Фазовое расслоение спин-системы в кристалле манганита La_{0.93}Sr_{0.07}MnO₃

© С.Ф. Дубинин, В.Е. Архипов, С.Г. Теплоухов, В.Д. Пархоменко, Н.Н. Лошкарева, Н.И. Солин

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: dubinin@uraltc.ru

(Поступила в Редакцию 27 марта 2003 г.)

Методом упругого рассеяния нейтронов изучалось при 4.2-290 К магнитное состояние кристалла манганита $La_{0.93}Sr_{0.07}MnO_3$. Обнаружено, что магнитное состояние этого соединения занимает особое место в системе твердых растворов $La_{1-x}Sr_{0.x}MnO_3$, в которой по мере роста параметра x имеет место переход от антиферромагнитного типа порядка (LaMnO₃, $T_N = 139$ K) к ферромагнитному упорядочению ($La_{0.9}Sr_{0.1}MnO_3$, $T_C = 152$ K). В данном соединении переходное состояние определяется двумя типами крупномасштабных спиновых конфигураций. Около 10% объемной доли кристалла занимают области ферромагнитной фазы со средним линейным размером 200 Å, а в остальной части кристалла существует фаза с неоднородной скошенной магнитной структурой. Приведены аргументы в пользу того, что фазовое расслоение спин-системы в $La_{0.93}Sr_{0.07}MnO_3$ обусловлено эффектами упорядочения ионов Mn^{4+} .

Работа выполнена при финансовой поддержке МПНиТ РФ (контракт № 40.012.1.1.1150), программы государственной поддержки ведущих научных школ РФ (проект № 00-15-96581) Российского фонда фундаментальных исследований (проект № 02-02-16425).

Повышенный интерес к исследованию магнитного состояния сложных оксидов марганца обусловлен разнообразием их физических свойств. В самом деле, тенденция к образованию в веществах данного класса неоднородных состояний (фазовому расслоению) известна уже достаточно давно, но только недавно было осознано, что это явление может играть ключевую роль в формировании их необычных физических свойств [1,2].

Конкретным примером сложных оксидов марганца может являться система соединений

$$La_{1-x}Sr_{0,x}MnO_3.$$
(1)

В рамках системы (1) по мере роста параметра *x* имеет место перехд от антиферромагнитного (AFM) типа порядка в LaMnO₃ ($T_N = 139.5$ K [3]) к ферромагнитному (FM) упорядочению в манганите La_{0.9}Sr_{0.1}MnO₃ ($T_c = 152$ K [4]). Изменение типа магнитного порядка обусловлено конкуренцией механизмов косвенного и двойного (Mn⁴⁺ \Leftrightarrow O \Leftrightarrow Mn³⁺) обменов. Специфика этого фазового перехода состоит в том, что он осуществляется в узком интервале составов 0 < *x* < 0.1 (это может иметь место в случае сильнокоррелированных систем [2]), а значит, малые изменения уровня легирования (доли ионов Mn⁴⁺) могут приводить к существенным изменениям спин-системы манганита в переходной области.

В настоящее время известна только одна работа [5], в которой на основании результатов по упругому и неупругому рассеянию нейтронов достаточно подробно разобрано магнитное состояние монокристалла манганита La_{0.94}Sr_{0.06}MnO₃, близкого по составу к середине AFM \Rightarrow FM перехода. В соответствии с [5], магнитное состояние манганита представляет собой скошенную структуру, *z*- и *x*, *y*-проекции которой определяют соответственно ферромагнитный и антиферромагнитный типы упорядочения. Эта переходная спиновая конфигурация является неоднородной. Небольшие отклонения отдельных компонент скошенной структуры от средних значений проявляются на дифракционной картине кристалла в виде небольших диффузных максимумов вблизи основных брэгговских рефлексов. Масштаб этих неоднородностей также был определен в [5]. Приведем здесь наиболее характерные корреляционные длины $\chi_{[nkl]}$, поскольку они будут представлять для нас интерес

$$\chi_{[010]} = 7 \text{ Å}, \qquad \chi_{[101]} = 17 \text{ Å}.$$
 (2)

С целью получения более полной картины о структуре спин-системы переходной области оксидов марганца (1) в качестве объекта исследования был выбран кристалл манганита $La_{0.93}Sr_{0.07}MnO_3$ с большим (относительно состава образца, исследованного в [5]) уровнем легирования.

Кристалл манганита был выращен методом зонной плавки. Он состоял из двух больших, близко расположенных друг к другу монокристаллических блоков. Мозаичность внутри отдельного блока не превышала 20 угловых минут. Образец имел форму цилиндра с линейными размерами d = 4 mm и l = 10 mm. При комнатной температуре кристалл манганита имел орторомбическую структуру **O**' с параметрами решетки $a_0 = 5.58, b_0 = 7.76$ и $c_0 = 5.55$ Å.

Эксперименты по упругому рассеянию тепловых нейтронов были выполнены на специальном многодетекторном дифрактометре для исследований монокристаллов. Длина волны падающих на образец нейтронов, сформированная двойным кристалл-монохроматором из пиролитического графита и деформированного германия, составляла $\lambda = 1.567$ Å. Эффективная монохроматизация первичного пучка и оптимальный выбор длины волны

монохроматических нейтронов позволили подавить на картине рассеяния монокристалла эффекты кратных дифракционных гармоник. Это обстоятельство существенно повышает чувствительность нашей методики.

1. Результаты эксперимента

Картины упругого рассеяния нейтронов монокристалла манганита $La_{0.93}Sr_{0.07}MnO_3$ были получены в температурном интервале 4.2-290 К на плоскости обратной решетки a^*b^* , которая включает в себя узлы как антиферромагнитного, так и ферромагнитного типа. Направления сканирования брэгговских узлов обратной решетки выбирались с учетом инструментального разрешения дифрактометра. Отметим здесь, что измеренная при 4.2 К картина магнитного рассеяния $La_{0.93}Sr_{0.07}MnO_3$ получилась довольно сложной и отличается от опубликованной в работе [5]. Поэтому изложение результатов эксперимента будет вестись в последовательности, удобной, на наш взгляд, для логического построения устройства спин-системы манганита в основном состоянии.

Обратимся вначале к экспериментальной ситуации, наблюдающейся в окрестности брэгговского узла (200). На рис. 1 светлыми кружками представлена картина рассеяния при температуре образца 290 К. Сканирование узла на рис. 1 проводилось в направлении [010]. Инструментальное разрешение в этом случае определяется качеством кристалла-образца. Очевидно, что все брэгговские рефлексы на нейтронограмме оксида при 290 К имеют ядерное происхождение. Тонкими сплошными и штриховыми кривыми на рисунке приведены результаты профильного анализа наблюдаемой картины рассеяния (*R*-фактор = 3%). Как видно из рисунка, экспериментальный профиль интенсивности рефлекса состоит из двух максимумов гауссовой формы. Это означает, что

Рис. 1. Ядерный рефлекс (200)_N и профильный анализ его интенсивности на картине рассеяния нейтронов манганита La_{0.93}Sr_{0.07}MnO₃, измеренной при 290 К вдоль кристаллографического направления [010]. Точки — эксперимент, жирная линия — расчет, тонкие и штриховые линии — вклады в интенсивность монокристаллических блоков I и II.

Рис. 2. Ферромагнитная составляющая брэгговского рефлекса (200) и ее профильный анализ на картине рассеяния нейтронов манганита La_{0.93}Sr_{0.07}MnO₃, измеренной при 4.2 К вдоль кристаллографического направления [010]. Точки — эксперимент, жирная линия — расчет, тонкие и штриховые линии — вклады в интенсивность монокристаллических блоков I и II.

образец составлен из двух больших блоков, отстоящих друг от друга в пространстве волнового вектора на очень малую величину 0.01 Å⁻¹. Полуширины рефлексов, относящихся к отдельным блокам, тоже являются малыми и не превышают 0.01 Å⁻¹. Несмотря на блочный характер кристалла-образца, необходимо констатировать факт хорошего инструментального разрешения по волновому вектору $q_{[010]}$ в выбранной нами геометрии сканирования. В условиях хорошего инструментального разрешения на рис. 1 отчетливо выявляется небольшой по интенсивности парамагнитный диффузный максимум, расположенный в основании ядерного брэгговского рефлекса.

После охлаждения кристалла образца до температуры 4.2 К интенсивность рефлекса (200) существенно возросла. Повышение интенсивности (200) рефлекса на нейтронограмме нейтронов La_{0.93}Sr_{0.07}MnO₃ при 4.2 K может быть связано только с возникновением в манганите ферромагнитного упорядочения. Иными словами, рефлекс (200) при 4.2 К имеет ядерную (N) и ферромагнитную (FM) составляющие. На рис. 2 приведены интенсивность и профиль ферромагнитной части рефлекса, которые получаются путем вычитания из суммарной картины рассеяния интенсивности ядерной компоненты рефлекса, указанной на рис. 1. На рис. 2 указаны также результаты профильного анализа наблюдаемой картины рассеяния с учетом блочности кристалла. (Анализ проводился в предположении гауссовой формы отдельных составляющих максимума (200)_{FM}).

Хорошая сходимость на рис. 1 и 2 результатов эксперимента и профильного анализа (R-фактор = 3%) позволяет выделить эффекты рассеяния нейтронов, относящиеся только к одному монокристаллическому блоку. На рис. 3 приведены дифрактограммы, относящиеся к

Рис. 3. Картины рассеяния нейтронов монокристаллом манганита La_{0.93}Sr_{0.07}MnO₃, измеренные вдоль [010]: $a - (200)_{\text{FM}}$ при 4.2 K, $b - (200)_{\text{N}}$ при 290 K.

монокристаллическому блоку I (рис. 1). Как видно из рисунка, ядерная составляющая интенсивности рефлекса $I_{(200)N}$ существенно меньше по интенсивности ферромагнитного вклада $I_{(200)FM}$. Отмеченный факт повышает точность численных оценок параметров ферромагнитной подсистемы манганита, поскольку для этих целей в дальнейшем будут использоваться соотношения типа $I_{(200)FM}/I_{(200)N}$.

Итак, картина рассеяния на рис. 3, а, соответствующая температуре 4.2 К, отвечает основному состоянию ферромагнитной подсистемы монокристалла La_{0.93}Sr_{0.07}MnO₃. Как видно из рисунка, она состоит из двух фрагментов — центрального максимума, полуширина которого равна инструментальному значению, и двух симметрично расположенных относительно центра уширенных максимумов, суммарная интенсивность которых составляет 114 условных единиц и несущественно отличается от интегральной интенсивности центрального пика 142. Принимая во внимание высокий уровень интенсивности боковых максимумов, можно заключить, что их происхождение на дифракционной картине не может быть связано с наличием в кристалле манганита неоднородностей, обусловленных модулированным отклонением величин плотности магнитных моментов в кластерах от средних значений. В самом деле, в рамках модели модулированной структуры интенсивности боковых максимумов должны были бы иметь малую интенсивность относительно интенсивности центрального максимума, как это имеет место, например, на нейтронограмме манганита La_{0.94}Sr_{0.06}MnO₃ [5]. Таким образом, следует считать, что дифракционная картина на рис. 3, а свидетельствует о существовании в кристалле манганита La_{0.93}Sr_{0.07}MnO₃ двух крупномасштабных ферромагнитных фаз. Центральный пик указывает на наличие в кристалле ферромагнитной фазы с дальним порядком (фаза 1), а боковые уширенные максимумы свидетельствуют о присутствии второй ферромагнитной фазы с конечными размерами (фаза 2). Характерный линейный размер областей фазы 2 (L) и среднее расстояние между областями (d) можно оценить по известным формулам

$$L \cong 2\pi/\Delta q, \quad d = 2\pi/q_m,$$
 (3)

где $\Delta q = (\Delta q_{obs}^2 - \Delta q_{inst}^2)^{1/2}$; q_m — волновой вектор, отвечающий максимуму интенсивности бокового рефлекса. Величины параметров (3) в La_{0.93}Sr_{0.07}MnO₃ равны соответственно

$$L = 200 \text{ Å}$$
 μ $d = 420 \text{ Å}.$ (4)

Логично предположить, что спиновая конфигурация $La_{0.93}Sr_{0.07}MnO_3$ является смесью двух типов магнитных порядков: первый — по типу спин-системы в манганите $La_{0.94}Sr_{0.06}MnO_3$ [5], а второй тип подобен упорядочению в кристалле $La_{0.9}Sr_{0.1}MnO_3$ [4]. Иными словами, фаза с дальним порядком представляет собой ферромагнитную компоненту скошенной магнитной структуры, а крупномасштабная фаза 2 — это коллинеарная ферромагнитная фаза со средним магнитным моментом в узел подрешетки марганца

$$\bar{\mu} = 0.93 \cdot \mu_{\mathrm{Mn}^{3+}} + 0.07 \cdot \mu_{\mathrm{Mn}^{4+}}.$$
 (5)

Температуры Кюри этих двух фаз являются, по-видимому, близкими и поэтому характеризуются одной эффективной величиной $T_C \cong 128 \text{ K}$ (рис. 4). Нетрудно определить в рамках предложенной модели объемные доли магнитных фаз в кристалле и угол скоса в фазе 1.

Объемная доля коллинеарной ферромагнитной фазы *с* определялась с помощью соотношения

$$(I_{(200)\rm FM2}/I_{(200)\rm N})_{\rm obs} = c \cdot \left[2/3 \cdot (F_{\rm FM2})^2/(F_{\rm N})^2\right]_{\rm cal}.$$
 (6)

При этом экспериментальные величины интенсивностей $I_{(200)FM2}$ и $I_{(200)N}$ в (6) были взяты из данных, указанных на рис. 3, а при получении расчетной величины структурной амплитуды F_{FM2} использовалась величина

Рис. 4. Температурная зависимость пиковой интенсивности ферромагнитного рефлекса $(200)_{FM}$ на картине рассеяния нейтронов кристалла манганита La_{0.93}Sr_{0.07}MnO₃.

Рис. 5. Антиферромагнитный $(010)_{AFM}$ (*a*) и ядерный $(020)_N$ (*b*) рефлексы на картинах рассеяния нейтронов кристалла La_{0.93}Sr_{0.07}MnO₃, измеренных при 4.2 и 290 К соответственно.

Рис. 6. Температурная зависимость пиковой интенсивности антиферромагнитного рефлекса (010)_{АFM} на картине рассеяния нейтронов кристалла манганита La_{0.93}Sr_{0.07}MnO₃.

среднего магнитного момента (5). Расчетное значение параметра c получилось равным 0.1 (10%). А в остальной части кристалла — (1-c) = 0.9 — в рамках нашей модели существует крупномасштабная фаза со скошенной магнитной структурой. Ферромагнитная компонента скошенной структуры совпадает, так же как и в [5], с кристаллографическим направлением [010], а антиферромагнитная составляющая фазы 1 лежит в плоскости кристалла (010). Угол скоса φ в магнитной фазе 1 получился равным 25°. Он был определен с помощью простых соотношений

где

$$\varphi = \arcsin(\mu^z/\bar{\mu}),$$

$$\mu^{z} = 1.7\mu_{B}, \quad \mu^{z} \sim F_{\rm FM1},$$

$$F_{\rm FM1}^{2} = (I_{(200)\rm FM1}/I_{(200)\rm N})_{\rm obs} \cdot F_{\rm N}^{2}/(1-c). \tag{7}$$

Величина коррелированной доли антиферромагнитной компоненты фазы 1 была определена из относительной интенсивности когерентного антиферромагнитного максимума $I_{(010)AF}/I_{(020)N}$. Рефлексы (010)_{AF} и (020)_N представлены на рис. 5. Их интенсивности измерены соответственно при температурах кристалла-образца 4.2 и 290 К вдоль вектора рассеяния $\kappa_{[010]} = 4\pi \sin \theta / \lambda$ (2 θ — угол рассеяния, λ — длина волны нейтронов). Экспериментальное значение μ^{xy} получилось равным 0.9 μ_B , и это существенно меньше максимально возможной величины $\mu_m^{xy} = \bar{\mu} \cdot \cos \varphi = 3.6 \,\mu_B$. Существенное расхождение величин μ^{xy} и μ_m^{xy} свидетельствует о присутствии в фазе 1 заметного числа фрустрированных связей, которые нарушают периодичность ориентации антиферромагнитной компоненты спина в кристалле. Точка Нееля коррелированной антиферромагнитной компоненты скошенной структуры определялась по температурной зависимости рефлекса (010)_{АF}. Как видно из рис. 6, ее величина составляет 121 К.

2. Обсуждение результатов

Для удобства обсуждения результатов настоящей работы в таблицу сведены основные параметры спин-систем манганитов — La_{0.94}Sr_{0.06}MnO₃ [5] и La0.93Sr0.07MnO3. Из данных указанных в таблице, следует, что при небольшом увеличении уровня легирования (относительная доля ионов Mn⁴⁺ возрастает на 0.01/0.06 = 0.167) существенно изменяется спиновая конфигурация манганитов в основном состоянии. А именно в кристалле La_{0.93}Sr_{0.07}MnO₃ имеет место эффект крупномасштабного фазового расслоения спиновой системы. Следует отметить, что в квантовом варианте описания AFM ⇒ FM переходов в соединениях типа $La_{1-x}Sr_xMnO_3$ существование критических (пороговых) плотностей носителей тока n_{ci} (i = 1, 2, 3, 4)является вполне естественным физическим понятием [2]. Например, выше пороговой величины n_{c1} энергетически более выгодной (относительно коллинеарного AFM) становится скошенная спиновая конфигурация, а при уровнях электронной плотности выше n_{c4} устойчивым в кристалле является коллинеарное ферромагнитное упорядочение.

Однако наиболее важным физическим фактором, непосредственно влияющим на фазовое расслоение спин-системы манганитов, следует считать явление зарядового упорядочения [2]. Зарядовое упорядочение формируется в манганитах в окрестности определенных пороговых уровней легирования, например

$$x_c = 1/8, 1/4, 1/3, 1/2.$$
 (8)

Остановимся на проблеме зарядового упорядочения более подробно. Эта тема наиболее активно обсуждается в окрестности стехиометрии "1/8" (x = 0.125), т.е. в области сравнительно невысоких концентраций стронция в соединениях (1). Положительный ответ на

Уровень легирования	Фаза–1				Фаза-2	
	объемная доля в кристалле	угол скоса	T_N, \mathbf{K}	T_C, \mathbf{K}	объемная доля в кристалле	T_C, \mathbf{K}
x = 0.06 [5]	1	13°	129	124	_	_
x = 0.07	0.9	25°	121	128	0.1	$\cong 128$

Основные параметры спиновых систем манганитов $La_{1-x}Sr_xMnO_3$ в интервале AFM \Rightarrow FM перехода

этот вопрос был дан в нашей работе [6] на примере монокристалла La_{0.85}Sr_{0.15}MnO₃. В температурном интервале 4.2–300 К были изучены картины магнитного упругого рассеяния нейтронов этого монокристалла. Обнаружено, что наряду с известным ферромагнитным упорядочением ($T_C = 240$ K) в данном соединении имеет место ферромагнитная сверхструктура с волновым вектором (010)2 π/b . Ферромагнитная сверхструктура существует в кристалле при температурах 4.2–200 К. Было показано в [6], что сверхструктура ферромагнитного порядка является прямым следствием зарядового упорядочения ионов Mn³⁺ и Mn⁴⁺ в данном соединении по типу "1/8".

В настоящей работе мы предположили, что минимальным стехиометрическим составом, при котором зарядовое упорядочение вероятно в системе La–Sr манганитов (1), является

$$x_{\min} = 0.0625 = 1/16.$$
 (9)

Величина критического порога (9) находится в интересующем нас интервале составов $0.06 < x_{\min} < 0.07$ (см. таблицу). На рис. 7 представлена на плоскости аосо модель элементарной ячейки сверхструктуры зарядового упорядочения по типу (9). Темными и светлыми кружками на рисунке указаны положения ионов Mn⁴⁺ и Mn³⁺. Вдоль оси $b_0 = 2b_C (b_C$ — параметр элементарной ячейки перовскитного куба) размер сверхструктуры совпадает с исходной ячейкой. При этом на высоте $1/2b_0$ расположены только ионы Mn^{3+} , а на уровне b_0 вид ячейки такой же, как на рис. 7. Габариты элементарной ячейки сверхструктуры были выбраны таким образом, чтобы из 16 ионов марганца в этой ячейке только один имел валентность 4+, а остальные пятнадцать ионов — 3+. Нумерация восьми ионов марганца на плоскости a_0c_0 указана на рис. 7.

Приведем аргументы в пользу существования эффектов упорядочения ионов Mn⁴⁺ в обсуждаемых здесь манганитах.

1) Прежде всего, это принципиальные следствия теории [2]. В работе [2] показано, что в окрестности хорошей величины электронной плотности (n = 1/2) в манганитах с конкурирующими обменными связями однородное зарядово-упорядоченное состояние является неустойчивым. Например, при электронных плотностях *n*, близких, но тем не менее бо́льших 1/2, основное состояние манганита может распадаться лишь на фазы с плотностями

$$1/2 < n < n_1$$
 и $n_2 = 1/2.$ (10)

Таким образом, факт расслоения спин-системы в манганите $La_{0.93}Sr_{0.07}MnO_3$ в окрестности стехиометрического состава (9) не противоречит выводам фундаментальной теории [2].

2) Анизотропный масштаб неоднородности "поляронного типа" в $La_{0.94}Sr_{0.06}MnO_3$ (а значит, на наш взгляд, и в фазе 1 манганита $La_{0.93}Sr_{0.07}MnO_3$) хорошо согласуется с размерами модельной элементарной ячейки сверхструктуры на рис. 7.

Выпишем в этой связи размеры элементарной ячейки зарядового упорядочения вдоль направлений [010] и [101]. Они соответственно равны величинам $b_0 = 7.76$ Å и $2 \cdot a_0 = 2 \cdot 5.58 \cdot \sqrt{2}$ Å = 15.78 Å, которые в пределах погрешности эксперимента совпадают с корреляционными длинами (2).

Выделим еще одну деталь, касающуюся спинового устройства фазы 1. В соответствии с (10) химический состав крупномасштабной фазы 1 (скошенной неоднородной магнитной структуры) определятся параметром (9), который превышает уровень легирования в манганите La_{0.94}Sr_{0.06}MnO₃ [5]. Именно это обстоятельство обусловливает, на наш взгляд, более высокую величину угла подкоса в фазе 1, чем в La_{0.94}Sr_{0.06}MnO₃ (см. таблицу).

3) Эффект зарядового упорядочения в крупномасштабной фазе 2 проявляется на температурной зависимости пиковой интенсивности ферромагнитного рефлекса (200)_{FM} на дифракционной картине кристалла манганита La_{0.93}Sr_{0.07}MnO₃ (рис. 4). Как видно из рисунка, выше температуры 107 К имеет место резкое возрастание интенсивности. Аналогичный по величине температурный эффект рассеяния наблюдается в манганите La_{0.85}Sr_{0.15}MnO₃ в точке зарядового упорядочения

Рис. 7. Вид элементарной ячейки сверхструктуры зарядового упорядочения в кристалле манганита $La_{0.93}Sr_{0.07}MnO_3$ на плоскости a_0c_0 .

 $T_{\rm CO} = 200 \, {\rm K}$ [6]. Наблюдаемые на рис. 4 и в [6] аномалии имеют, на наш взгляд, единое происхождение и связаны с резким изменением типа доменной структуры при температуре зарядового упорядочения, а именно: факторы рассеяния, зависящие от доменной структуры вещества, увеличиваются на (1-2/3) = 1/3 выше температуры $T_{\rm CO}$. Изменение типа доменной структуры обусловлено в свою очередь структурной подстройкой кристалла в точке $T_{\rm CO}$

$$Q'(T > T_{\rm CO}) \Leftrightarrow Q^*(T < T_{\rm CO}), \tag{11}$$

где Q' — и Q^* — орторомбическая и псевдокубическая фазы соответственно. Эффект структурной подстройки в точке $T_{\rm CO}$ был обнаружен ранее в монокристаллах ферромагнитных манганитов La_{0.9}Sr_{0.1}MnO₃ [4] и La_{0.85}Sr_{0.15}MnO₃. Структурную подстройку (11) в точке $T_{\rm CO}$ можно рассматривать как фактор, стабилизирующий фазовое расслоение в La_{0.93}Sr_{0.07}MnO₃ [2].

В заключение сформулируем основной итог работы. Он состоит в том, что в манганите $La_{0.93}Sr_{0.07}MnO_3$ с конкурирующими обменными связями наблюдается крупномасштабное фазовое расслоение спиновой системы, которое обусловлено, по нашему мнению, эффектами упорядочения в кристаллической решетке ионов Mn^{4+} .

Авторы очень признательны Ю.П. Сухорукову за полезную дискуссию и А.М. Балбашеву за предоставление монокристалла.

Список литературы

- Э.Л. Нагаев. Разделение фаз в высокотемпературных сверхпроводниках и родственных им магнитных материалах. УФН 165, 529 (1995).
- [2] М.Ю. Каган, К.И. Кугель. Неоднородные зарядовые состояния и фазовое расслоение в манганитах. УФН 171, 577 (2001).
- [3] F. Moussa, M. Hennion. G. Biotteau, J. Rodriguez-Carvajal. Phys. Rev. B 60, 17, 12 299 (1999).
- [4] В.С. Гавико, В.Е. Архипов, А.В. Королев, В.Е. Найш, Я.М. Муковский. ФТТ 41, 6, 1064 (1999).
- [5] M. Hennion, F. Moussa, G. Biotteau, J. Rodriguez, L. Pinsard, A. Revcolevschi. Phys. Rev. B 61, 14, 9513 (2000).
- [6] С.Ф. Дубинин, В.Е. Архипов, С.Г. Теплоухов, Я.М. Муковский. ФТТ 45, 1, 113 (2003).