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Comparative analysis of classical and fractional equations of motion
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The total energy in any real dynamic system always

decreases by transforming into other types of energy

(specifically, heat). This is caused by resistance forces

that are inevitably present in a system. An open system

essentially ceases to be dissipative if the energy lost in

it is compensated fully by the energy supplied externally.

In mechanics, dissipation is normally taken into account

by introducing the Rayleigh dissipative function, which

characterizes the rate of reduction of the system energy,

into the Lagrange equation [1]. Two new features arise

in theory when this approach is applied [2]: (1) time

reversal symmetry is violated; (2) the principle of least

action ceases to be valid. The first property is considered

to be fundamental and related to the irreversibility of real

dynamic processes. The second property depends on the

way dissipation is treated; generally speaking, it may be

derived from the theoretical framework. One approach

providing an opportunity to do just that involves the

explicit introduction of time irreversibility into the Lagrange

equation.

In the present study, the Bateman−Caldirola−Kanai

(BCK) method [2,3] and the method relying on fractional

integro-differentiation [4,5] are compared in the context of

dissipative mechanical systems. Both methods involve the

application of the time-dependent Lagrange function. One-

dimensional motion of a material particle is considered. The

starting point is the Lagrange equation

d
dt

∂L
∂v

−
∂L
∂x

= 0, (1)

where L = L(t, x , v) is the Lagrange function that depends

on time t and coordinate x and velocity v of the material

particle.

In the BCK method, an exponential factor is added to the

Lagrange function of a conservative system [2,3]:

L =

[

mv2

2
−U(x , t)

]

exp(t/τ ), (2)

where U(x , t) is the potential function, m is mass, and

τ > 0 is a certain characteristic time. Inserting (2) into

(1), we obtain the equation of motion

m
dv
dt

+
1

τ
mv = −

∂U(x , t)
∂x

. (3)

The second term on the left-hand side of (3) specifies the

force of dynamic friction. Note that the BCK method

is used most often in the theory of quantum dissipative

systems [6,7].
Let us assume that a force acting on a mechanical system

may be presented in the form

F(x , t) = −
∂

∂t

t
∫

0

(

∂U(x , t′)
∂x

)

G(t − t′)dt′, (4)

where G(t) is the dynamic memory function. Function

G(t) characterizes the change in momentum in response

to a short-term force action. Formula (4) is tantamount to

considering a certain nonlocal potential function Ũ(x , t) that
takes a lag in interaction into account and is expressed in

terms of the convolution integral:

Ũ(x , t) = U0 +
∂

∂t

t
∫

0

U(x , t′)G(t − t′)dt′, (5)

where U0 is, in general, time-dependent. Taking (5) into

account, we write the Lagrange function

L =
mv2

2
− Ũ(x , t). (6)

Inserting (5) and (6) into (1), we obtain the equation of

motion

m
dv
dt

= −
∂

∂t

t
∫

0

(

∂U(x , t′)
∂x

)

G(t − t′)dt′. (7)
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Numerous real systems feature a power-law dynamic mem-

ory [5] that is specified by a function of the form

G(t) =
1

Ŵ(α)

(

τ

t

)1−α

, 0 < 0 6 1. (8)

The following equation of motion is derived from (7) and

(8):

m
dv
dt

= −
τ 1−α

Ŵ(α)

∂

∂t

t
∫

0

(

∂U(x , t′)
∂x

)

dt′

(t − t′)1−α
. (9)

If |∂U(x , t)/∂x | 6 t−εC(x) for a certain ε < α and time-

independent function C(x), the following limit relation holds

true:

lim
t→0

t
∫

0

(

∂U(x , t′)
∂x

)

dt′

(t − t′)1−α
= 0.

This relation allows one to rewrite Eq. (9) in a more

compact form:

m
τ 1−α

dαv

dtα
= −

∂U(x , t)
∂x

, (10)

where [4,5]:

dβv

dtβ
=

1

Ŵ(n − β)

t
∫

0

v(n)(t′)dt′

(t − t′)β−n+1

(n − 1 < β 6 n, n ∈ N).

Contrary to the first impression, the fractional derivative

in (10) does not specify a
”
fractional acceleration.“ This is

seen easily from the Lagrange function (6) and equation

of motion (9). Equation of motion (10) is presented

in a convenient mathematical form, but may always be

transformed to the form with a common acceleration and an

effective force. If one relies on the principle of least action

and the Lagrange equation (1), Eq. (10) currently appears to
be better substantiated and preferable to the equation with

a fractional force of friction (see, e.g., review [8]) for which

the Lagrangian and/or the Rayleigh dissipative function

have not been constructed yet. Compared to function

(2), function (6) has a form that is more conventional for

classical mechanics. If one uses (6), it is trivial to write

Hamilton−Jacobi and Schrödinger equations.

Thus, the task is to analyze equations of motion (3)
and (10). Dissipation is introduced into Eq. (3) as

an additional term that specifies the force of dynamic

friction. In Eq. (10), dissipation is characterized with

the use of dynamic memory function (8) and a frac-

tional derivative. In mathematical terms, an increase in

dissipation corresponds to an enhancement of contribution

of the lowest derivative in Eq. (3) and a reduction of

the order of Eq. (10) via parameters τ and α, respec-

tively.

In what follows, Eqs. (3) and (10) are used to analyze

examples of infinite and finite motion: the motion of charged

particles under the influence of constant and variable electric

fields. The motion of an electron in a constant electric field

is characterized by equations

m
dv
dt

+
1

τ
mv = qE, (11)

m
τ 1−α

dαv

dtα
= qE, (12)

where q is the electron charge and E = const is the electric

field intensity. It is easy to see that these two equations

are exactly matching only at t → ∞, dv/dt = 0, and α = 0.

The following relation known from the Drude model of

electrical conduction of metals is obtained in this case from

(11), (12):

v =
qτ
m

E = µE,

where µ is the electron mobility. A similar conclusion is

derived in the problem of a free-falling body [5,9]. The

presence of a restoring force is typical of finite motion.

Specifically, the displacements of oscillator atoms of a solid

in variable electric field E0 exp(−iωt) are characterized by

equation

d2x
dt2

+
1

τ

dx
dt

+ ω2
0x =

qE0

m
exp(−iωt), (13)

where E0 and ω are the magnitude and the frequency of

an external variable electric field and ω0 is the natural

frequency of oscillators. The solution of Eq. (13) is

sought in the form x = x0 exp(−iωt). The polarization is

P = ε0(ε − 1)E0 exp(−iωt) = qNx0 exp(−iωt). It follows

that permittivity may be written as

ε = 1 +
qNx0

ε0E0

. (14)

With the solution of Eq. (13) taken into account, we obtain

the following from (14):

ε = 1−
(ωp/ω0)

2

(ω/ω0)2 + i/(ω0τ ) − 1
, (15)

where ωp =
√

q2N/(ε0m) is the plasma frequency. At the

same time, we have a fractional equation of motion

d1+αx
dt1+α

+ ω1+α
0 x =

qE0

mω1−α
0

exp(−iωt). (16)

The general solution of Eq. (16) is written as [4, p. 17]

x(t) = AEα+1,1

(

−(ω0t)
1+α

)

+ BtEα+1,2

(

−(ω0t)
1+α

)

+
qE0

mω1−α
0

t
∫

0

Eα+1,2

(

−(ω0s)1+α
)

exp
(

iω(s − t)
)

sαds,

(17)
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where Eα,β(z ) is the Mittag-Leffler function [4,5,10–13]. It
follows from (17) that

x0(ω) = lim
t→∞

x(t) exp(iωt) =
qE0

mω1−α
0

1

(−iω)1+α + ω1+α
0

.

Inserting this expression into (14), we find

ε = 1−
(ωp/ω0)

2

(−iω/ω0)1+α + 1
. (18)

Formula (18) is similar in appearance to the known

Cole−Cole equation [5,14]. The only difference is in the

exponent of power, which is less than one in the Cole−Cole

formula. The results of numerical calculations of real and

imaginary parts of dielectric functions (15) and (18) reveal

that the classical and fractional models are equally applica-

ble to spectra with a narrow and symmetric absorption peak.

It has been demonstrated in our studies [10–13] that the

order of the fractional derivative in the oscillation equation

is related to the Q factor. The parameters in Eqs. (13) and

(16) are related in the same way: α ≈ 1− 2/(πω0τ ).
An interesting conclusion was made in [9,15]: a frac-

tional integro-differential operator emerges naturally in the

examination of an open mechanical system interacting with

its surroundings. This conclusions is consistent, to some

extent, with our analysis, where potential function (5) is

used to reproduce the open and dissipative character of a

mechanical system, which is manifested in interaction lag.

Let us summarize briefly the key findings. Equations

of motion (3) and (10), which are based on the Lagrange

equation (1) and include the dissipation of energy, were

examined. These equations have different solutions; a

comparison between them is meaningful only in the case

of steady motion (i.e., at t → ∞). It has been noted in [2]
that if the right-hand side of an equation of motion does

not depend explicitly on time, the problem may always

be reduced to Lagrange or Hamilton equations. It was

demonstrated above that an equation of motion with a

fractional time derivative may also be reduced to these

equations.
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