05

Исследование высокотемпературной генерации микродисковых лазеров с оптически связанным волноводом

© Н.А. Фоминых¹, Н.В. Крыжановская¹, К.А. Иванов¹, С.Д. Комаров¹, Э.И. Моисеев^{1,2}, А.М. Надточий^{1,3}, Ю.А. Гусева³, М.М. Кулагина³, С.А. Минтаиров³, Н.А. Калюжный³, Р.А. Хабибуллин⁴, Р.Р. Галиев⁴, А.Ю. Павлов⁴, К.Н. Томош⁴, И.С. Махов¹, М.В. Максимов², А.Е. Жуков¹

¹ НИУ "ВШЭ",

190121 Санкт-Петербург, Россия ² СПбАУ РАН им. Ж.И. Алферова, 194021 Санкт-Петербург, Россия ³ ФТИ им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия ⁴ ИСВЧПЭ им. В.Г. Мокерова РАН, 117105 Москва, Россия e-mail: fominy-nikita@yandex.ru

Поступила в редакцию 19.05.2023 г. В окончательной редакции 27.07.2023 г. Принята к публикации 30.10.2023 г.

> Исследованы характеристики лазерной генерации микродисковых лазеров, сопряженных с оптическим волноводом и работающих в непрерывном режиме при повышенных температурах. Продемонстрированы лазерная генерация и волноводный эффект при температурах вплоть до 92.5°C. Измеренная характеристическая температура микролазеров составила 65 К в диапазоне 25–92.5°C.

Ключевые слова: микролазеры, квантовые точки, волноводы, микродисковые резонаторы.

DOI: 10.61011/OS.2023.11.57007.5214-23

Оптическая передача данных на чипе по сравнению с электрической обладает рядом преимуществ, например, более высокой скоростью, повышенной устойчивостью к помехам и меньшим тепловыделением [1]. В качестве источника оптического излучения в этом случае могут применяться полупроводниковые микролазеры с резонатором дисковой формы, поддерживающим моды шепчущей галереи [2]. Однако вследствие аксиальной симметрии микродисковых (МД) резонаторов их диаграмма направленности не имеет какого-либо выделенного направления, что затрудняет реализацию оптической связи на микрочипе. Одним из способов достижения направленного вывода излучения из МД лазеров является оптическая связь с магистральным волноводом. При этом данная конфигурация является планарной и может быть реализована на интегральной микросхеме. Применение МД лазеров, сопряженных с волноводом, в микрочипах требует работы при повышенных температурах. Микролазеры данной конструкции должны обладать хорошей температурной стабильностью. В литературе приведены примеры связанных с волноводами МД лазеров на основе квантовых ям InAlGaAs, работающих при температурах выше комнатной, максимальная рабочая температура при этом составляла порядка 60°С [3]. Улучшенной температурной стабильностью характеристик обладают полосковые лазеры с активной областью на основе квантовых точек (КТ) [4,5], а также дискретные КТ-микролазеры [6-8]. Однако, насколько

нам известно, о высокотемпературной генерации КТмикролазеров, сопряженных с планарным волноводом, ранее не сообщалось.

В настоящей работе проведено исследование температурных характеристик для МД лазеров с активной областью, содержащей массив КТ InGaAs/GaAs, и сопряженных с оптическим волноводом, созданным из той же эпитаксиальной структуры в планарной геометрии. Исследуемые гетероструктуры получены методом газофазной эпитаксии из металлорганических соединений на подложке n^+ -GaAs, слабо разориентированной относительно оси (100). В качестве активной области были использованы 5 слоев КТ InGaAs/GaAs высокой плотности (рис. 1, *a*). Свойства таких КТ и микролазеров на их основе описаны в [9]. Для формирования МД резонаторов диаметром 40 µm и сопряженных с ними волноводов применялись электронно-лучевая литография и плазмохимическое травление. На вершинах мез лазеров и на волноводе с помощью металлизации AgMn/Ni/Au были сформированы изолированные друг от друга омические контакты к слою p^+ -GaAs. Подложка была утончена примерно до 100 µm и на обратной поверхности был создан электрический *n*-контакт с помощью металлизации AuGe/Ni/Au. Для обеспечения эффективного вывода излучения МД резонатора в волновод в области сопряжения формировался участок смыкания дискового резонатора и волновода протяженностью около 1 µm (рис. 1, *b*). Микролазеры были окружены блокирующими

Рис. 1. (*a*) Схема слоев эпитаксиальной структуры, (*b*) изображение исследованных микролазеров, сопряженных с волноводом, полученное с помощью сканирующего электронного микроскопа.

Рис. 2. Спектры ЭЛ, полученные от МД лазера и из торца волновода при комнатной температуре (*a*) и при 92.5°C (*b*). На вставках приведены зависимости выходной мощности излучения от тока накачки, измеренные от микролазера и из волновода.

элементами для того, чтобы при измерении мощности, выводимой с торца волновода, не происходило засветки прямым лазерным излучением.

Микродисковые лазеры диаметром $40 \,\mu$ m, сопряженные с волноводом, размещались на держателе, снабженном регулятором температуры, и исследовались в непрерывном режиме. С помощью игольчатого вольфрамового (W) зонда диаметром 15 μ m осуществлялся контакт с верхним электродом микролазера. Источником тока служил источник-измеритель Keithley 2400 Series SourceMeter[®]. Сбор излучения происходил объективом Mitutoyo M Plan Apo NIR HR 50× в плоскости излучения МД лазеров. Спектры электролюминесценции (ЭЛ) микролазеров были зарегистрированы от самих МД лазеров, а также от торца волновода. Регистрация излучения происходила с помощью оптического анализатора спектра Yokogawa AQ 6370С.

Волноводный эффект (т.е. ввод излучения микролазера в планарный волновод и его вывод из торца волновода), как и лазерная генерация, наблюдались до 92.5°C включительно (рис. 2). Наблюдаемый сдвиг линий лазерной генерации в сторону больших длин волн в зависимости от комнатной температуры связан с нагревом МД лазера. На вставках к рис. 2 приведены зависимости выходной мощности излучения от тока накачки, зарегистрированные от микролазера и из торца волновода при комнатной температуре и при 92.5°С. Наличие поглощения резонансного излучения в волноводе приводит к тому, что мощность излучения, регистрируемая на его торце, оказывается меньше мощности, захваченной волноводом. Данный эффект может быть частично нивелирован путем электрической накачки волновода.

На рис. 3 приведены мощностные характеристики при разной температуре. Точка перегиба на приведенных

Рис. 3. Мощностные характеристики при разной температуре для 40 µm микролазера. На вставке приведена экспериментальная зависимость плотности порогового тока от температуры и ее аппроксимация экспонентой.

характеристиках соответствует пороговому току лазерной генерации. Можно видеть, что с ростом температуры пороговый ток растет от 8.2 mA при 25°C до 22.7 mA при 92.5°C. Изменение плотности порогового тока (j_{th}) в зависимости от температуры продемонстрировано на вставке к рис. 3. Рост температуры ведет к увеличению порогового тока и соответственно к увеличению плотности порогового тока, что видно на приведенном графике. Температурную зависимость плотности порогового тока можно описать формулой $j_{th}(T + \Delta T) = j_{th}(T) \exp(\Delta T/T_0)$. Величина T_0 называется характеристической температурой лазера и определяет его температурную чувствительность. Аппроксимация экспериментальной зависимости на вставке к рис. 3 изображена красной линией. В случае исследованного микролазера с сопряженным волноводом характеристическая температура для диапазона 25-92.5°С составила 65 К. Для одиночных МД лазеров того же диаметра, не сопряженных с волноводом, характеристическая температура составила также ~ 65 К, что говорит о том, что сопряжение с волноводом не влияет существенно на температурную стабильность микролазера.

Таким образом, исследованы характеристики лазерной генерации в непрерывном режиме $40\,\mu$ m МД лазера, сопряженного с оптическим волноводом, при повышенной температуре. Продемонстрирована лазерная генерация и волноводный эффект для исследованного микролазера при температуре 92.5°C. Полученное значение характеристической температуры исследованного МД лазера для температурного диапазона 25–92.5°C составило 65 К.

Финансирование работы

Оптические исследования выполнены за счет гранта Российского научного фонда № 22-72-10002, https://rscf.ru/project/22-72-10002/. Исследования мощностных характеристик лазеров осуществлены в рамках Программы фундаментальных исследований НИУ ВШЭ.

Благодарности

Исследования выполнены с использованием оборудования уникальной научной установки #2087168 "Комплексный оптоэлектронный стенд".

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- N.V. Kryzhanovskaya, E.I. Moiseev, F.I. Zubov, A.M. Mozharov, M.V. Maximov, N.A. Kalyuzhnyy, S.A. Mintairov, M.M. Kulagina, S.A. Blokhin, K.E. Kudryavtsev, A.N. Yablonskiy, S.V. Morozov, Yu. Berdnikov, S. Rouvimov, A.E. Zhukov. Photonics Res., 7 (6), 664-8 (2019). DOI: 10.1364/PRJ.7.000664
- N.V. Kryzhanovskaya, A.E. Zhukov, E.I. Moiseev, M.V. Maximov. J. Phys. D, 54 (45), 453001 (2021).
 DOI: 10.1088/1361-6463/ac1887
- [3] D. Liang, M. Fiorentino, S. Srinivasan, J.E. Bowers, R.G. Beausoleil. IEEE J. Sel. Top. Quant. Electron., 17 (6), 1528–33 (2011). DOI: 10.1109/JSTQE.2010.2103552
- [4] J. Kwoen, B. Jang, K. Watanabe, Y. Arakawa. Opt. Expr., 27 (3), 2681-8 (2019). DOI: 10.1364/OE.27.002681
- [5] T. Kageyama, K. Nishi, M. Yamaguchi, R. Mochida, Y. Maeda, K. Takemasa, Y. Tanaka, T. Yamamoto, M. Sugawara, Y. Arakawa. Eur. Conf. on Lasers and Electro-Optics — Optica Publ. Group, C. PDA_1 (2011.). DOI: 10.1109/CLEOE.2011.5943701
- [6] E. Moiseev, N. Kryzhanovskaya, M. Maximov, F. Zubov, A. Nadtochiy, M. Kulagina, Yu. Zadiranov, N. Kalyuzhnyy, S. Mintairov, A. Zhukov. Opt. Lett., 43 (19), 4554-7 (2018). DOI: 10.1364/OL.43.004554
- Y. Wan, J. Norman, Q. Li, M.J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A.Y. Liu, A. Torres, D. Jung, A.C. Gossard, E.L. Hu, K.M. Lau, J.E. Bowers. Optica, 4 (8), 940–4 (2017). DOI: 10.1364/OPTICA.4.000940
- [8] N.V. Kryzhanovskaya, E.I. Moiseev, Y.S. Polubavkina, M.V. Maximov, D.V. Mokhov, I.A. Morozov, M.M. Kulagina, Y.M. Zadiranov, A.A. Lipovskii, M. Tang, M. Liao, J. Wu, S. Chen, H. Liu, A.E. Zhukov et al. Laser Phys. Lett., 15 (1), 015802 (2018). DOI: 10.1088/1612-202X/aa9306
- [9] M.V. Maximov, A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, N.V. Kryzhanovskaya, E.I. Moiseev, N.Yu. Gordeev, Yu.M. Shernyakov, A.S. Payusov, F.I. Zubov, V.N. Nevedomskiy, S.S. Rouvimov, A.E. Zhukov. Appl. Sci., **10** (3), 1038 (2020). DOI: 10.3390/app10031038