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Dispersion properties of nano- and micropores in track membranes
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A theoretical explanation of the constancy of the phase and group velocities of waves in through pores of polymer

track membranes in the hard X-ray range, which was discovered in earlier works and not satisfactory explained by

the theory of waveguide modes, is proposed. The developed X-ray propagation theory is based on the analytical

solution of the parabolic equation in a waveguide by an integral transformation method. Using the 3D parabolic

equation and a finite-difference method a numeric simulation of the X-ray propagation at two soft X-ray wavelengths

was conducted, which demonstrated that the constancy of the phase and group velocities in through pores of track

membranes holds in this case as well but with a lower precision. However, the product of the phase and group

velocities is not equal to the square of the vacuum light speed anymore. It was also shown that constancy of the

wave velocities in a pore breaks down when several propagating waveguides modes appear in it, which leads to

oscillations of the wave velocities due to modes’ interference.

Keywords: X-ray filters, 3D parabolic equation, finite-difference method, waveguide modes, track membranes.

DOI: 10.61011/TP.2024.07.58814.157-24

Introduction

Thin polymer track membranes with micron or submi-

cron through pores [1] have a variety of applications as

soft X-ray and extreme ultraviolet (1 < λ < 100 nm) optics

components [2–6]. As an example, the track membranes

are used as detector filters in solar telescopes (for example,

in the Koronas-F project X-ray telescope [4]) for protection

of the radiation detector against intense exposure to long-

wavelength radiation from an object of interest, e.g. the Sun,

as well as against UV, visible and IR band instrument glare.

It is known that phase characteristics of track membranes

depend on pore geometry, incident light wavelength and

optical properties of the membrane material. One of the

understudied issues is understanding of how the wave field

phase changes after propagation through a porous track

membrane. This is important for the development of

phase filters and phase screens for X-ray radiation based

on track membranes, e.g. those to be used as test objects

in phase X-ray microscopy. In [7,8], it was shown that

the wave phase portrait repeats the pore geometry after

propagation of the hard X-ray radiation through a pore with

quite a large diameter, while considerable transverse phase

smearing was observed or small-diameter pores. It is also

demonstrated that detected phase smearing is described by

the universal Fresnel number function for a single pore.

Numerical simulations make it possible to advance the use

of track membranes as X-ray diffusors and for suppression

of speckles in coherent imaging optical systems. Note,

however, that [7,8] performed numerical simulation of the

X-ray radiation propagation in pores on the assumption of

strict cylindrical symmetry of a 2D-parabolic approximation

problem using one-dimensional finite-difference scheme and

one-dimensional exact boundary condition, which is an

approximation even for a cylindrical symmetry problem.

These studies also did not calculate explicitly the phase and

group velocities of waves in pores and their properties were

discussed only qualitatively.

Therefore the behavior of phase and group [9] velocities
of X-ray radiation propagating in narrow pores of polymer

track membranes is of considerable interest. Due to mem-

brane material dispersion, both phase and group velocities

of waves in a hollow X-ray micro- or nanowaveguide such

as a through pore will depend in a complicated way on the

pore diameter, radiation wavelength and pore length. They

may also depend on the surface roughness of pore walls.

Practical interest in the phase and group velocity behavior

in track membrane pores is associated with the fact that

their dispersion may affect the temporal shape of a short

X-ray pulse going through a porous membrane. X-ray lasers

or free-electron lasers, for example, may serve as sources of

such short pulses [10].

The goal of the study is to perform numerical simulation

of soft X-ray propagation in through pores in thin polyethy-

lene terephthalate (PET) track membranes as has been

already done before for hard X-ray radiation in [11]. Phase
and group velocity behavior in pores and their variation

depending on the pore diameter and X-ray wavelength will

be examined. Ultimately, analytical theory of radiation

propagation in a planar (for simplicity) waveguide will be

presented and qualitative interpretation of the phase and

group velocity constancy and weak dependence on the pore

diameter (in hard X-ray range) will be provided on the basis

of the theory.
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1. Phase and group velocities

Plane wave propagation in a arbitrary medium is generally

characterized by two velocities: phase v ph and group vgr

(see [12] paragraphs 38 to 39). The former reflects the field

phase variation rate in the specified direction (for example,

in the z axis direction) and is defined as

v ph =
ω

kz
=

ω

Im ∂
∂z (lnE)

, (1)

where E is the electric field of wave, ω is the wave

frequency and kz is the wave vector component in

the z axis direction. If the wave field is written

as E = u · exp(−iωt + ikz ), where the wave number

k = ω/c , c is the speed of light in vacuum and u is the

field amplitude, then it follows from (1) that

v ph =
ω

kz
=

c

1 + 1
k Im

∂
∂z (ln u)

. (2)

Unlike the phase velocity, the group velocity describes the

mean velocity of wave packet motion (if the spectrum width

is not too high) and may be calculated using the Rayleigh

equation [12], if the dependence of phase velocity on the

radiation wavelength is known as

vg = v ph − λ
∂v ph

∂λ
, (3)

where λ = 2π/k is the X-ray radiation wavelength. Both

velocities may be found by means of numerical solution

of the problem of radiation propagation in porous medium

followed by the use of equations (1) or (2) and then (3).

2. Numerical simulation

The study uses 3D-parabolic equation to simulate X-ray

radiation propagation

2ik
∂u
∂z

= − ∂2u
∂x2

− ∂2u
∂y2

− k2(ε(x , y) − 1)u, (4)

where u(x , y, z ) is the slowly varying field amplitude,

(x , y, z ) are the Cartesian coordinates, ε(x , y) = n2 ≈
≈ 1− 2δ + 2iβ is the complex dielectric permittivity of

a material medium (PET polymer herein). Equation (4)
is solved using the explicit-implicit unconditionally stable

Crank−Nicolson finite-difference scheme with exact trans-

parent boundary conditions in a rectangular computational

domain. A rectangular uniform computational grid with a

longitudinal (on z ) step τ which is much higher than the

transverse space h (on the x and y coordinates) is used.

The employed numerical methods and transparent boundary

conditions are described in detail in [11,13,14].
All calculations were carried out using software codes

developed specially for this purpose in Matlab. Optical

constants of PET are taken from the database [15] and are

given in the table for the wavelengths described herein.

Optical constants of PET at the wavelengths of interest

Wavelength λ, nm δ β

0.154 4.533 · 10−6 1.028 · 10−8

1.625 5.304 · 10−4 1.086 · 10−4

17.06 4.181 · 10−2 1.348 · 10−2

Radiation propagation through a single pore is simulated

in a rectangular computational domain with a transverse

dimension higher than the pore diameter. The longitudinal

step length is equal to τ = 20 or 100 nm. The specimen

with pore is exposed to a plane wave falling at an angle

of incidence θ (in the (y, z ) plane) to the left pore end.

The complex field amplitude u as function of coordinates

is the simulation result. The phase velocity is calculated

below as a field phase variation velocity according to the

obtained amplitude u using equation (2). The amplitude

derivative on z is calculated as the amplitude difference on

two successive steps of the finite-difference scheme divided

by the step length τ . To calculate the group velocity using

equation (3), radiation propagation is calculated for two

close wavelengths with δλ = 0.01 · λ with constants also

taken from [15]. After passing the pore area, simulation is

continued in a free space using the same finite-difference

scheme and the same grid steps as in the membrane, but

using 3D-parabolic equation (4) with ε = 1.

The calculated phase and group velocities of the wave

field with λ = 0.154 nm propagating in a cylindrical pore of

D = 30 nm in diameter in a PET membrane of L = 22.4µm

in thickness are shown in Figure 1 for the angle of incidence

θ = 0. Simulation in vacuum was continued over a distance

of 30µm from the right end of the pore. Grid step h on

the (x , y) transverse coordinates counted from the pore axis

is equal to 1 nm. Figure 1 shows that the phase velocity

inside the pore and in its proximity exceeds the speed

of light in vacuum and the group velocity is lower than

the speed of light in vacuum. It is also shown that both

velocities are constant throughout the most part of pore

and in its proximity (except the initial area where transition

processes are observed) suggesting a linear phase growth

along the pore.

Dependence of the phase and group wave velocities on

the pore diameter are also of interest. Such dependences

are shown in Figure 2 and the velocities were taken at the

pore axis at a distance of 20µm from its left end. Figure 2

(left-hand) shows that both velocities weakly depend on

the pore diameter and decrease (increase) slowly as the

diameter increases. The nature of such velocity dependence

on the pore diameter is discussed below. Also note that

it follows from Figure 2 that the product of the phase

and group velocities is equal to squared speed of light in

vacuum.

Now proceeding to a softer X-ray radiation where

absorption in the medium plays a significant role, we take a

look at the results for λ = 1.625 nm. The calculated phase
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Figure 1. Phase ((v ph/c − 1) · 105 — on the left) and group ((vgr/c − 1) · 105 — on the right) velocities in the (y, z ) plane for a wave

at λ = 0.154 nm propagating in a narrow cylindrical pore. White lines correspond to the pore boundaries.
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Figure 2. Phase (line 1) and group (line 2) velocities for a wave propagating in a cylindrical pore as function of the pore diameter.

Left-hand — for λ = 0.154 nm, right-hand — for λ = 1.625 nm. Line 3 — the geometrical mean of the phase and group velocities.

Line 4 — phase velocity for the fundamental waveguide mode calculated from (5).

and group velocities of the wave field with this wavelength

propagating in a cylindrical pore of D = 40 nm in diameter

in a PET membrane of L = 8µm in thickness are shown

in Figure 3 for the angle of incidence θ = 0. Simulation

in vacuum was continued over a distance of 2µm from the

right end of the pore. The same grid step on the (x , y)

transverse coordinates was chosen as before — 1 nm. With

the chosen thickness, the membrane is opaque for X-ray

radiation with λ = 1.625 nm.

Figure 3 shows that the phase velocity, like in the hard

X-ray range, exceeds the speed of light in vacuum c and the

group velocity is lower than the speed of light in vacuum.

Note also that, though the phase and group velocities are

approximately constant within the most part of the pore

and in its proximity, they demonstrate oscillations around

some mean value. This suggests almost linear phase growth

along the pore. Thus, in the soft X-ray range, phase and

group velocity behavior in quite narrow pores is similar to

that at λ = 0.154 nm.

Nevertheless, changes in the velocity behavior compared

with the hard X-ray radiation can be clearly seen in Figure 2

(to the right) that shows the dependences of phase and

group velocities on the pore diameter for λ = 1.625 nm,

whereas the velocities were taken on the pore axis at a

distance of 7µm from its left end. The figure shows that

the phase velocity is still comparatively weakly depends on

the pore diameter and decreases slightly as the diameter

increases. While the dependence of the group velocity on

the wavelength is non-monotonic and has a local peak at

D ≈ 65 nm. The product of the phase and group velocities

is equal to squared velocity of light in vacuum. The

reasons for such velocity behavior variation in the soft X-ray

radiation range are discussed below.

As the last example, Figure 4 shows the calculated phase

and group velocities of the wave field with λ = 17.06 nm
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Figure 3. Phase ((v ph/c − 1) · 103 — on the left) and group ((vgr/c − 1) · 103 — on the right) velocities in the (y, z ) plane for a wave

at λ = 1.625 nm propagating in a narrow cylindrical pore. White lines correspond to the pore boundaries.
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Figure 4. Phase ((v ph/c − 1) · 102 — on the left) and group ((vgr/c − 1 · 102 — on the right) velocities in the (y, z ) plane for a wave

at λ = 17.06 nm propagating in a narrow cylindrical pore. White lines correspond to the pore boundaries.

propagating in a cylindrical pore of D = 100 nm in diameter

in a PET membrane of L = 8µm in thickness for the angle

of incidence θ = 0. The grid step on the (x , y) transverse

coordinates was doubled up to h = 2 nm to reduce the

computational costs. Simulation in vacuum was continued

over a distance of 2µm from the right end of the pore. With

the chosen thickness the membrane, like in the previous

example, is opaque for X-ray radiation.

Figure 4 shows that the phase velocity oscillates notice-

ably, but still exceeds the speed of light in vacuum c ,
whereas the group velocity oscillates strongly near a value

equal to the speed of light in vacuum and no longer has

a particular sign. The observed oscillations decay gradually

with propagation in the pore. Such behavior of the group

velocity differs from that for λ = 1.625 nm as shown in

Figure 3.

The examples discussed above (Figure 1, 3 and 4) are

calculated for the angle of incidence θ = 0. Simulation for

non-zero angles of incidence (in particular, for θ = 0.001

at λ = 0.154 nm) has shown that the phase and group

wave velocity behavior in narrow pores has no qualitative

difference from that for the zero angle of incidence.

3. Findings and discussion

As is commonly known, for waveguide modes propa-

gating in the cylindrical waveguide at small grazing angles

with respect to the waveguide wall (like in the X-ray

range), the Helmholtz scalar equation is approximately valid.

Polarization effects in this case may be neglected due to the

equality of reflectances of waves with different polarizations

in grazing incidence.

Using the analytical solutions of the Helmholtz equation

within the pore and polymer, a dispersion equation may

be derived (taking into account the boundary conditions on

the wall at r = D/2) for modes in the hollow cylindrical
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waveguide (neglecting the absorption that is low in the hard

X-ray range):

κ
K′

m(κD/2)

Km(κD/2)
= γ(

J′
m(γD/2)

Jm(γD/2)
, (5)

where m is the azimuthal index, γ is the transverse

wave number for the mode in pore, κ =
√

k2δ − γ2,

Km and Jm are the m-th order Macdonald function and

Bessel function, respectively. Equation (5) is solved with

respect to γ , while the phase velocity is expressed as

v ph = ck/
√

k2 − γ2. The group velocity may be still calcu-

lated using equation (3). Equation (5) is solved numerically

by the iteration method. For this, a solution corresponding

to the fundamental (axisymmetric) waveguide mode with

m = 0 and n = 1 (radial number) is taken.

The phase velocity for the fundamental mode calculated

according to equation (1) for m = 0 and n = 1 is shown in

Figure 2 (line 4) for two wavelengths corresponding to the

hard (left-hand) and soft (right-hand) X-ray radiation. It can

be seen that for small diameters D < 30 nm in the short-

wavelength range, the solution of equation (5) matches well

with the phase velocity of wave in the pore. However,

the phase velocity of the fundamental waveguide mode at

large pore diameters is much lower than the phase velocity

calculated on the basis of the numerical solution of parabolic

equation (4). The coincidence of the results obtained by

the two calculation methods at low pore diameters may

be explained by the fact that in this case the fundamental

waveguide mode propagates mainly outside the pore. This

means that the effective mode diameter is high compared

with the pore diameter and therefore the phase and group

velocities are defined only by the refraction index of the

membrane material resulting in the coincidence of the two

calculation methods. However, at large pore diameters,

the wave phase velocity in the pore is much higher than

the fundamental waveguide mode velocity meaning that

radiation assigned not only to the fundamental waveguide

mode propagates in the pore.

On the other hand, Figure 2 (right-hand) shows that a

simple mode model of equation (5) in the long-wavelength

range describes adequately the situation with pore diameters

up to D = 100 nm. This may be explained by high medium

absorption in this range because, as mentioned above, the

8µm membrane is non-transparent for soft X-ray radiation.

This results in significant loss of modes propagating through

the pore and finally only the radiation of the fundamental

mode having the minimum decay riches the right end of

the pore. All higher modes, pseudo modes and radiation

that is not assigned to a particular mode decay without

reaching the right end of the pore. Complex group velocity

behavior with a local peak (Figure 2, on the right-hand side)
is explained by the complex behavoir of the PET optical

constants in the soft X-ray range. In a softer range as

shown in Figure 4, two modes propagate in the pore for the

chosen diameter D = 100 nm and their interference results

in the phase and group velocity oscillations that decay with

propagation due to fast decay of the second mode compared

with the fundamental mode.

To explain the wave velocity behavior in pores with

a larger diameter in the hard range with λ = 0.154 nm,

it is a good to use a simple model of a planar X-ray

waveguide described by the 3D-parabolic equation (4),
where the amplitude u and dielectric permittivity ε of PET

are assumed to be independent of the y coordinate. In this

case, the equation may be solved using the integral Laplace

transform on the longitudinal z coordinate:

F(x , p) =

∞
∫

0

u(x , z )e−pz dz ,

when it is applied to equation (4), we get the following

ordinary differential equation for F image:

d2F
dx2

+ (2ik p + k2(ε(x) − 1))F = 2iku(x , 0). (6)

The right-hand side of (6) contains the initial ampli-

tude u(x , 0) at z = 0 that is assumed to be equal to 1 herein.

Equation (6) is solved considering the necessity to fulfil the

radiation condition at x → ±∞ and boundary conditions

at x = D/2. Only symmetrical solutions are considered

and the inverse Laplace transform is then applied to the

obtained result. Finally, the field amplitude inside the planar

waveguide at −D/2 < x < D/2 may be written as

u =1− γ2
0

π

√
i∞

∫

−
√

i∞

e−t2 dt

t
√

t2 − iγ2
0

× cos(κ0x)
√

t2 − iγ2
0 · cos(κ0D/2) − it sin(κ0D/2)

, (7)

where the integral in equation (7) is taken along the contour

on a complex plane above the real axis bypassing the poles

and subintegral function branch points. By deforming this

contour in such a way that the integration goes along the real

axis changing to a new integration variable and summing the

residuals in poles located in the upper half-plane, we get

u =

∞
∑

s=1

2

ws
e−iγ20w

2
s
cos(2xςws /D)

1 + ς
√

1− w2
s

− γ2
0

π
e−iγ20

+∞
∫

−∞

e−ρ2

ρ2 + iγ2
0

× cos(κ0x)

ρ cos(κ0D/2) − i
√

ρ2 + iγ2
0 sin(κ0D/2)

dρ, (8)

where γ2
0 = kz (δ − iβ), κ20 = 2k(ρ2 + iγ2

0 )/(iz ),

ς = kD
√
δ − iβ/

√
2. wn is the dispersion equation

solution for modes in the planar waveguide

tan(ςwn) =

√

1− w2
n

wn
, (9)
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corresponding to the mode with n ≥ 1. The first term in

expression (8) is the sum of fields of various waveguide

modes (and pseudo modes). The second term in (8) corre-

sponds to the continuous spectrum and describes transition

processes at the initial stage of radiation propagation in the

membrane that are observed in Figure 1, 3, 4 in the form of

complex field amplitude variations at small values of z . It

may be shown that the intensity of this continuous spectrum

generally decreases as ∼ 1/z with coordinate and at high z
the contribution of this term becomes low compared with

the propagating modes filed even in the hard X-ray radiation

range where absorption is low.

As for the waveguide modes, they carry the finite

radiation power and correspond to real (neglecting the

absorption) solutions of (9) that satisfy 0 ≤ wn ≤ 1 and

tg(ςwn) ≥ 0. These solutions correspond to zeros in the

denominator of the second fraction in equation (7) lying on

the straight line going out of zero with phase 3π/2. The total

number of modes is equal to N = 1 + ⌊ς/π⌋ and grows as

the waveguide diameter increases. For D < 100 nm and

optical parameters from the table, one or two waveguide

modes will propagate in the pore. As mentioned above,

propagation of two waveguide modes takes place in a

pore with D = 100 nm at λ = 17.06 nm (Figure 4), where

their interference results in evident oscillations of the

phase and group velocities. The mode fields propagate

with a phase velocity lower than the wave velocity in a

continuous medium as it follows from the structure of the

exponent indexes in the sum in expression (8) and from

condition wn ≤ 1.

In addition to the waveguide modes, so-called pseudo

modes may be distinguished. They carry infinite power,

propagate mainly beyond the pore and decay quickly with

growth of z in the soft range where the absorption is

essential. They correspond to zeros in the denominator of

the second fraction in (7) lying in the lower half-plane of

the complex variable ρ in (8). Therefore, at λ = 1.625

and 17.06 nm, pseudo modes affect the field amplitude and

phase/group velocity behavior only at low values of z , i.e.
in the same place where the last term defining the transition

processes in expression (8) is significant. With further

propagation, the wave velocity behavior is defined only by

ordinary waveguide modes.

However, in the hard X-ray radiation range λ = 0.154 nm,

where the absorption is negligible, the role of pseudo

modes is more significant. As may be shown by dispersion

equation (9), near the cutoff threshold at ς ≈ πn, they

propagate with velocities close to those in the continuous

medium. For them wn ≈ 1− (ς − πn)2/2 ≈ 1, and their

intensity inside the pore is π2 times as high as that in

the fundamental mode. Pseudo mode dominance when

the absorption is low explains slow (compared with the

law of fundamental mode dispersion) decrease in the phase

velocity as the pore diameter grows at λ = 0.154 nm as

observed in Figure 2 on the left.

Conclusion

The study performs numerical simulation of the X-ray

radiation propagation through narrow pores in PET track

membranes in the 3D-parabolic approximation. For numer-

ical solution of the parabolic equation, the Crank−Nicolson

type finite-difference scheme method with exact transparent

boundary condition in a rectangular computational domain

was used. The obtained field amplitudes for three wave-

lengths of both hard and soft X-ray radiation waves and

for different pore diameters were used to calculate the

phase and group velocities of waves propagating within

the pore. It has been demonstrated that wave propagation

usually takes place at constant group and phase velocity,

in particular, in the range of hard X-ray radiation where

the absorption is low. Velocity constancy is disturbed in

case of propagation of several waveguide modes in the pore

resulting in their interference and velocity oscillations. In

the hard X-ray range, the product of the phase and group

velocities is equal to squared speed of light in vacuum.

Using the analytical solution of the 2D parabolic equation

by the integral transform method, a qualitative model of

wave propagation in narrow pores was built. This model

explains the main properties of wave velocities in pores,

in particular, weak dependence of the phase and group

velocities on the pore diameter in the hard X-ray radiation

area.

The phase velocity constancy in pores found herein may

be useful for creation of phase filters for X-ray radiation

that change the field phase by a certain value. Since the

phase velocity weakly depends on the pore diameter in

the hard range, the X-ray radiation going through a porous

membrane with the set thickness and different diameters

of pores will acquire a fixed phase proportional to the

membrane thickness. This phase will be independent on the

angle of incidence of radiation on the membrane, but will

depend on its wavelength. Much higher transmission of X-

ray radiation will be the advantage of such filters compared

with the solid polymer films. Phase filters based on track

membranes may be, for example, used for chirping (i.e.

X-ray radiation phase modulation such that it depends on

the wavelength) of ultrashort X-ray pulses, including those

from the free-electron laser. Pores in the track membranes

may also serve as high-contrast precision test objects for

examination of phase-contrast X-ray microscope properties

and image restoration schemes [9].

Future studies are expected to investigate the phase and

group velocity behavior of X-ray waves in non-cylindrical

pores and in pores with rough interior walls. Numeri-

cal simulation of radiation propagation through the track

membranes containing irregular pore arrays with different

diameters and investigation of field phase modulation after

propagation through such complex object are expected.
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