дать реальную информацию о транспортных явлениях. Однако природу конкретных изменений в электронной подсистеме часто бывает затруднительно полностью оценить из-за сложности законов взаимодействия электронов с фононами и примесными атомами, а также трудностей разделения диффузионной термоэдс и эффекта увлечения электронов фононами.

Проводились измерения спектров углового распределения аннигиляционых фотонов (УРАФ) и времени

жизни (ВЖ) позитрона в образце. Позитрон, попав в твердое тело, термализуется за время порядка 10^{-12} s, в то время как характерное время аннигиляции — на два порядка больше. Данный спектр дает представление о состоянии электронов среды в месте аннигиляции позитрона. Так как атомные остовы в металле обладают положительным зарядом, аннигиляция позитронов, в основном, происходит по двум каналам — на валентных электронах и так называемых коровых электронах электронах верхних оболочек атомных остовов. Возможен захват позитрона ловушками — дефектами и примесями. При этом в спектрах УРАФ наблюдается несколько составляющих, дающих представление о каналах аннигиляции. Подробнее описание установки, теория метода и некоторые результаты изложены в работах [2-4]. Интерпретация спектров УРАФ, за исключением простых металлов, не однозначна, требует теоретических предпосылок и осложняется тем, что позитрон поляризует среду — стягивает на себя электроны, что

Результаты измерения ТЭДС сплава FeCu₁Nb₃Si_{13.5}B₉ аморфного и отожженного при различных температурах.

Образец	ПШПВ 1 mrad	ИНТ. %	ПШПВ 2 mrad	ИНТ. %	ПШПВ 3 mrad	ИНТ. %
Fe-Cu-Nb-Si-B			9.4	74.1	17.4	25.89
Fe-Cu-Nb-Si-В (отжиг 450°С)	2.3	2.3	9.2	77.6	16.4	20.11
Fe-Cu-Nb-Si-B (отжиг 500°C)	2.15	1.7	9.4	81.9	18.1	14.14
Fe-Cu-Nb-Si-B (отжиг 600°C)	2.3	2.2	9.5	79.8	16.6	18.06
Fe-Cu-Nb-Si-В (отжиг 700°С)	2.5	3.0	9.15	79.0	15.8	17.94
Fe-Cu-Nb-Si-B (облученный)	2.4	1.7	9.6	75.6	17.7	22.67
Fe (чистый)	2.7	9	9.4	54	15.7	37
Си (чистый)	2.6	26	9.2157	20.1	15.79	53.9

Таблица 1. Результаты обработки спектров УРАФ на компьютере: полная ширина на половине высоты (ПШПВ) и интенсивность составляющих спектра

затрудняет определение концентрации электронов, однако не изменяет импульсного распределения электронов. Спектры ВЖ также позволяют выделить несколько каналов аннигиляции и, в основном, применяются для диагностики дефектной структуры образцов.

Результаты измерения ТЭДС приведены на рисунке. Имеется тенденция к увеличению модуля ТЭДС по мере кристаллизации, что коррелирует с увеличением концентрации нелокализованных электронов по данным УРАФ.

Спектры УРАФ, полученные на параллельно-щелевой установке ИТЭФ с аппратным разрешением 1 mrad и интенсивностью в максимуме до 10⁴ событий, обрабатывались на ЭВМ с целью выделения составляющих спектра. Применялось общепринятое разложение не несколько гауссианов и параболу, соответствующую аннигиляции на вырожденном электронном газе со сферической зоной Ферми. Параметры разложения спектра УРАФ на состаялющие приведены в табл. 1. Для сравнения приведены параметры спектров железа и меди.

2. Результаты и обсуждение

По результатам угловых измерений оказалось невозможным выделить составляющую спектра, представляющую свободный электронный газ в аморфном образце. Можно предположить, что все электроны аморфного образца локализованы. Во всех образцах в спектре выделяется гауссова составляющая шириной 15-18 mrad, отвечающая предположительно аннигиляции на локализованных *d*-электронах [5,6]. Интенсивность ее падает в процессе кристаллизации. В облученном образце интенсивность этой составляющей оказывается существенно выше. Это может объясняться образованием при облучении комплексов вакансия-медь. Образование таких комплексов и активный захват позитронов ими описан в литературе [7], вследствие чего в спектре УРАФ появляется широкая составляющая, отвечающая аннигиляции на *d*-электронах атомов меди. В отожженных образцах наблюдается узкая компонента с интенсивностью в несколько процентов, не наблюдаемая в

образцах аморфного сплава. Это может быть интерпретировано как наличие нелокализованных электронов. Параметры узкой компоненты определить сложно из-за низкой интенсивности. Возможна ее интерпретация как аннигиляции позитрона на коровых оболочках легких атомов легирующих элементов. Аннигиляции основной части (70-80%) позитронов как в чистых переходных металлах так и в аморфных сплавах до и после кристаллизации происходит на валентных электронах и проявляется в спектрах в виде гауссовой составляющей шириной 9–10 mrad (1 mrad в единицах импульса соответствует 1mc, где m — масса электрона, c — скорость света).

Спектры времени жизни позитрона после выделения вклада источника раскладывались на 2 составляющие со временами τ_1 , τ_2 и интенсивностями I_1 и I_2 с учетом функции разрешения. Одна — близка времени жизни в объеме бездефектного железа [8], вторая обычно приписывается времени жизни позитронов, захваченных дефектами и примесями. Результаты представлены в табл. 2. В аморфном образце основная часть позитронов аннигилирует в полостях размером 4-5 Å. При кристаллизации скорость аннигиляции существенно возрастает. Это, по-видимому, объясняется не качественным изменением электронной подсистемы сплава, а перераспределением областей аннигиляции. Исчезают полости размера 4-5 Å. По результатам измерений времени жизни можно предположить, что при кристаллизации не образуются моновакансии и дислокации. Второе время жизни (250 ps) может объяснятся образованием пор размером 4-5 атомов, например на интерфейсах или, что более вероятно, преципитатов легирующих элементов,

Таблица 2. Результаты измерения времени жизни позитрона

Образец		$I_{1},\%$	τ_2, ps	$I_{2},\%$
Fe-Cu-Nb-Si-B (аморфный)	106	22.8	188.4	77.2
Fe-Cu-Nb-Si-B (отжиг 450°C)	108	51.9	230	48.1
Fe-Cu-Nb-Si-B (отжиг 500°C)	106	52.7	234	47.3
Fe-Cu-Nb-Si-B (отжиг 600°С)	110	40.6	229	59.4
Fe-Cu-Nb-Si-B (облученный)	105	65.1	281	34.9

имеющих бо́льшую энергию сродства к позитрону, чем бездефектное железо.

Многие исследователи [9] предполагают, что в аморфных металлах имеется металлическая связь, а электроны образуют вырожденный газ. Наши исследования не подтверждают наличия значительного количества нелокализованных электронов в аморфном образце. Хотя результаты мессбауэровской спектроскопии [1] указывают на изменение плотности электронов на ядре, в позитронных спектрах не появляется новых составляющих, а происходит только перераспределение между имеющимися, в то время как ТЭДС существенно меняется. Известно [10], что заполняемость *d*-оболочек оказывает существенное влияние на проводимость, величину и знак ТЭДС в переходных металлах. Надо заметить, что существенное влияние на распределение и скорость аннигиляции позитронов в твердом теле оказывает его положительный заряд, препятствующий попаданию в область положительного заряда. Исходя из спектров УРАФ и высокой скорости аннигиляции, можно сделать вывод о наличии локализованных областей с высокой электронной плотностью вне ионных остовов в аморфном сплаве как до, так и после кристаллизации. Такие области благодаря отрицательному заряду стягивают на себя позитроны. Возможно, это свидетельствует о ковалентном характере связи в аморфном сплаве и большом вкладе этой связи в отожженных образцах. Вероятным предположением является механизм проводимости по локализованным состояниям [11].

Список литературы

- [1] Л.Г. Коршунов, А.В. Шабанов, А.В. Литвинов. Физика металлов и металловедение **109**, *5*, 557 (2010).
- [2] В.И. Графутин, Е.П. Прокопьев. УФН 172, 1, 67 (2002).
- [3] В.Н. Беляев, В.И. Графутин, М.З. Хтут, Ю.В. Фунтиков, Н.О. Хмелевский, Ю.В. Штоцкий, Я.Л. Аунг. Вопросы атомной науки и техники. Сер. Физика ядерных реакторов 1, 35 (2008).
- [4] В.И. Графутин, А.Г. Залужный, В.В. Калугин, О.В. Илюхина, Г.Г. Мясищева, Е.П. Прокопьев, С.П. Тимошенков, Ю.В. Фунтиков, Н.О. Хмелевский. Химия высоких энергий 42, 6, 528 (2008).
- [5] P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn. Phys. Rev. Lett. 77, 10, 2097 (1996).
- [6] R.A. Ferrell. Rev. Mod. Phys. 28, 3, 308 (1956).
- [7] Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, M. Hasegawa. Phys. Rev. B 67, 224 202 (2003).
- [8] A. Zeman, L. Debarberis, B. Acosta, J. Degmová, L. Kupča, M. Kytka. J. Nucl. Mater. 360, 272 (2007).
- [9] И.В. Золотухин. Физические свойства аморфных металлических материалов. Металлургия, М. (1986). 176 с.
- [10] Дж. Займан. Электроны и фононы. ИИЛ, М. (1962). 488 с.
- [11] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах. Мир, М. (1982). 1386 с.