04.1

Вольт-амперные характеристики и эффективность генерации электронного пучка в высоковольтном аномальном тлеющем разряде

© П.А. Бохан 1 , П.П. Гугин 1 , Д.Э. Закревский 1,2 , Г.В. Шевченко 1,3

- ¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия
- ² Новосибирский государственный технический университет, Новосибирск, Россия
- 3 Новосибирский государственный университет, Новосибирск, Россия

E-mail: shevchenko@isp.nsc.ru

Поступило в Редакцию 1 июля 2024 г. В окончательной редакции 12 июля 2024 г. Принято к публикации 12 июля 2024 г.

Проведены исследования вольт-амперных характеристик и эффективности генерации электронного пучка в высоковольтном аномальном тлеющем разряде в режиме постоянного тока в гелии при давлении $2.17-10.2\,\mathrm{Torr}$ в условиях минимизации контролируемых и неконтролируемых примесей рабочей среды. Продемонстрирован немонотонно возрастающий характер вольт-амперных характеристик и получены эффективности генерации электронного пучка $\sim 80\%$.

Ключевые слова: газовый разряд, гелий, электронный пучок, эффективность.

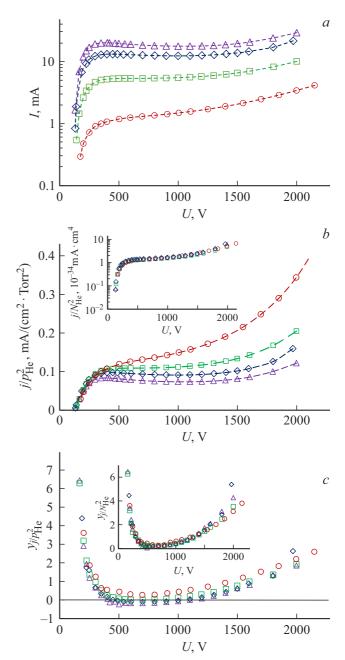
DOI: 10.61011/PJTF.2024.22.59126.20045

Высоковольтные аномальные тлеющие разряды (АТР) длительное время используются как источники электронных пучков (ЭП), не требующие дифференциальной откачки [1-8]. Ускорение электронов происходит в области объемного заряда у катода — катодного падения потенциала, к которому приложено практически все разрядное напряжение, что предопределяет преобладание монокинетической составляющей функции распределения электронов. Несмотря на многолетние исследования, АТР продолжает привлекать к себе внимание, с одной стороны, простотой достижимости требуемых параметров, а с другой — в связи с появлением оригинальных, ранее неизвестных свойств. В работе [4] показано, что вольт-амперные характеристики (ВАХ) АТР в значительной степени зависят от реализации экспериментальных условий. При тщательном обезгаживании разрядного объема и кондиционировании катода ВАХ приобретают S-образный вид (в координатах U-I). В свою очередь введение молекулярных примесей приводит к тому, что ВАХ становятся монотонно возрастающими. Присутствие молекулярных примесей (контролируемых и, особенно, неконтролируемых) в газовой среде способствует изменению роли, состава и энергии бомбардирующих холодный катод частиц. При условии зависимости эмиссионных свойств катода от модификации эмитирующего слоя за счет имплантации в поверхность рабочих частиц функциональные параметры АТР (разрядные напряжение и ток, эффективность генерации электронного пучка, характер протекания тока) будут определяться чистотой рабочей среды и состоянием эмитирующей поверхности.

Целью настоящей работы является исследование BAX и эффективности генерации электронного пучка в ано-

мальном тлеющем разряде в гелии в режиме постоянного тока при повышенных (более $1\,\mathrm{kV}$) напряжениях в "физически чистых" условиях, т.е. в условиях минимизации контролируемых и неконтролируемых примесей рабочей среды и материала катода.

Для исследования разряда использовалась ячейка с плоскими полированными электродами: катодом из реакционно-спеченного карбида кремния и медным анодом с межэлектродным расстоянием $d_{ca}=3\,\mathrm{cm}.$ Электроды разделены стеклянным цилиндром и многослойным изолятором из керамических пластин Al₂O₃ с внутренним диаметром отверстий 1.6 и 2.3 сm, которые ограничивают площадь разряда до 2 cm². Для обезгаживания разрядного объема на ячейке монтировался нагреватель, а катод устанавливался через изолирующую керамическую пластину на алюминиевой подставке с отдельным нагревателем. Непосредственно в экспериментах подставка выступала в роли радиатора, что в совокупности с кулером позволяло не превышать температуру разрядного объема $T \leqslant 50^{\circ}\mathrm{C}$ и сохранять возможность стабильной работы до вкладываемой в разряд мощности $P = UI = 60 \,\mathrm{W}$ $(U,\ I - \mathrm{Hanps}$ жение и ток разряда соответственно). Использовался источник постоянного тока с регулируемыми напряжением $U = 0-5 \,\mathrm{kV}$ и балластным сопротивлением $R = 20 - 600 \, \mathrm{k}\Omega$.

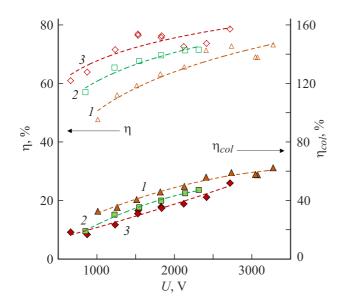

Эксперименты проводились в гелии с объемной долей не менее 99.9999%, который подавался в ячейку со скоростью 100-150 ml/min через охлаждаемую жидким азотом угольную ловушку. Чистота рабочего газа оценивалась по отношению светимостей молекулярных полос водорода, азота и кислорода. Давление гелия измерялось при помощи емкостного датчика Thyracont VCC200MA4 с точностью $\pm 0.25\%$.

Перед каждым циклом измерений параметров разряда проводилось обезгаживание ячейки. Процедура заключалась в том, что ячейка нагревалась до $T=100^{\circ}\mathrm{C}$ и откачивалась турбомолекулярным насосом до давления менее 10^{-6} Torr. В дальнейшем проводилась тренировка катода разрядом, состоявшая в итерационном повышении напряжения каждые 5 min от $200\,\mathrm{V}$ до рабочего с шагом в $50-100\,\mathrm{V}$ с откачкой разрядного объема после каждой итерации. После этих манипуляций фактическое натекание вакуумной системы и разрядной ячейки составляло $\sim 10^{-6}$ Torr/h, что на два порядка меньше, чем было достигнуто ранее в работе [4].

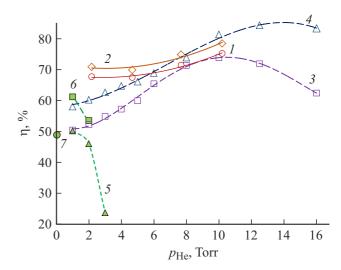
Измерение энергетической эффективности генерации электронного пучка η осуществлялось калориметрическим методом. Под энергетической эффективностью понимаются доли энергии $\eta_{ds}(\eta_{col}) = P_{ds}(P_{col})/P$, где P_{ds} — мощность, теряемая в разрядном промежутке, P_{col} — мощность, рассеиваемая на аноде — коллекторе электронов. Общая эффективность генерации разрядом электронного пучка $\eta = \eta_{ds} + \eta_{col}$. Методика определения η_{ds} и η_{col} заключалась в следующем. Предварительно измерялись калибровочные зависимости изменения температуры ΔT на стенке и аноде ячейки от мощности на встроенных нагревателях в отсутствие разряда. Из сопоставления измеренных значений температуры на стенке ячейки и анода при функционировании разряда с известными калибровочными кривыми могут быть получены соответствующие мощности P_{ds} , P_{col} и вычислены значения η_{ds} , η_{col} и η .

На рис. 1, a в качестве примера представлено семейство вольт-амперных характеристик АТР в координатах I-U при давлении гелия $p_{\rm He}=2.17,\ 4.67,\ 7.67$ и 10.2 Torr. Режим функционирования ATP со стабильно воспроизводимыми ВАХ достигался после ~ 50 h тренировки катода и обезгаживания ячейки. Из рисунка видно, что с ростом давления зависимости I(U) изменяют свой характер и при $p_{\rm He} \geqslant 5\,{\rm Torr}$ перестают быть монотонно возрастающими. Присутствуют участки уменьшения тока с ростом напряжения, причем максимальная величина уменьшения наблюдается при наибольшем исследованном давлении газа. При $p_{\rm He} = 10.2\,{\rm Torr}$ максимум тока достигается при $U \approx 400\,\mathrm{V}$. С повышением напряжения до $U \approx 1100 \, \mathrm{V}$ разрядный ток уменьшается и при дальнейшем увеличении U начинается новый рост І. Подобное поведение ВАХ свидетельствует об изменении типа разряда — переходе от нормального разряда к аномальному и затем к разряду с убегающими электронами и формированию разряда, контролируемого фотоэмиссией [4,5].

Согласно данным более ранних работ [6–8], высоковольтные разряды, в которых генерируются электронные пучки килоэлектронвольтных энергий на основе эффекта убегания электронов, имеют ВАХ вида $j \sim p^x U_c^y$ (где j — плотность тока, U_c — катодное падение потенциала, которое в условиях высоких значений U_c практически равно приложенному к разрядному промежутку напряжению U с показателями степени, например, x=2,


Рис. 1. Семейство вольт-амперных характеристик АТР в координатах I-U (a), зависимости $j/p_{\rm He}^2(U)$ (на вставке — $j/N_{\rm He}^2(U)$) (b) и $y_{j/p_{\rm He}^2}(U)$ (на вставке — $y_{j/N_{\rm He}^2}(U)$) (c). $p_{\rm He}$, Torr: кружки — 2.17, квадраты — 4.67, ромбы — 7.67, треугольники — 10.2.

y=3 в работе [6]; x=-1.5, y=2.5 в расчетной работе [7]; x=1-2, y=1-3.5 в работе [8]. Полученные в настоящей работе ВАХ можно преобразовать в координаты $j/p_{\rm He}^2-U$ и $j/N_{\rm He}^2-U$, где $N_{\rm He}$ — концентрация атомов рабочего газа. Оценка усредненной температуры осуществлялась аналогично данным работы [5] и согласно работе [9]. Получившиеся зависимости приведены на рис. 1, b. Из вставки к рисунку видно, что зависимости $j/N_{\rm He}^2(U)$ полностью совпадают для всех исследованных


давлений гелия с показателем степени $x=2.08\pm0.10$. Это указывает на то, что BAX высоковольтного ATP характеризуются выполнением условий подобия. На рис. 1,c для зависимостей $j/p_{\rm He}^2$ (U) и $j/N_{\rm He}^2$ (U) представлена динамика изменения параметров $y_{j/p_{\rm He}^2}$ (U) и $y_{j/N_{\rm He}^2}$ (U) соответственно, которые для всего диапазона исследованных напряжений и давлений являются экстремальными функциями с минимумом при напряжении $U=400-900\,{\rm V}$. Обращает на себя внимание то, что в зависимостях $y_{j/p_{\rm He}^2}$ (U) для $p_{\rm He}>4.67\,{\rm Torr}$ имеется диапазон со значениями $y_{j/p_{\rm He}^2}(U)<0$.

На рис. 2 представлены результаты измерения эффективностей η и η_{col} для давлений $p_{He} = 4.67, 7.67$ и 10.2 Torr. Общей тенденцией является то, что величина η сублинейно нарастает с увеличением напряжения при постоянном давлении и с увеличением давления при постоянном напряжении. Достигнуто максимальное значение $\eta \approx 80\%$ при $U = 2800\,\mathrm{V}$ и $p_{\mathrm{He}}=10.2\,\mathrm{Torr.}$ При этом величина η_{col} (доля энергии ЭП, достигающего анода) увеличивается с ростом U, но имеет обратную зависимость от давления: $\eta_{col} \sim 1/p_{\mathrm{He}}$. Это свидетельствует о том, что с увеличением давления газа при возрастании потерь энергии электронов увеличение общей эффективности генерации ЭП происходит за счет уменьшения доли рассеиваемой мощности в разрядном промежутке.

Представляется интересным сравнить полученные значения η с результатами работ [4,8], в которых калориметрическим способом проведены измерения эффективности генерации ЭП в АТР в гелии. В работе [4] исследования АТР проведены с титановым катодом в следующих экспериментальных условиях: межэлектродное расстояние $d_{ca}=2.1\,\mathrm{cm},\;p_{\mathrm{He}}=1-16\,\mathrm{Torr},\;$ предельный вакуум $\sim 10^{-5}\,\mathrm{Torr},\;$ типичное натекание $10^{-4}\,\mathrm{Torr}/h.\;$ В работе [8]

Рис. 2. Зависимости $\eta(U)$ и $\eta_{col}(U)$ при $p_{He}=4.67$ (1), 7.67 (2) и 10.2 Torr (3).

Рис. 3. Зависимости $\eta(p_{\rm He})$. I, 2 — данные настоящей работы, SiC-катод, U=2400 и 2700 V соответственно; 3, 4 — Ті-катод, U=2500 и 3500 V соответственно; 5 — LaB₆-катод, U=3500 V; 6 — Мо—МgO-катод, U=3500 V; 7 — Al-катод, U=4000 V.

исследовались Мо-MgO- и LaB₆-катоды ($d_{ca}=13\,\mathrm{cm},$ $p_{\mathrm{He}}=0.5-3\,\mathrm{Torr},$ предельный вакуум в установке не превышал $\sim 10^{-4}\,\mathrm{Torr}$). На рис. 3 представлено сравнение зависимостей $\eta(p_{\mathrm{He}})$ для различных U, полученных в настоящей работе и в [4,8], а также величина η из работы [10], вычисленная согласно формуле $\eta=\gamma/(\gamma+1)$, где γ — коэффициент вторичной эмиссии электронов. Из рис. 3 видно, что в более "чистых" разрядных условиях в исследованном диапазоне U достигаются значительно большие эффективности генерации электронного пучка.

Из полученных результатов видно, что исследованный высоковольтный ATP, функционирующий в возможно достигаемых "чистых" условиях, характеризуется следующими оригинальными особенностями:

- типично монотонно возрастающие BAX с ростом давления принимают в координатах $j\!-\!U$ вид с отрицательным показателем степени зависимости j от U, что соответствует и подтверждает результаты исследований ATP с другими типами холодных катодов (титан, молибден [4,5]);
- разряд функционирует при значительно больших давлениях рабочего газа (гелия) с сохранением больших эффективностей генерации электронного пучка, при этом для него характерно увеличение эффективности генерации ЭП с ростом давления;
- исследование катода демонстрирует уменьшение распыления эмитирующей поверхности при прочих равных условиях.

Совокупность перечисленных особенностей предопределяет перспективность таких разрядов для разработки чистых плазменных технологий.

Финансирование работы

Исследование выполнено при поддержке Российского научного фонда (грант № 24-19-00037, https://rscf.ru/project/24-19-00037/).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] М.А. Завьялов, Ю.Е. Крейндель, А.А. Новиков, *Плазменные процессы в технологических электронных пушках* (Энергоатомиздат, М., 1989).
- [2] А.И. Головин, А.И. Шлойдо, Успехи прикладной физики, **4** (5), 439 (2016).
- [3] А.С. Климов, А.А. Зенин, Д.Б. Золотухин, А.В. Тюньков, Ю.Г. Юшков, Успехи прикладной физики, 7 (3), 249 (2019).
- [4] П.А. Бохан, П.П. Гугин, Д.Э. Закревский, М.А. Лаврухин, Физика плазмы, **45** (11), 1022 (2019). DOI: 10.1134/S0367292119100019 [P.A. Bokhan, P.P. Gugin, D.E. Zakrevsky, M.A. Lavrukhin, Plasma Phys. Rep., **45** (11), 1035 (2019). DOI: 10.1134/S1063780X19100015].
- [5] P.A. Bokhan, P.P. Gugin, M.A. Lavrukhin, V.A. Kim, G.V. Shevchenko, D.E. Zakrevsky, Plasma Sources Sci. Technol., 31 (12), 125009 (2022). DOI: 10.1088/1361-6595/acaac6
- [6] К.А. Клименко, Ю.Д. Королев, ЖТФ, **60** (9), 138 (1990). [К.А. Klimenko, Yu.D. Korolev, Sov. Phys. Tech. Phys., **35**, 1084 (1990).].
- [7] К.Н. Ульянов, ТВТ, **43** (5), 645 (2005). [K.N. Ul'yanov, High Temp., **43** (5), 641 (2005). DOI: 10.1007/s10740-005-0107-3].
- [8] J.J. Rocca, J.D. Meyer, M.R. Farrell, G.J. Collins, J. Appl. Phys., 56 (3), 790 (1984). DOI: 10.1063/1.334008
- [9] M.J. Kushner, B.E. Warner, J. Appl. Phys., 54 (6), 2970 (1983). DOI: 10.1063/1.332499
- [10] P. Hartmann, H. Matsuo, Y. Ohtsuka, M. Fukao, M. Kando,
 Z. Donkó, Jpn. J. Appl. Phys., 42 (1), 3633 (2003).
 DOI: 10.1143/JJAP.42.3633