02.2;05;06;13.1;13.3

Формирование наноразмерных пленок золота в условиях многократного автооблучения при ионно-лучевом осаждении

© С.А. Шарко 1 , А.И. Серокурова 1 , Н.Н. Новицкий 1 , А.И. Стогний 1 , В.А. Кецко 2

1 НПЦ НАН Беларуси по материаловедению, Минск, Беларусь

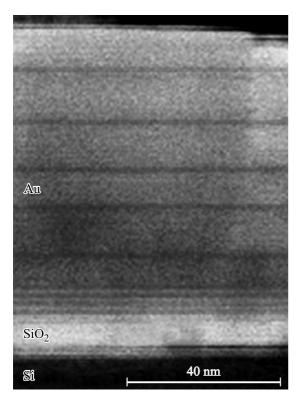
Поступило в Редакцию 21 июня 2021 г. В окончательной редакции 22 сентября 2021 г. Принято к публикации 23 сентября 2021 г.

Методом ионно-лучевого осаждения-распыления впервые получены однородные пленки золота толщиной несколько десятков нанометров на кремниевых и кварцевых подложках. Показано, что в условиях воздействия высокоэнергетической составляющей потока распыленных атомов происходит преимущественный латеральный рост наноразмерных слоев металла вдоль поверхности подложки. Решающую роль в формировании нанометровой пленки золота играют процессы упругого столкновения распыленных атомов металла с атомами подложки и растущей пленки. Применение операции многократного осаждения-распыления позволяет подавить процесс гранулирования и получить пленки золота с лучшими характеристиками, чем при однократном осаждении.

Ключевые слова: ионно-лучевое осаждение-распыление, наноразмерная пленка золота, электрическое сопротивление, шероховатость поверхности, автооблучение.

DOI: 10.21883/PJTF.2022.01.51875.18930

Получение материалов в наноразмерном состоянии со свойствами, характерными для массивных образцов, является фундаментальной научно-технической проблемой. Ее решение позволяет глубже понять, с одной стороны, поведение вещества в предельном состоянии, когда сильное влияние оказывают квантовые эффекты, а с другой — например, взаимодействие магнитных и оптических явлений, а также решить ряд связанных с ними задач практического характера. Возможность эффективного управления светом путем воздействия на оптические свойства среды внешними магнитными полями ограничивается малостью величин магнитооптических эффектов [1]. Одним из путей их повышения является использование материалов, в которых требуемые оптические характеристики достигаются благодаря подбору геометрических параметров структуры, а не химического состава. В частности, создание периодических структур в виде металлических решеток на диэлектрической подложке [1] позволяет локализовать энергию электромагнитного поля на интерфейсе металл/диэлектрик за счет возбуждения поверхностных электромагнитных волн (поверхностных плазмон-поляритонов) и, как следствие, усилить взаимодействие света с веществом. При этом наиболее интенсивное возбуждение плазмонполяритонов наблюдается при использовании наноразмерных пленок благородных металлов, в частности золота [1–3]. Однако для формирования структур магнитоплазмоники [1,3-5] нужны ультратонкие пленки с большой степенью однородности.


Существует большое количество работ [6–8], в которых синтезировались пленки золота толщиной десяткисотни нанометров различными методами [6], такими

как ионно-лучевое осаждение, термическое испарение, химическое осаждение из паровой фазы, импульсное лазерное осаждение, молекулярно-лучевая эпитаксия, катодное, ионно-плазменное и магнетронное распыление. Во всех этих работах не решена проблема получения сплошных и однородных пленок золота из-за неудовлетворительной адгезии слоя металла к подложке, а также гранулирования в самой пленке. Последнее связано с химической инертностью золота к материалам иной природы, что обусловливает преимущественное взаимодействие атомов золота друг с другом, а не с атомами подложки [6].

Целью настоящей работы является синтез сплошных однородных пленок золота толщиной несколько десятков нанометров на кремниевых и кварцевых подложках методом вакуумного осаждения при ионно-лучевом распылении [2,9].

Перед осаждением слоя золота проводилась очистка кремниевых и кварцевых подложек от посторонних поверхностных примесей в течение $120\,\mathrm{s}$ пучком ионов кислорода с энергией менее $0.3\,\mathrm{keV}$ и плотностью тока ионного пучка $0.1-0.15\,\mathrm{mA/cm^2}$. Осаждение осуществлялось с помощью установки двойного ионнолучевого осаждения-распыления с широкоапертурным источником ионов [10]. Нанесение слоя золота на предварительно подготовленную подложку производилось распылением мишени золота ионами аргона с энергией $1-1.3\,\mathrm{keV}$ и плотностью тока ионного пучка $0.1-0.25\,\mathrm{mA/cm^2}$. Рабочее давление во время осаждения пленки не превышало $10^{-2}\,\mathrm{Pa}$, остаточное давление в рабочей камере составляло $10^{-3}\,\mathrm{Pa}$. Для откачки до требуемого уровня вакуума использовался масляный

² Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва, Россия E-mail: sharko@physics.by

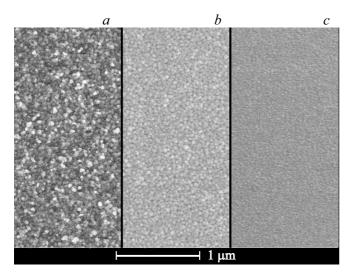
Рис. 1. РЭМ-изображение поперечного сечения пленки золота толщиной 90 nm на кремнии при многократном осаждении.

диффузионный насос. Время осаждения золота составляло 5 min. При многократном применении операции осаждения-распыления нанесение слоя металла проводилось в тех же условиях в течение 60 s, а затем осуществлялось распыление ионами аргона тех же энергий в течение 30 s. С целью обеспечения улучшенной адгезии первые слои металла распылялись полностью до исчезновения металлической проводимости. Цикл осаждения-распыления повторялся 10 раз.

Анализ поверхности и поперечных сечений пленок золота проводился на растровом электронно-ионном микроскопе РЭИМ Helios NanoLab 600 (производитель FEI Company, США). Морфология поверхности исследовалась методом атомно-силовой микроскопии на зондовом сканирующем микроскопе NanoEducator (производитель NT-MDT, РФ). Оптические спектры отражения и пропускания пленок золота на кварцевых подложках были получены на спектрофотометре Cary-500 (производитель Agilent Technologies, США) в интервале длин волн от 400 до 800 nm.

На рис. 1 хорошо видна слоистая структура, образуемая в результате воздействия атомов золота на подложку, а затем на металлическую пленку по мере ее роста на подложке. На поперечном сечении в области интерфейса пленка/подложка не наблюдается никаких отслоений, а сам интерфейс представляет собой сплошную и ровную поверхность раздела, что свидетельствует об отсутствии химического взаимодействия

между пленкой и подложкой. После каждой операции распыления происходит преимущественно латеральный рост слоя металла вдоль поверхности, когда адсорбированные атомы присоединяются к растущему слою до его полного зарастания. Это является доказательством усиления связи атом металла—атом подложки и, как следствие, улучшения адгезии слоя золота к подложке.

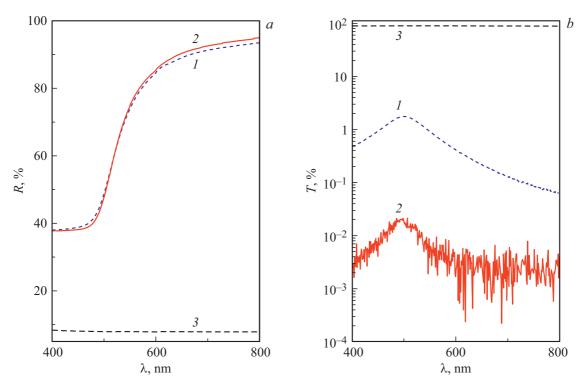

Для объяснения формирования качественного сплошного слоя золота на поверхности подложки необходимо учесть, что распределение распыленных атомов металла по энергиям имеет непрерывный спектр до максимальной энергии $E_{\rm max}$ [11], определяемой энергией распыляющих ионов. В потоке атомов распыляемого вещества можно условно выделить две компоненты: основную и высокоэнергетическую [2]. Основная состоит из атомов со средней энергией, примерно равной энергии сублимации U (для золота $\sim 3.8\,{\rm eV/atom}$ [12]), а высокоэнергетическая включает атомы с энергией, на порядок превышающей U [11].

Согласно оценкам, проведенным с использованием программного пакета SRIM (www.srim.org, [13]), большинство распыленных атомов золота с энергией до 10 eV проникает в подложку кремния или кварца на глубину не более 0.8 nm. Они конденсируются на поверхности подложки и формируют слой металла.

Высокоэнергетические атомы золота (до $300\,\mathrm{eV}$) на начальной стадии осаждения способны внедряться в приповерхностный слой подложки на глубину до семи постоянных решетки (до $2.8\,\mathrm{nm}$ [14]) с формированием в этой области точечных дефектов. Однако быстрое убывание количества распыленных атомов с ростом энергии в силу асимметричности функции распределения позволяет ограничиться максимальными энергиями до $20\,\mathrm{eV}$ (атомы с такими энергиями проникают в подложку на $1\,\mathrm{nm}$). Действительно, частиц с энергией свыше $20\,\mathrm{eV}$ значительно меньше 0.01%, а с энергиями свыше $100\,\mathrm{eV}$ — менее $10^{-6}\%$. Поэтому подавляющее большинство точечных дефектов будет формироваться в приповерхностном слое подложки на глубине не более двух постоянных решетки, т.е. $1\,\mathrm{nm}$.

Особенности процессов распыления, а следовательно, и формирования тонких пленок осаждаемого вещества определяются кинетикой столкновительных процессов [15,16], идущих как на поверхности подложки с участием атомов металла и подложки, так и на поверхности растущей металлической пленки с участием только атомов металла. Все процессы столкновения атомов заключены между двумя предельными случаями передачи кинетической энергии: абсолютно упругого и абсолютно неупругого удара. В последнем случае изменяется внутреннее состояние атомов, которое можно не принимать во внимание.

При центральном ударе максимальная доля γ передаваемой энергии определяется соотношением масс налетающего M_1 и покоящегося M_2 атомов: $\gamma = 4M_1M_2/(M_1+M_2)^2$ [16]. Взаимодействие атомов золота с более легкими атомами кремния и кислорода


Рис. 2. РЭМ-изображение поверхности пленок золота при однократном (a), двукратном (b) и многократном (c) осаждении на исходную поверхность кремния.

сопровождается передачей им части энергии, равной соответственно $\gamma=0.44$ и 0.22. Двигаясь в первоначальном направлении, они останавливаются на некоторой глубине в приповерхностных областях подложки с образованием точечных дефектов. При взаимодействии атомов золота друг с другом в процессе автооблучения растущей пленки происходит полная передача кинетической энергии ($\gamma=1$). В случае центрального

удара это приводит к обмену энергией между атомами металла. Толщина слоя металла, особенно при повторной и последующих операциях осаждения, значительно больше глубины внедрения атомов золота, которая по данным SRIM не превосходит 0.6 nm для самых высокоэнергетических атомов (300 eV) потока распыленного вещества и 0.3 nm для атомов с энергией 20 eV. В этом случае увеличение количества точечных дефектов в приповерхностных областях подложки под слоем металла можно объяснить механизмом прямого либо каскадного выбивания атомов золота из слоя в подложку в процессе абсолютно упругого столкновения с такими же атомами высоких энергий.

Повторное осаждение слоя металла в указанных выше условиях позволяет не менее чем в 2 раза увеличить число внедренных атомов металла в приповерхностных областях подложки. Точечные дефекты в дополнение к уже имеющимся (внедренным при предыдущем осаждении) приводят к улучшению адгезии [2] из-за образования дополнительных физических связей между внедренным и осажденным атомами золота. Это обеспечивает формирование на подложке сплошного слоя золота толщиной в несколько моноатомных слоев и последующее нанесение на его поверхность наноразмерной пленки того же металла.

Все указанное выше приводит к улучшению поверхностной морфологии при переходе к многократному воздействию пучком распыленных атомов высокоэнергетической составляющей потока на растущую пленку. Сравнение результатов исследований с помощью

Рис. 3. Спектры отражения (a) и пропускания (b) пленок золота на кварце, полученных при однократном осаждении (1) и с применением многократного осаждения-распыления (2). 3 — соответствующие спектры кварца.

атомно-силовой микроскопии наноразмерных пленок золота, полученных на кремниевых подложках, показало, что среднеквадратическая шероховатость R_q поверхности тонких пленок золота при однократном осаждении составляет 1.2 nm, при повторном — 0.8 nm, а при многократном — 0.3 nm. При этом средний размер зерен, согласно данным исследований, выполненных посредством растровой электронной микроскопии (РЭМ), уменьшается при переходе к многократному осаждению (рис. 2). В последнем случае происходит практически полное подавление гранулирования пленок золота за счет увеличения плотности зародышей в результате автооблучения высокоэнергетическими атомами золота, что приводит к повышению степени их однородности и сплошности. Это способствует улучшению адгезии пленки к подложке [17].

Оптические свойства пленок золота на кварцевых подложках в области длин волн от 400 до 800 nm после применения операции многократного осаждения не ухудшаются (рис. 3). Резкое возрастание коэффициента отражения в области длин волн 520—550 nm, а также наличие пика на кривой пропускания свидетельствуют о подавлении локализованного плазмонного резонанса [3], обычно наблюдаемого в этой области спектра.

Таким образом, продемонстрирован новый подход к формированию сплошных однородных наноразмерных пленок золота с преимущественно латеральным ростом за счет автостимулирования формирующегося слоя собственным потоком адатомов. Использование методики многократного осаждения-распыления дает возможность высокоэнергетической части потока осаждаемых атомов многократно воздействовать на формируемую пленку. За счет этого подавляется процесс гранулирования и обеспечиваются высокая адгезия слоя металла к подложке и получение нанометровых пленок золота высокого качества. Показано, что простая модель абсолютно упругих парных столкновений позволяет на качественном уровне описать процесс формирования однородных пленок золота на начальной стадии.

Финансирование работы

Работа выполнена при финансовой поддержке резервного фонда Президента Республики Беларусь на 2021 г., а также в рамках Белорусского республиканского фонда фундаментальных исследований (совместный белорусско-российский проект Ф20Р-115) и Российского фонда фундаментальных исследований (гранты № 19-08-00643 и 18-29-11026).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] П.Н. Найденов, А.Л. Чехов, О.Л. Голикова, А.В. Беспалов, А.А. Гераськин, С.С. Савин, Т.В. Мурзина, ФТТ, **61** (9), 1706 (2019). DOI: 10.21883/FTT.2019.09.48114.22N [P.N. Naydenov, A.L. Chekhov, O.L. Golikova, A.V. Bespalov, A.A. Geraskin, S.S. Savin, T.V. Murzina, Phys. Solid State, **61** (9), 1658 (2019). DOI: 10.1134/S106378341909018X].
- [2] А.И. Стогний, Н.Н. Новицкий, О.М. Стукалов, А.И. Демченко, В.И. Хитько, Письма в ЖТФ, **30** (6), 87 (2004). [А.І. Stognij, N.N. Novitsky, О.М. Stukalov, А.І. Demchenko, V.І. Khitko, Tech. Phys. Lett., **30** (3), 256 (2004). DOI: 10.1134/1.1707185].
- [3] V. Amendola, R. Pilot, M. Frasconi, O.M. Maragó, M.A. Iatí,
 J. Phys.: Condens. Matter., 29 (20), 203002 (2017).
 DOI: 10.1088/1361-648X/aa60f3
- [4] I. Razdolski, A.L. Chekhov, A.I. Stognij, A. Stupakiewicz, Phys. Rev. B, 100 (4), 045412 (2019).
 DOI: 10.1103/PhysRevB.100.045412
- [5] A.L. Chekhov, V.L. Krutyanskiy, V.A. Ketsko, A.I. Stognij, T.V. Murzina, Opt. Mater. Express, 5 (7), 1647 (2015). DOI: 10.1364/OME.5.001647
- [6] R. Malureanu, A. Lavrinenko, Nanotechnol. Rev., 4 (3) 259 (2015). DOI: 10.1515/ntrev-2015-0021
- [7] Y. Kombluth, R. Mathews, L. Parameswaran, L.M. Racz, L.F. Velasquez-Garcia, Additive Manufacturing, 36, 101679 (2020). DOI: 10.1016/j.addma.2020.101679
- [8] L. Leandro, R. Malureanu, N. Rozlosnik, A. Lavrinenko, ACS Appl. Mater. Interfaces, 7 (10) 5797 (2015). DOI: 10.1021/am508681u
- [9] C. Bundesmann, H. Neumann, J. Appl. Phys., 124 (23), 231102 (2018). DOI: 10.1063/1.5054046
- [10] А.И. Стогний, Н.Н. Новицкий, О.М. Стукалов, Письма в ЖТФ, **28** (1), 39 (2002). [А.І. Stognij, N.N. Novitskii, О.М. Stukalov, Tech. Phys. Lett., **28** (1), 17 (2002). DOI: 10.1134/1.1448630].
- [11] M.V. Thompson, Nucl. Instrum. Meth. Phys. Res. B, 18 (1-6), 411 (1986). DOI: 10.1016/S0168-583X(86)80067-2
- [12] Д. Фальконе, УФН, **162** (19), 71 (1992). DOI: 10.3367/UFNr.0162.199201c.0071 [G. Falcone, La Rivista del Nuovo Cimento, **13** (1), 1 (1990).
- [13] J.P. Biersack, W. Eckstein, Appl. Phys. A, 34 (2), 73 (1984). DOI: 10.1007/BF00614759
- [14] Дж. Эмсли, *Элементы*, пер. с англ. (Мир, М., 1993), с. 66–67, 91–92. [J. Emsley, *The Elements*, 2nd ed. (Oxford University Press, 1998).].
- [15] Л.Д. Ландау, Е.М. Лифшиц, *Теоретическая физика* (Физматлит, М., 2004), т. I, с. 63–65.
- [16] Y. Yamamura, H. Tawara, Atom. Data Nucl. Data Tabl., 62(2), 149 (1996). DOI: 10.1006/adnd.1996.0005
- [17] W. Ensinger, Nucl. Instrum. Meth. Phys. Res. B., 127-128, 796 (1997). DOI: 10.1016/S0168-583X(97)00010-4