Спектры электронного парамагнитного резонанса ионов Ce³⁺ в поликристаллическом Sr₂B₅O₉Br

© А.В. Сидоренко, П.А. Родный, О. Guillot-Noel*, D. Gourier*, C.W.E. van Eijk**

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия * Laboratoire de Chimie Appliquée de l'Etat Solide CNRS-UMR 7574 ENSCP, 75231 Paris, Cedex 05, France ** Interfaculty Reactor Institute, Delft University of Technology, 2629 JB Delft, The Netherlands E-mail: sidorenkoa@mail.ru

(Поступила в Редакцию 14 февраля 2003 г. В окончательной редакции 3 марта 2003 г.)

Изучены спектры электронного парамагнитного резонанса (ЭПР) ионов Ge³⁺ в поликристаллическом Sr₂B₅O₉Br и на основании проведенного исследования выделены два кристаллографических положения иона Ce³⁺ в этом соединении. Спектр ЭПР ионов Ce³⁺ с локальной зарядовой компенсацией содержит широкую линию, что указывает на наличие нескольких видов зарядовой компенсации. Спектры ЭПР ионов Ce³⁺ в образцах, дополнительно активированных ионами K⁺, сходны с таковыми для регулярных Ce³⁺-центров, что свидетельствует о пренебрежимо малом влиянии одновалентного катиона на Ce³⁺.

Недавно было показано, что галогенбораты, активированные ионами Се³⁺, являются перспективным материалом для детектирования тепловых нейтронов [1]. Спектроскопические свойства и данные о термолюминесцентных характеристиках Sr₂B₅O₉Br:Ce³⁺ приведены в [2]. В Sr₂B₅O₉Br:Ce³⁺ обнаружено два типа цериевых центров. Один из них формируется прямым замещением ионов стронция без локальной зарядовой компенсации. Второй центр представляет собой ассоциат иона церия Ce(III) и зарядово-компенсирующего дефекта. Только один тип центров излучения Ce³⁺ обнаружен в образцах галогенбората, дополнительно активированного ионами Na⁺ или K⁺. Было установлено влияние центров зарядовой компенсации на интенсивность фотостимулированной люминесценции. В настоящей работе мы предложили исследования свойств Sr₂B₅O₉Br:Ce³⁺ на основании спектров ЭПР.

Данные о кристаллографической структуре $Sr_2B_5O_9Br$ отсутствуют, однако имеются данные о структуре $Eu_2B_5O_9Br$ [3]. Для Eu существуют два кристаллографических положения иона в матрице, причем в обоих Eu^{2+} окружен семью атомами кислорода, входящими в состав боратных групп, и двумя атомами галогена. Поскольку Eu^{2+} и Sr^{2+} имеют близкие ионные радиусы [4], мы предположили, что кристаллографические параметры галогенборатов на основе европия и стронция аналогичны. Два атома стронция в $Sr_2B_5O_9Br$ в разных кристаллографических положениях имеют очень схожее окружение с несколько отличным расположением ближайших ионов кислорода (рис. 1).

Основное состояние Се³⁺-ионов ²*F*_{5/2}, т.е. *L* = 3, S = 1/2 и J = 5/2. Возбужденное состояние ²*F*_{7/2} расположено примерно на 2000 сm⁻¹ выше, чем ²*F*_{5/2}. Кристаллическое поле низкой симметрии расщепляет основное состояние ²*F*_{5/2} на три крамерсовых дублета

со значениями M_J , равными $\pm 5/2$, $\pm 3/2$ и $\pm 1/2$. В зависимости от величины кристаллического поля расстояние между дублетами варьируется от 50 до 100 сm⁻¹.

1. Эксперимент

Твердые растворы галогенборатов были приготовлены с использованием метода твердых растворов, описанного в [5]. Концентрация Ce^{3+} в $Sr_2B_5O_9Br$ варьировалась от 0.05 до 1.0 mol.%. Также были исследованы образцы, дополнительно активированные ионами K⁺ и Na⁺ в концентрации 0.1 mol.%. Исследования спектров ЭПР были проведены на ЭПР-спектрометре Bruker EPS300а в *X*-диапазоне (~ 9.5 GHz). Частоты в микроволновой области измерялись частотомером Systron Donner.

2. Результаты и обсуждение

Спектры ЭПР Sr₂B₅O₉Br: Ce³⁺,K⁺, зарегистрированные при температурах 9 и 20 K, показаны на рис. 2. В обоих спектрах наблюдается резонанс при величине магнитного поля B = 1578 G, который может быть связан с присутствием ионов Fe³⁺ [6]. Узкие линии при B = 2035 и 2180 G, а также широкая полоса при $B \approx 4380$ G уверенно регистрируются при 9 K, но отсутствуют при 20 K. Как известно, ионы Ce³⁺ обычно сложно зарегистрировать при температурах выше 30 K ввиду сильного спин-орбитального взаимодействия и малого времени релаксации нижнего состояния $4f^1$ [7]. На этом основании мы предположили, что данные линии в спектре ЭПР связаны с Ce³⁺-центрами.

Спад в спектре ЭПР при 20 К в области *B* > 2200 G (рис. 2) вызван уширением Ce³⁺-резонанса за счет спин-решеточной релаксации. Ядерный спин

Рис. 1. Полиэдры замещаемых ионов стронция в двух кристаллографических позициях. Число окружающих ионов кислорода и галогена одинаково в обоих случаях.

всех стабильных изотопов Се равен нулю, и поэтому сверхтонкой структуры не наблюдается. Значения компонент *g*-тензора, соответствующие ионам Ce³⁺, расположенным в кристаллическом положении с низкой симметрией, были получены ранее для YAIO₃ (3.162, 0.402, 0.395) [8], кристалла ниобата бария-стронция (3.55, 0.89, 0.54) [9] и для LaCl₃ (4.037, 0.23, 0.23) [10], где ионы Ce³⁺ занимают узлы с C_{3h} -симметрией. Для

всех этих систем значения первой компоненты *g*-тензора существенно больше остальных. Поскольку некоторые компоненты *g*-тензора могут иметь чрезвычайно низкое значение, соответствующие линии ЭПР могут лежать вне шкалы по оси *X* на рис. 2. На основании вышеизложенного можно предположить, что двум узким линиям ЭПР на рис. 2 отвечают первые компоненты *g*-тензоров (со значениями $g_1 = 3.32$ и 3.16) центров Ce³⁺ в двух различных кристаллографических положениях, показанных на рис. 1. Линии ЭПР, соответствующие второй компоненте *g*-тензора, для разных положений Ce³⁺ неразличимы, и это приводит к широкой полосе с $g_2 \approx 1.54$.

Эффект влияния концентрации ионов церия на спектры ЭПР $Sr_2B_5O_9Br\!:\!Ce^{3+}$ иллюстрирует рис. 3. Как видно из этого рисунка, сигналы от ионов Ce^{3+} имеют

Рис. 2. Спектры ЭПР образца $Sr_2B_5O_9Br: 0.1 \text{ mol.}\%Ce^{3+}, 0.1 \text{ mol.}\%K^+$, измеренные при 9 и 20 К. Линии, соответствующие Ce^{3+} -центрам, отмечены стрелками.

Рис. 3. Спектр ЭПР образцов $Sr_2B_5O_9Br$ с концентрацией примесных Ce^{3+} -ионов, равной 1 (*a*), 0.5 (*b*), 0.2 (*c*) и 0.05 mol.% (*d*). Спектры измерены при 9 К. Линии, соответствующие Ce^{3+} -центрам, отмечены стрелками. На вставке показан спектр ЭПР образца $Sr_2B_5O_9Br$: 1 mol.% Ce^{3+} при 30 К.

примерно одинаковую интенсивность для всех изучаемых образцов. При этом увеличение водержание Се³⁺ в исследуемых образцах сопровождается соответствующим увеличением интенсивности линий ЭПР с g_1 , равными 3.32 и 3.16. Указанная зависимость подтверждает, что за эти резонансы отвечают ионы Се³⁺. В то же время широкая резонансная линия с $g \approx 3.6$ появляется в спектрах ЭПР образцов с высокой концентрацией ионов Ce³⁺ при 9К. Этот резонанс не наблюдается при 20 К. Как было показано в [2], с ростом концентрации Се³⁺ увеличивается вклад в суммарную интенсивность люминесценции от Се³⁺-центров с локальной зарядовой компенсацией. При малой концентрации Се³⁺-центров (0.05 mol.%) полоса с $g \approx 3.6$ отсутствует, что может свидетельствовать о наличии только изолированных Ce³⁺-центров. Последнее согласуется с результатами, полученными в [2]. На основании того, что интенсивность линии ЭПР с $g \approx 3.6$ возрастает с концентрацией Се³⁺-центров, можем ее приписать первой компоненте g-тензора Ce³⁺ с локальной зарядовой компенсацией. Что касается узкой линии ЭПР в Sr₂B₅O₉Br: 1 mol.% Ce³⁺ c $g \approx 3.94$, то она также может быть связана с Се³⁺-центрами.

Формирование (Се_{Sr}-K_{Sr})-комплексов в процессе дополнительного активирования Sr₂B₅O₉Br ионами K⁺ рассматривалось в [5]. Добавление одновалентного катиона приводит к более высокой способности растворения ионов Ce³⁺ в матрице и не требует дополнительной компенсации заряда. Именно поэтому спектр ЭПР $Sr_2B_5O_9Br$: Ce^{3+} . K^+ состоит только из линий, соответствующих двум кристаллографическим положениям ионов Се³⁺. Спектры людминесценции этих Се³⁺-центров фактически идентичны спектрам изолированных ионов Ce³⁺ в образцах без дополнительного активирования [2]. Значения первых компонент g-тензоров Се³⁺-центров в этих двух случаях также близки. Малое влияние соактиватора (иона К⁺) вызвано или разделением двух соседних ионов Sr^{2+} мостиками B_2O_9 , или тем, что ионы K⁺ занимают следующий соседний с Sr²⁺ узел.

В образце без дополнительного активирования ЭПР-полоса с $g_1 \approx 3.6$ связана с Ce³⁺-центрами, в которых заряд компенсирован соседними дефектами. Этот резонанс шире, чем в случае изолированных Ce³⁺-центров. В наших оптических измерениях не удалось разрешить структуру 5*d*-уровней возбуждения Ce³⁺-центров с компенсированным зарядом на отдельные компоненты при 12 К. Это свидетельствует о том, что может существовать несколько механизмов компенсации заряда. Таким образом, ЭПР-полоса с $g_1 \approx 3.6$ и длинноволновая полоса оптического излучения, приведенная в [2], представляют собой суперпозицию нескольких типов центров Ce³⁺ с различными вариантами локальной компенсации.

Список литературы

- A.V. Sidorenko, A.J.J. Bos, P. Dorenbos, P.A. Rodnyi, C.W.E. van Eijk, I.V. Berezovskaya, V.P. Dotsenko. Nucl. Instr. Meth. A 486, 160 (2002).
- [2] A.V. Sidorenko, A.J.J. Bos, P. Dorenbos, P.A. Rodnyi, C.W.E. van Eijk, I.V. Berezovskaya, V.P. Dotsenko. Submitted to J. Phys.: Cond. Matter.
- [3] K. Machida, T. Ishino, G. Adachi, J. Shiokawa, J. Mater. Res. Bull. 14, 12, 1529 (1979).
- [4] R.D. Shanon. Acta Cryst. A 32, 751 (1976).
- [5] V.P. Dotsenko, I.V. Berezovskaya, N.P. Efryushina, A.S. Voloshinovskii, P. Dorenbos, C.W.E. van Eijk. J. Lumin. 93, 2, 137 (2001).
- [6] A. Bishay, C. Quadros, A. Piccini. Phys. Chem. Sol. 15, 4 (1974).
- [7] A. Abragam, B. Bleaney. Electron Paramagnetic Resonance of Transrion Ions. Clarendon Press, Oxford (1970).
- [8] H.R. Asatryan, J. Rosa, J.A. Mares. Solid State Commun. 104, 1, 5 (1997).
- [9] J. Wingbermühle, M. Meuer, O.F. Schirmer, R. Pankrath, R.K. Kremer. J. Phys.: Cond. Matter 12, 4277 (2000).
- [10] R.J. Birgeneau, M.T. Hutchings. Phys. Rev. 175, 3, 1116 (1968).