02

Многозонный квазичастичный транспорт в туннельных контактах на базе сверхпроводящего стехиометрического пниктида CaKFe₄As₄

© Т.Е. Кузьмичева¹, А.Д. Ильина¹, И.А. Никитченков^{2,1}, К.С. Перваков¹, В.А. Власенко¹, А.С. Медведев¹, С.А. Кузьмичев^{2,1}

¹ Физический институт им. П.Н. Лебедева РАН,

Москва, Россия

² Физический факультет МГУ им. М.В. Ломоносова,

Москва, Россия

E-mail: kuzmichev@mig.phys.msu.ru

Поступила в Редакцию 6 марта 2025 г. В окончательной редакции 6 марта 2025 г.

Принята к публикации 5 мая 2025 г.

Методами туннельной спектроскопии контактов на микротрещине установлена многощелевая сверхпроводимость пниктидов СаКFе₄As₄, определены амплитуды и температурные зависимости микроскопических сверхпроводящих параметров порядка $\Delta_i(T)$. Получены температурные зависимости особенностей, вызванных андреевским транспортом: андреевского избыточного тока $I_{\rm exc}(T)$ и андреевской проводимости при нулевом смещении $G_{\mathrm{ABC}}^{\mathrm{A}}(T)$. Также измерена температурная зависимость критического тока $I_{\mathrm{c}}(T)$. По данным $I_{
m exc}(T), G_{
m ZBC}^{
m A}(T)$ и $I_{
m c}(T)$ оценены парциальные проводимости двух эффективных зон, показан доминирующий вклад "ведущих" зон с большой сверхпроводящей щелью в общую проводимость.

Ключевые слова: высокотемпературная сверхпроводимость, пниктиды, туннельная спектроскопия, многократные андреевские отражения, сверхпроводящий параметр порядка.

DOI: 10.61011/FTT.2025.07.61177.9HH-25

Введение

Сверхпроводники недавно открытого семейства 1144 на основе щелочных металлов общего состава XYFe₄As₄ (где X — щелочноземельный металл или редкоземельный Еи, У — щелочной металл) [1] представляются весьма перспективными для прикладных и фундаментальных исследований (в качестве обзора см. [2]). Типичный представитель этого семейства CaKFe₄As₄ имеет слоистую кристаллическую структуру, представляющую собой стопку антифлюоритоподобных сверхпроводящих (СП) блоков FeAs с тетрагональной решеткой в ab-плоскости, разделенных вдоль c-направления чередующимися плоскостями Са и К [1]. Наличие атомов щелочного металла в структуре обеспечивает дырочное "самодопирование" СП-блоков FeAs, что способствует, в отличие от большинства пниктидов железа, установлению сверхпроводимости именно в стехиометрическом составе, с максимальной для этого соединения критической температурой $T_{\rm c} \approx 35 \, {\rm K}$, а также отсутствию магнетизма и нематического порядка выше $T_{\rm c}$ [1].

Расчеты зонной структуры [3] показали, что уровень Ферми в CaKFe₄As₄ пересекает около 10 зон, образуя несколько вложенных, слабо гофрированных вдоль k_7 -направления дырочных цилиндров поверхности Ферми вокруг Г-точки зоны Бриллюэна и несколько электронных цилиндров вокруг М-точки. Ниже T_c , согласно расчетам, на каждом листе поверхности Ферми образуется СП-конденсат с различной энергией связи куперовских пар, т. е. формально реализуется 10-щелевая сверхпроводимость. В исследованиях методом фотоэмиссионной спектроскопии с угловым разрешением (ФЭСУР) надежно различимы три дырочных кармана в Г-точке и 1-2 электронных кармана в М-точке [4,5]. Четыре СП-параметра порядка, реализующиеся на обнаруженных с помощью ФЭСУР цилиндрах поверхности Ферми, имели довольно высокие характеристические отношения $2\Delta_i(0)/k_{\rm B}T_{\rm c}\approx 5-9$, превышающие предел слабой связи 3.53, что согласуется с данными оптической [6] и фемтосекундной спектроскопии [7].

В экспериментах методами сканирующей туннельной спектроскопии (СТС) [5,8,9,10] и спектроскопии точечных контактов (ТК) [11] на спектрах туннельных и андреевских контактов при $T \ll T_{\rm c}$ наблюдались достаточно широкие максимумы в диапазонах смещений $|V_{\rm S}| \approx 3-4\,{\rm mV}$ и $|V_{\rm L}| \approx 6-8\,{\rm mV}$, интерпретированные авторами этих работ как щелевые особенности от малой и большой СП-щелей. К сожалению, надежная оценка амплитуд Δ_i на основе этих данных затруднена по причине сильного размытия: авторам [5,8,10,11] удалось удовлетворительно аппроксимировать экспериментальные данные, только введя чудовищный разброс значений $\Delta_i(0)$ от 0 до $\sim 10{-}12\,\mathrm{meV}$, соответствующий $100\,\%$ анизотропии в реальном пространстве, т.е. многофазности и полному хаосу свойств.

Наши предварительные исследования методом спектроскопии эффекта некогерентных многократных андреевских отражений (ЭНМАО), проведенные при $T\ll T_{\rm c}$, показали сосуществование трех объемных СП-параметров порядка с характеристическими отношениями, в среднем составляющими $2\Delta_i(0)/k_{\rm B}T_{\rm c}\approx 5.6$, 3.9 и 1.3.

Температурная зависимость концентрации куперовских пар $\rho_S(T)$ была получена с помощью измерений лондоновской глубины проникновения [8,11,12] и мюонной спектроскопии [13]. На зависимостях наблюдался значительный "прогиб" при температурах $T\approx 10-15~{\rm K}$, для аппроксимации которого помимо большой СП-щели с $2\Delta_i(0)/k_BT_c\approx 6-9$ (что согласуется с данными работ [4–11]) требуется введение меньшего СП-параметра порядка Δ_S с $2\Delta_S(0)/k_BT_c\approx 1-2$ [8,11,12,13].

В настоящей работе проведены исследования СПсвойств поликристаллов CaKFe₄As₄ двумя взаимодополняющими методами. С помощью ЭНМАО-спектроскопии напрямую определены амплитуды СП-параметров порядка и их температурные зависимости. Получены зависимости особенностей, вызванных многозонным андреевским транспортом: андреевского избыточного тока $I_{\rm exc}(T)$ и андреевской проводимости при нулевом смещении $G_{\rm ZBC}^{\rm A}(T)$ на I(V) и dI(V)/dV-характеристиках андреевских контактов; на основе их анализа в рамках многозонного подхода оценены парциальные проводимости эффективных зон. Подобные данные отсутствуют в литературе на данный момент. С помощью туннельной спектроскопии измерена температурная зависимость сверхтока $I_c(T)$ для СП-закороток, пропорциональная первом приближении концентрации куперовских пар $ho_{\rm S}(T)$. Показано, что данные $I_{\rm c}(T)$ могут быть описаны в рамках теоретических представлений с использованием данных $\Delta_i(T)$, измеренных напрямую методом ЭНМАОспектроскопии.

2. Детали эксперимента

Синтез поликристаллических образцов CaKFe₄As₄ проводили из подготовленных заранее прекурсоров CaAs, KAs и Fe_2As в мольном соотношении 1:1:2. В качестве исходных реагентов использовали Са(99.9%), К(99.95%), Fe(99.98%) и As(99.9999%). Полученные прекурсоры размалывали и перемешивали в агатовой ступке. Порошок засыпали в корундовый тигель, который заваривали в ниобиевый контейнер. Контейнер помещали в вакуумную печь и прокаливали в атмосфере аргона при температуре 955°C в течение 6 часов. Полученный порошок перетирали в агатовой ступке и прессовали в таблетки диаметром 12 mm под давлением 10 МРа. Таблетки помещали в ниобиевый контейнер и заваривали при помощи аргонодуговой сварки в атмосфере аргона. Контейнер помещаем в вакуумную печь и прокаливали при температуре 955°C в течение 6 часов в атмосфере аргона. Все операции синтеза, кроме прокаливания, были проведены в перчаточном боксе в атмосфере аргона и содержанием кислорода и воды менее чем 0.1 ррт.

В результате были получены плотные поликристаллические образцы, которые были измельчены в агатовой ступке для проведения рентгенофазового анализа. По данным РФА образцы являются однофазными, параметры решетки были уточнены методом Ле Бейля и составили a=3.8534(12) Å, c=12.830(5) Å.

Для исследования квазичастичного транспорта в СП и нормальном состоянии использовались методы туннельной спектроскопии контактов типа сверхпроводник—сужение—сверхпроводник (ScS) и ЭНМАОспектроскопии SnS-контактов (где п — тонкий нормальный металл).

В ScS-контакте малой емкости с размером $d < 2\xi_0$ (ξ_0 — длина когерентности) и перекрытием фаз волновых функций СП-конденсатов внутри туннельного барьера на вольтамперной характеристике (ВАХ) при смещении eV = 0 ниже $T_{\rm c}$ присутствует вертикальная сверхтоковая ветвь. Амплитуда сверхтока $I_{\rm c}$ определяется температурной зависимостью СП-параметра порядка $\Delta(T)$ по формуле Амбегаокара-Баратова [14] и пропорциональна концентрации куперовских пар $\rho_{\rm S}(T)$ из теории БКШ

$$I_{\rm c}(T) = \frac{\pi}{2} \frac{\Delta(T)}{eR_{\rm N}} \tanh \frac{\Delta(T)}{2k_{\rm B}T} \propto \rho_{\rm s}(T).$$
 (1)

При превышении критического тока $I_{\rm c}$ (с использованием источника постоянного тока) на BAX наблюдается горизонтальный перескок ("срыв") на квазичастичную ветвь. В двухзонном приближении можно записать

$$rac{I_{
m c}(T)}{I_{
m c}(0)} = \omega \delta_{
m L}(T) \; {
m tanh} \; rac{\Delta_{
m L}(T)}{2k_{
m B}T} + (1-\omega)\delta_{
m S}(T) \; {
m tanh} \; rac{\Delta_{
m S}(T)}{2k_{
m B}T},$$

$$\delta(T) \equiv \frac{\Delta(T)}{\Delta(0)},\tag{2}$$

где $R_{\rm N}\equiv 1/G_{\rm N}$ — нормальное сопротивление контакта при ${
m eV}\gg 2\Delta(0),\;$ а весовой вклад зоны с большой СП-щелью

$$\omega = \frac{G_{\rm L}\Delta_{\rm L}(0)}{G_{\rm L}\Delta_{\rm L}(0) + G_{\rm S}\Delta_{\rm S}(0)}.$$
 (3)

В контакте типа сверхпроводник-тонкий нормальный металл-сверхпроводник (SnS) с размером $l > d > \xi_0$ $(l - {\rm xарактерная} \ {\rm длина} \ {\rm неупругого} \ {\rm pacceяния})$ и, следовательно, отсутствием фазовой когерентности между СП-берегами, ниже T_c реализуется ЭНМАО [15–18]. Ha BAX SnS-контакта при eV = 0 *отсутствует сверх*токовая ветвь, при этом в случае высокой прозрачности туннельного барьера (T > 80%, соответствующий барьерный параметр Z < 0.5) наблюдается участок повышенного наклона (т.н. "пьедестал"): проводимость при нулевом смещении $G_{\rm ZBC}$ конечна, однако может в несколько раз превышать G_N [16–18]. Во всем диапазоне смещений наблюдается андреевский избыточный ток $I_{\rm exc}(V,T)\equiv I(V,T)-I(V,T_{\rm c}),$ стремящийся к постоянному значению при $eV\gg 2\Delta(0)$ [15,16]. Для "идеального" контакта (с Z=0 и параметром размытия $\Gamma=\hbar/(2\tau)=0,~\tau$ — характерное время неупругого рассеяния электронов) на базе однозонного классического сверхпроводника температурные зависимости андреевского избыточного тока $I_{\rm exc}(T)$ при ${\rm eV}\gg 2\Delta(0)$ и андреевской проводимости при нулевом смещении $G_{\rm ZBC}^{\rm A}(T)\equiv (G_{\rm ZBC}(T)/G_{\rm N}-1)$ определяется зависимостью СП-щели $\Delta(T)$ [15,19,20]:

$$I_{\rm exc}(T) = \frac{8}{3} \frac{G_{\rm N}}{e} e^{-\frac{d}{l}} \Delta(T) \tanh \frac{\rm eV}{2k_{\rm B}T}, \tag{4}$$

$$G_{\rm ZBC}^{\rm A}(T) = G_{\rm N} \frac{l}{d} \tanh \frac{\Delta(T)}{2k_{\rm B}T}.$$
 (5)

Из-за большого числа неизвестных параметров реального контакта (d,l,Z,Γ) их оценка из эксперимента на основе анализа абсолютных величин $I_{\rm exc}(T)$ и $G_{\rm ZBC}^{\rm A}(T)$ затруднена. Тем не менее, возможно исследование температурных трендов этих величин. В двухзонном приближении нормированные формулы (4),(5) могут быть записаны как [21]

$$\frac{I_{\rm exc}(T)}{I_{\rm exc}(0)} = \varphi \delta_{\rm L}(T) + (1 - \omega)\delta_{\rm S}(T), \ \delta(T) \equiv \frac{\Delta(T)}{\Delta(0)}, \ \ (6)$$

$$\frac{G_{\rm ZBC}^{\rm A}(T)}{G_{\rm ZBC}^{\rm A}(0)} = \chi \tanh \frac{\Delta_{\rm L}(T)}{2k_{\rm B}T} + (1-\chi) \tanh \frac{\Delta_{\rm S}(T)}{2k_{\rm B}T}. \tag{7}$$

Весовой коэффициент χ зависимости $G_{\rm ZBC}^{\rm A}(T)$ соответствует парциальной нормальной проводимости $G_{\rm L}$ зоны с большой СП-щелью [21]

$$\chi = \frac{G_{\rm L}}{G_{\rm N}} \equiv \frac{G_{\rm L}}{G_{\rm L} + G_{\rm S}},\tag{8}$$

при этом весовой коэффициент ϕ зависимости $I_{\rm exc}(T)$ приблизительно равен

$$\varphi \approx \frac{G_{\rm L}\Delta_{\rm L}(0)}{G_{\rm L}\Delta_{\rm L}(0) + G_{\rm S}\Delta_{\rm S}(0)}.$$
 (9)

Парциальная проводимость зоны с большой СП-щелью может быть оценена по данным $I_{\rm exc}(T)$ (т.е. величина $\chi_{\rm exc}$) или по данным $I_{\rm c}(T)$ (величина $\chi_{\rm Ic}$) как [21]

$$\chi_{\rm exc} \approx \left[\left(\frac{1}{\varphi} - 1 \right) \frac{\Delta_{\rm L}(0)}{\Delta_{\rm S}(0)} + 1 \right]^{-1}.$$
(10)

На спектре динамической проводимости SnS-контакта высокой прозрачности ЭНМАО вызывает появление субгармонической щелевой структуры (СГС) [15,16]: минимумов dI(V)/dV при смещениях

$$eV_n(T) = \frac{2\Delta(T)}{n},\tag{11}$$

где n — натуральное число. Согласно [16], положение V_n андреевских минимумов напрямую определяется величиной СП-щели $\Delta(T)$ при любых температурах вплоть до $T_{\rm c}$. Для SnS-контакта на базе многощелевого сверхпроводника, на dI(V)/dV-спектре ожидается

появление нескольких СГС, положение которых соответствует $\Delta_i(T)$. При $T\to 0$ число n^* наблюдаемых на dI(V)/dV-спектре планарного SnS-контакта минимумов для каждой зоны (для случая Z, $\Gamma=0$) приблизительно соответствует отношению l/d вдоль кристаллографического c-направления [16], а также отношению андреевской проводимости при нулевом смещении к нормальной [19,20] $n^*\approx l/d\approx G_{\rm ZBC}^{\rm A}/G_{\rm N}$ и уменьшается в реальном контакте с малыми, однако ненулевыми Z [15] и Γ .

Исследование планарных SnS-контактов с баллистическим транспортом ($d < l^{\rm el}$ вдоль ab-плоскости, где $l^{\rm el}$ — длина свободного пробега) позволяет получить информацию о возможной анизотропии СП-щели в $k_x k_y$ -плоскости импульсного пространства Согласно расчетам [22], форма андреевских особенностей СГС может меняться в зависимости от типа симметрии СП-параметра порядка сверхпроводника. Резкие интенсивные минимумы ожидаются на dI(V)/dV-спектре SnSконтакта на базе сверхпроводника с изотропной СП щелью (*s*-волновая симметрия). В то же время, в случае анизотропии СП-щели в к-пространстве (зависимости $\Delta(\theta)$, где θ — направление импульса) амплитуда особенностей подавляется: для СП-щели с точками нулей (например, *d*-волновой симметрией) амплитуда минимумов СГС не превышает $\sim (5-10\%)G_{\rm N}$ [22]. Численные расчеты в рамках подхода [22] показали, что для случая расширенной s-волновой симметрии СП-щели без нулей (спектр № 2 на рис. 4 в [23]) ожидаются протяженные особенности — дублеты, состоящие из двух минимумов, соединенных "аркой". Положение минимумов напрямую определяется максимальной (Δ^{out}) и минимальной (Δ^{in}) энергиями связи куперовских пар в зависимости от направления импульса. Степень анизотропии далее оценена как $A \equiv 100\% \cdot [1 - (\Delta^{in}/\Delta^{out}].$

Туннельные структуры вышеуказанных типов создавались с помощью техники "планарный механически регулируемый контакт на микротрещине" [23], которая является модификацией классической техники "breakjunction" [24] применительно к слоистым соединениям. Особенности используемой конфигурации, преимущества и недостатки метода подробно обсуждаются в обзоре [23].

На образец, подготовленный в форме прямоугольной пластинки размером $3\times 1.5\times 0.3~\mathrm{mm}^3$, с помощью жидкого при комнатной температуре In-Ga припоя были нанесены 4 контакта, которые фиксировали образец на пружинящем П-образном столике из бериллиевой бронзы. Далее столик с образцом охлаждался до $T=4.2~\mathrm{K}$ и прецизионно изгибался, что способствовало раскалыванию образца. Образование микротрещины контролировалось в реальном времени по появлению конечного наклона BAX образца.

В общем случае микротрещина, разделяющая два массивных СП-берега, представляет собой структуру типа сверхпроводник—барьер—сверхпроводник (ScS). В процессе эксперимента трещина остается "закрытой", т.е. части образца не разводятся на значительное расстояние в отличие от классической техники. Это защищает криогенный скол от деградации и проникновения примесей, что позволяет получать туннельные контакты высокого качества и наблюдать объемную СП-щель, не подверженную влиянию поверхностных эффектов. Путем тонкой механической подстройки, варьируя изгиб столика, возможно менять точку соприкосновения берегов и получать десятки туннельных контактов на одном и том же образце, что необходимо для набора статистики данных и проверки воспроизводимости определенных величин СП-щели. В зависимости от прозрачности и толщины барьера, на контактах на микротрещине возможна реализация различных методов спектроскопии.

В общем случае в поликристаллах скол проходит вдоль межзеренных границ. Однако, как было показано нами ранее [23], в поликристаллах слоистых соединений при силе связи зерен, превышающей межслоевую связь, возможно раскалывание отдельных кристаллических зерен, в которых кристаллографические аb-плоскости ориентированы вдоль трещины. На поверхности таких расколотых зерен наблюдаются ступенькии-террасы, характерные для любых слоистых соединений (рис. 2 в [23]), на которых могут быть получены планарные ScS-контакты с протеканием тока вдоль кристаллографического с-направления. По нашим оценкам для моно- и поликристаллов родственных слоистых соединений [23,25,26], размер контактной области порядка 10-50 nm оказывается много меньше средней ширины террасы ($\sim 100-500\,\mathrm{nm}$) и размера кристаллических зерен (до 1 мкм). Для планарного контакта условие наблюдения ЭНМАО должно выполняться вдоль c-направления ($l_{\rm c} > d_{\rm c}$). Зависимость энергии связи куперовских пар от направления импульса может быть разрешена в $k_x k_y$ -плоскости при условии баллистического пролета квазичастиц $l_{ab}^{\mathrm{el}} > d_{ab}$, при этом вдоль k_z -направления имеет место "перемешивание" носителей заряда и усреднение величины $\Delta(k_z)$ [23].

3. Результаты

На рис. 1 приведены ВАХ (линия оранжевого цвета, правая вертикальная ось) и соответствующий dI(V)/dV-спектр (линия красного цвета, левая ось) SnS-контакта на микротрещине, полученного при $T=3.1\,\mathrm{K}\ll T_\mathrm{c}$ в поликристалле CaKFe₄As₄. ВАХ практически симметрична относительно нуля, не содержит "срывов" и гистерезисов. На ВАХ при eV = 0 отсутствует сверхтоковая ветвь и наблюдается участок увеличенного наклона, "пьедестал". Во всем диапазоне смещений данная кривая проходит выше ВАХ того же контакта, измеренной при $T = 36 \,\mathrm{K} > T_{\mathrm{c}}$ (штриховая линия), т.е. имеет избыточный ток. При больших смещениях наклоны BAX, измеренных ниже и выше T_c , примерно совпадают, т. е. андреевский избыточный ток стремится к постоянному значению. Данные особенности ВАХ однозначно указывают на реализацию ЭНМАО-режима высо-

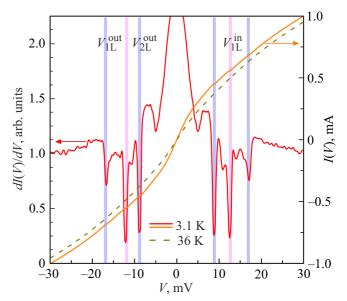


Рис. 1. ВАХ (правая вертикальная ось) и dI(V)/dV-спектр (левая ось) SnS-андреевского контакта в поликристалле слоистого пниктида CaKFe₄As₄, измеренные при $T=3.1\,\mathrm{K}\ll T_\mathrm{c}$. Положение фундаментальной (n=1) гармоники $V_{1\mathrm{L}}^\mathrm{out}$ и второй (n=2) субгармоники $V_{2\mathrm{L}}^\mathrm{out}$ от СП-параметров порядка $2\Delta_{\mathrm{L}}^\mathrm{out}(0)\approx 17.4\,\mathrm{meV}$ отмечено вертикальными линиями голубого цвета, фундаментальной гармоники $V_{1\mathrm{L}}^\mathrm{in}$ от СП-параметра порядка $2\Delta_{\mathrm{L}}^\mathrm{in}(0)\approx 12.2\,\mathrm{meV}$ — линиями розового цвета. Для сравнения приведена ВАХ того же контакта, полученная выше T_c (штриховая линия).

кой прозрачности в соответствии со всеми имеющимися теоретическими представлениями [15–20]. Наблюдаемое $I_{\rm exc}(V) \to {\rm const}$ при больших смещениях ${\rm eV} \gg 2\Delta(0)$ также соответствует примерному постоянству нормального сопротивления $R_{\rm N}(T) \to {\rm const}$ с температурой, что говорит об отсутствии локального перегрева и о реализации баллистического пролета квазичастиц через контакт.

На соответствующем dI(V)/dV-спектре присутствуют резкие минимумы при смещениях примерно 17.4, 12.2 и 8.7 mV (линии голубого и розового цвета на рис. 1), которые не соответствую формуле (11) и не могут принадлежать к одной СГС от изотропной СП-щели. При $|V| > 18\,\mathrm{mV}$ спектр имеет гладкий вид. Полагая каждый из двух минимумов, расположенные при максимальных смещениях $|V_{1L}^{\rm out}| \approx 17.4\,{\rm mV}$ и $|V_{1L}^{\rm in}| \approx 12.2\,{\rm mV}$, дублетом от фундаментальной андреевской гармоники $(n_i = 1)$, можно напрямую определить две характерные энергии связи куперовских пар $2\Delta_{\rm L}^{\rm out}(0)\approx 17.4\,{\rm meV}$ и $2\Delta_{\rm I}^{\rm in}(0)\approx 12.2\,{\rm meV}$, соответствующие анизотропному распределению СП-щели в к-пространстве. Минимум, расположенный на вдвое меньшем смещении $|V_{2\mathrm{L}}^{\mathrm{out}}| pprox |V_{1\mathrm{L}}^{\mathrm{out}}|/2 pprox 8.7\,\mathrm{mV}$, можно интерпретировать как вторую (n=2) субгармонику от Δ_L^{out} . Вторая субгармоника от $\Delta_{\rm L}^{\rm in}$, ожидаемая при $|V_{2\rm L}^{\rm in}| \approx 6.1\,{\rm mV}$, примерно перекрывается с началом пьедестала (соответствующим

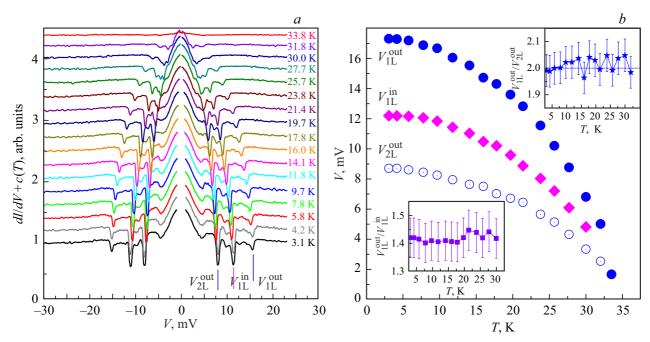


Рис. 2. a - dI(V)/dV-спектр SnS-андреевского контакта (показанного на рис. 1), измеренный при T = 3.1 - 33.8 К. Для удобства рассмотрения dI(V)/dV нормированы на соответствующий спектр при $T>T_{\rm c}$ и вручную сдвинуты по вертикали. Вертикальными штрихами при $T=3.1\,\mathrm{K}$ отмечено положение андреевских гармоник $V_{1\mathrm{L}}^{\mathrm{out}}$, $V_{2\mathrm{L}}^{\mathrm{out}}$ и $V_{1\mathrm{L}}^{\mathrm{in}}$. b — температурные зависимости положений андреевских особенностей V_{1L}^{out} и V_{2L}^{out} (темные и светлые кружки), V_{1L}^{in} (ромбы). На верхней вставке показано отношение смещений первой и второй андреевских особенностей $V_{1\mathrm{L}}^{\mathrm{out}}/V_{2\mathrm{L}}^{\mathrm{out}}$ от температуры, на нижней вставке — отношения $V_{1\mathrm{L}}^{\mathrm{out}}/V_{1\mathrm{L}}^{\mathrm{in}}$.

минимуму dI(V)/dV при $|V| \approx 5.3\,\mathrm{mV})$ и вероятно по этой причине не разрешена как отдельная особенность.

Температурная эволюция dI(V)/dV-спектра SnS-контакта на рис. 1 показана на рис. 2, а. Как отмечено выше, нормальное сопротивление контакта остается примерно постоянным с увеличением температуры, однако для удобства рассмотрения андреевских структур спектры на рис. 2, а вручную сдвинуты по вертикали. При увеличении температуры амплитуды всех андреевских особенностей, а также пьедестала $G_{\rm ZBC}$ уменьшается, а их положение смещается в сторону нуля. При $T = 33.8 \, {\rm K}$ (верхняя кривая на рис. 2) спектр сглаживается и не имеет андреевских особенностей, что означает отсутствие куперовских пар и переход контактной области в нормальное состояние, определяя ее локальную критическую температуру $T_{\rm c}^{\rm local}$.

Зависимость положений основных особенностей динамической проводимости от температуры по данным рис. 2, a показана на рис. 2, b. Особенности при V_{1L}^{out} и V_{2L}^{out} (сплошные и открытые кружки) имеют схожее температурное поведение, причем их положение отличается примерно в два раза во всем температурном диапазоне вплоть до T_c , как показано на верхней вставке к рис. 2, b. Это подтверждает сделанный ранее вывод о том, что особенность при $V_{2\mathrm{L}}^{\mathrm{out}}$ является второй субгармоникой от V_{1L}^{out} , напрямую определяя зависимость одного и того же СП-параметра порядка $2\Delta_{\rm L}^{
m out}(T)$ от температуры. Вместе с тем, особенность при смещении $V_{1\mathrm{L}}^{\mathrm{in}}$, определяющая зависимость $2\Delta_{\rm L}^{\rm in}(T)$, также имеет схожий температурный тренд: отношение $\Delta_{
m L}^{
m out}(T)/\Delta_{
m L}^{
m in}(T)$ остается примерно постоянным в диапазоне от $T=3.1\,\mathrm{K}$ до T_{c} (нижняя вставка на рис. 2, b). Температурный ход минимума при млых смещениях $|V(0)| \approx 5.3 \,\mathrm{mV}$ в целом повторяет форму зависимостей андреевских особенностей от $\Delta_{\rm I}^{\rm out}$ и $\Delta_{\rm I}^{\rm in}(T)$, поэтому данную особенность можно интерпретировать как начало пьедестала, а не фундаментальную гармонику от малой СП-щели.

Дублетные андреевские особенности (два близко расположенных минимума) со схожей температурной эволюцией $(\Delta_{\rm L}^{
m out}(T)/\Delta_{\rm L}^{
m in}(T) pprox {
m const})$ воспроизводимо наблюдались нами на dI(V)/dV-спектрах SnS-контактов в железосодержащих сверхпроводниках EuCsFe₄As₄ родственного семейства 1144 [27,28], Ba(Fe,Ni)₂As₂ изоструктурного семейства 122 [25], а также в пниктидах LiFeAs и Na(Fe,Co)As на основе щелочных металлов [29,30]; напротив, воспроизводимо не наблюдалась, например, в оксипниктидах системы 1111 [26]. В общем случае можно предложить два сценария появления подобных дублетов.

1. Наличие двух изотропных СП-щелей $\Delta_{\rm L}^{\rm out}$ и $\Delta_{\rm L}^{\rm in}$, открывающихся на разных листах поверхности Ферми, амплитуды которых отличаются в 1.3-1.5 раз. Согласно классическому БКШ-образному многозонному подходу — системе уравнений Москаленко и Сула [31,32] постоянство отношения Δ_1/Δ_2 во всем температурном диапазоне реализуется в единственном случае нулевого детерминанта матрицы констант связи λ_{ij} . Хотя подобный сценарий нельзя исключать для конкретного сверх-

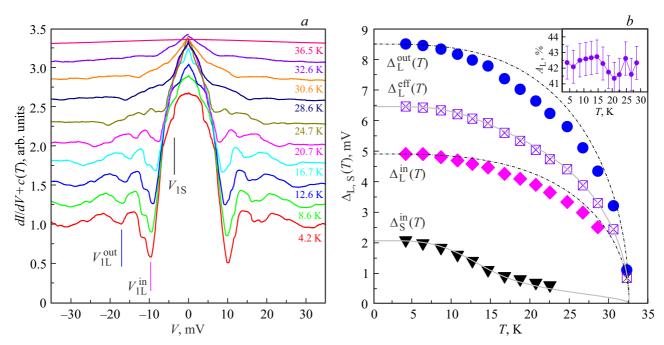


Рис. 3. a-dI(V)/dV-спектры SnS-андреевского контакта на базе поликристалла CaKFe₄As₄, измеренные при T=3.1-33.8 К. Для удобства рассмотрения dI(V)/dV нормированы на соответствующий спектр при $T>T_c$ и вручную сдвинуты по вертикали. Вертикальными штрихами при T=3.1 К отмечено положение фундаментальных андреевских гармоник $V_{\rm IL}^{\rm out}$, $V_{\rm IL}^{\rm in}$ и $V_{\rm IS}$ от СП-параметров порядка $2\Delta_{\rm L}^{\rm out}(0)\approx 17$ meV, $2\Delta_{\rm L}^{\rm in}(0)\approx 10$ meV, $2\Delta_{\rm S}(0)\approx 4$ meV. b— температурные зависимости СП-параметров порядка $V_{\rm L}^{\rm out}(T)$, $V_{\rm L}^{\rm in}$ и $V_{\rm S}$ (кружки, ромбы, треугольники соответственно). Зависимость эффективной большой СП-щели, оцененная как $\Delta_{\rm L}^{\rm eff}(T)\equiv \sqrt{\left(\Delta_{\rm L}^{\rm in}(0)\Delta_{\rm L}^{\rm out}(0)\right)}\delta_{\rm L}^{\rm out}(T)$, приведена квадратами. Сплошные линии — аппроксимация двухзонной БКШ-образной моделью с поправками сильной связи. На вставке показана величина предположительной анизотропии большой СП-щели $A_{\rm L}\equiv 100$ % $\left[1-\Delta_{\rm L}^{\rm in}/\Delta_{\rm L}^{\rm out}\right]$ в зависимости от температуры.

проводника, его одновременная реализация в пниктидах трех семейств [25,27–30] кажется маловероятной.

2. Наличие единого СП-конденсата с анизотропией параметра порядка $\Delta_{\rm L}$ в зависимости от направления импульса. В этом случае два минимума на dI(V)/dV-спектре представляют собой единую протяженную особенность (дублет), а характерные энергии $\Delta_{\rm L}^{\rm out}$ и $\Delta_{\rm L}^{\rm in}$ соответствуют экстремумам углового распределения $\Delta_{\rm L}(\theta)$ в $k_x k_y$ -плоскости.

3. Эмиссия какой-либо квазичастицы с энергией $\varepsilon_1 = \Delta_{\rm L}^{\rm out} - \Delta_{\rm L}^{\rm in}$ создаст второй минимум (с большей энергией) для тех андреевских электронов, которые излучили эту квазичастицу и потратили энергию ε_1 в процессе ЭНМАО. В этом случае ε_1 может собственную, более слабую зависимость от T, не связанную с $\Delta(T)$. Тогда при $T \to T_{\rm c}$ получим сильно отличающееся отношение положений особенностей $V_{\rm L}^{\rm in}/V_{\rm L}^{\rm out} \to 0$, что в нашем случае не наблюдается.

На рис. 3,a показано температурное поведение dI(V)/dV-спектра другого SnS-контакта, полученного в поликристалле CaKFe₄As₄ из той же закладки. При $T=4.2\,\mathrm{K}\ll T_\mathrm{c}$ (нижняя кривая на рис. 3,a) можно видеть дублет фундаментальной андреевской гармоники, содержащий минимумы динамической проводимости при $|V_\mathrm{1L}^\mathrm{out}(0)|\approx 17\,\mathrm{mV}$ и $|V_\mathrm{1L}^\mathrm{in}(0)|\approx 10\,\mathrm{mV}$ (вертикальные штрихи синего и фиолетового цвета).

При малых смещениях $|V_{\rm 1S}(0)| \approx 4\,\mathrm{mV}$ присутствует особенность, положение которой не соответствует n = 2 субгармоникам от предположительных экстремумов большой щели и имеет принципиально другую температурную зависимость (см. ниже). Эта особенность может быть интерпретирована как фундаментальная гармоника от малой СП-щели $\Delta_{\rm S}(0) \approx 2\,{\rm meV}$. Подобные дублеты для малого СП-параметра порядка не наблюдаются на полученных нами dI(V)/dV-спектрах SnSконтактов. Вместе с тем, в среднем амплитуда СГС от малой СП-щели в разы меньше по сравнению с интенсивными минимумами от Δ_L . Это может быть вызвано как меньшей длиной свободного пробега носителей или сильным неупругим рассеянием в зонах с малой СП-щелью, так и ее сильной анизотропией (с возможным наличием нулей) в импульсном пространстве. Также известно, что амплитуда особенностей на спектрах динамической проводимости андреевских контактов пропорциональна концентрации куперовских пар [16,18]. Такая малая амплитуда говорит о небольшой концентрации куперовских пар, а выше $T_{\rm c}$ — о небольшой концентрации электронов проводимости в зонах, где реализуется малая щель.

Напрямую определенные по данным рис. 3, a температурные зависимости трех СП-параметров порядка показаны на рис. 3, b. Как и для рассмотренного выше SnS-

контакта (рис. 2, b), зависимости предположительных экстремумов анизотропной большой СП-щели $\Delta_{\rm L}^{\rm out}(T)$ и $\Delta_{\rm L}^{\rm in}(T)$ (кружки и ромбы на рис. 3, b) в целом повторяют однозонное БКШ-образное поведение (штрихпунктирные линии на рис. 3, b), однако проходят немного ниже. Степень предположительной анизотропии $\Delta_{\rm L}$ в k-пространстве $A_{\rm L}\approx 42\,\%$ практически не меняется с увеличением температуры вплоть до $T_{\rm c}$ (в пределах ошибки $\pm 1\,\%$), как показано на вставке к рис. 3, b. Малая СП-щель $\Delta_{\rm S}(T)$ (треугольники на рис. 3, b) начинает более резко закрываться при температурах $T\approx 10-15\,{\rm K}$, далее плавно тянется к $T_{\rm c}$, образуя "хвост".

Подобное температурное поведение большой и малой СП-щели, согласно [31–33], характерно для случая относительно слабого межзонного взаимодействия СП-конденсатов в k-пространстве. Для аппроксимации полученных напрямую температурных зависимостей $\Delta_{\rm L}^{\rm out}(T)$, $\Delta_{\rm L}^{\rm in}(T)$ и $\Delta_{\rm S}(T)$ моделью на основе уравнений Москаленко и Сула [18-20] с поправками сильной связи [33] в качестве грубой оценки была использована "эффективная" изотропная большая СП щель $\Delta_{\rm L}^{\rm eff}(T)$. Принимая во внимание схожий температурный тренд $\delta_{
m L}^{
m out}(T)pprox \delta_{
m L}^{
m in}(T)\equiv \delta_{
m L}(T)$ (где $\delta(T) \equiv \Delta(T)/\Delta(0)$), температурная зависимость $\Delta_{\rm I}^{\rm eff}(T)$, показанная квадратами на рис. 3, b, была оценена как $\delta_{\rm L}^{\rm eff}(T) \equiv \delta_{\rm L}(T)$, а ее низкотемпературное значение как $\Delta_{\rm L}^{\rm eff}(0) \equiv \sqrt{\left(\Delta_{\rm L}^{\rm out}(0)\Delta_{\rm L}^{\rm in}(0)\right)}$. Как видно из рис. 3, b, теоретические кривые (сплошные линии) с хорошей точностью описывают данные $\Delta_{\mathrm{L}}^{\mathrm{eff}}(T)$ и $\Delta_{\mathrm{S}}(T)$ во всем температурном диапазоне. Локальная критическая температура контакта $T_c^{\mathrm{local}} \approx 32.6\,\mathrm{K}$ была оценена как температура, при которой аппроксимационные $\Delta_{\rm L}^{\rm eff}(0)$ и $\Delta_{\rm S}(T)$ зависимости обращаются в ноль.

Эти гладкие аппроксимационные кривые (сплошные линии на рис. 3,b) были использованы далее в качестве температурных зависимостей большой и малой СП-щелей для анализа зависимостей $I_{\rm c}(T)$, $I_{\rm exc}(T)$ и $G_{\rm ZBC}^A(T)$ в рамках предложенного выше двухзонного приближения с использованием формул (2),(6)-(7) соответственно. Таким образом, мы сохраняли характеристические отношения $2\Delta_i(0)/k_{\rm B}T_{\rm c}$, полученные из ЭНМАО-эксперимента, а единственным подгоночным параметром являлся весовой коэффициент.

На рис. 4 показано изменение BAX того же SnS-контакта (рис. 3) при повышении температуры. BAX, измеренная при $T=34.5~{\rm K}>T_{\rm c}^{\rm local}$ практически гладкая и не содержит андреевских особенностей. На основе данных I(V,T) на вставке к рис. 4 показаны зависимости андреевского избыточного тока $I_{\rm exc}(V)$ при различных температурах, определенные как разность между $I(V,T<T_{\rm c})$ и BAX в нормальном состоянии $I(V,T=34.5~{\rm K})$, показанной светло-розовым цветом. Хорошо заметные особенности $I_{\rm exc}(V)$ при малых смещениях соответствуют андреевским гармоникам на dI(V)/dV-спектре (рис. 3, a), а при больших смещениях $|{\rm eV}|>2\Delta_{\rm L}^{\rm out}(T)$ избыточный ток стремится к постоянному значению в соответствии с предсказаниями [15,16]

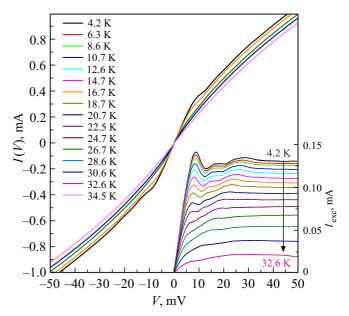


Рис. 4. BAX SnS-андреевского контакта на базе поликристалла CaKFe₄As₄, измеренные при T=4.2-34.5 К. На вставке показан андреевский избыточный ток $I_{\rm exc}(V)\equiv I(V,T)-I(V,T_{\rm c})$ при различных температурах.

и указывая на баллистический режим квазичастичного транспорта ($R_{
m N}(T) \approx {
m const}$). С увеличением температуры андреевский избыточный ток при больших смещениях уменьшается, обращаясь в ноль выше $T_{
m c}^{
m local}$ при всех смещениях V.

Нормированная температурная зависимость андреевского избыточного тока $I_{\rm exc}(T)/I_{\rm exc}(0)$, показана кружками на рис. 5, a. Для учета конечного фиксированного смещения ${\rm eV}=50$ meV, при котором было взято значение избыточного тока при всех температурах, значения $I_{\rm exc}(T)$ также были нормированы на $\tanh[{\rm eV}/(k_{\rm B}T)]$ в соответствии с формулой (4). Предельные случаи $\phi=0,1$ показаны на рис. 5, a штрихпунктирной и штриховой линиями. Экспериментальная зависимость $I_{\rm exc}(T)/I_{\rm exc}(0)$ описывается формулой (6) наилучшим образом (серая сплошная линия на рис. 5, a) с весовым коэффициентом $\phi=0.82$, таким образом, вклад зон с эффективной большой щелью в общую проводимость, согласно формуле пересчета коэффициентов (10), можно оценить, используя значения $\Delta_{\rm eff}^{\rm eff}(0)$ и $\Delta_{\rm S}(0)$, как $\chi_{\rm exc}=0.64$.

Андреевская проводимость при нулевом смещении $G_{\mathrm{ZBC}}^{\mathrm{A}}(T)/G_{\mathrm{ZBC}}^{\mathrm{A}}(0)$, нормированная на свое значение при $T \ll T_{\mathrm{c}}$, для того же контакта показана на рис. 5, b кружками. При температурах порядка 12 К наблюдается заметный "прогиб", вызванный вкладом квазичастичного транспорта зон с малой СП-щелью, и его подавление неупругим рассеянием при росте T. Полученная зависимость может быть описана в рамках двухзонного приближения (7), причем оцененный парциальный вклад "ведущей" зоны с большой СП-щелью $\chi=0.7$ (сплошная линия на рис. 5, b).

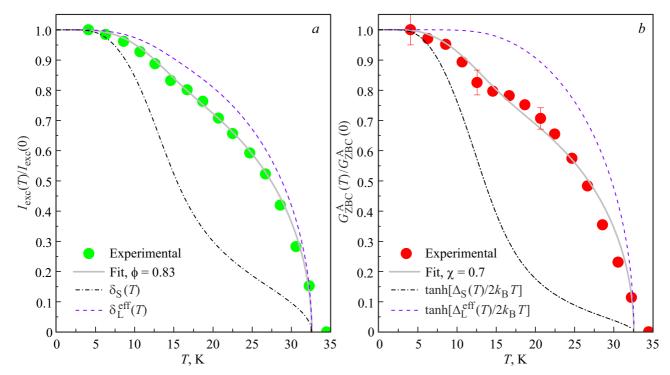


Рис. 5. Температурные зависимости андреевской проводимости при нулевом смещении (a) и андреевского избыточного тока (b) по данным рис. 4. Предельные случаи ϕ , $\chi = 1$ и ϕ , $\chi = 0$ на основе аппроксимационных кривых $\Delta_L^{\text{eff}}(T)$ и $\Delta_S(T)$ (рис. 3, b) показаны штриховой и пунктирной линией соответственно; аппроксимации формулами (6), (7) — сплошными линиями.

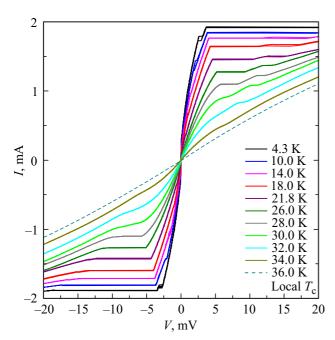


Рис. 6. ВАХ сверхпроводящей закоротки, подключенной последовательно с SnS-андреевским контактом на базе поли-кристалла CaKFe₄As₄. Измерено в диапазоне $T=4.2-36.0\,\mathrm{K}$. Токовые плато на BAX соответствуют критическим токам перехода СП-закоротки в нормальное состояние с конечным сопротивлением. Штриховой линией показана BAX этого туннельного контакта в нормальном состоянии при локальной $T_{\rm c}=36.0\,\mathrm{K}$.

На рис. 6 показано семейство ВАХ в диапазоне температур $T = 4.3 - 36.0 \,\mathrm{K}$ гибридного туннельного контакта, состоящего из СП-закоротки (ScS), подключенной последовательно с SnS-андреевским контактом. Образование гибридных туннельных структур, в которых те или иные контакты подключены последовательно или параллельно, становится возможным при применении техники "break-junction" на поликристаллах. Подобный вид ВАХ, при котором центральная часть стремится, но не достигает вертикали, при определенном критическом токе I^* "срывается" на токовое плато, а при больших токах (см. ВАХ, измеренную при $T = 4.3 \, \mathrm{K}$ в широком диапазоне смещений, на вставке к рис. 7, a) демонстрирует избыточный ток по сравнению с ВАХ в нормальном состоянии (штриховая линия на рис. 6), характерен для случая, когда сопротивление последовательно подключенного SnS-контакта $R_{
m N}^{
m SnS} \ll R_{
m N}^{
m ScS}$. Отметим, что при последовательном подключении SnS и ScSконтакта невозможно наблюдать строго вертикальную сверхтоковую ветвь. Тем не менее, в режиме источника тока изменение величины тока "срыва" с температурой $I^*(T)$ позволяет получить температурную зависимость критического тока сверхпроводника, которая примерно пропорциональна концентрации куперовских пар. Начиная с $T = 30 \,\mathrm{K}, \, I^*(T)$ определялся как ток, при котором наблюдается минимум производной dI(V)/dV.

Подобная зависимость $I^*(T) \equiv I_c(T)$, полученная по данным рис. 6, показана на рис. 7, a синими треугольниками. Для сравнения кружками приведена аналогичная

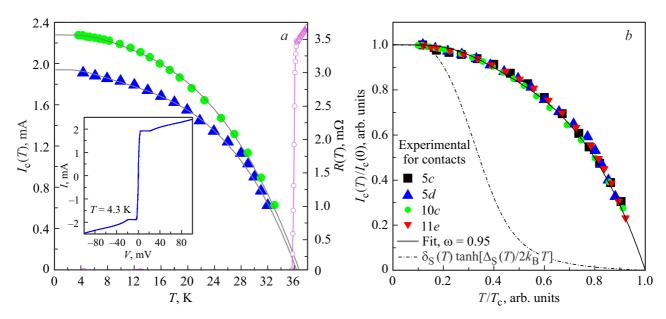


Рис. 7. a — температурные зависимости критического тока для двух СП-закороток на базе СаКFe₄As₄ (левая ось). Зависимость, построенная по данным рис. 6, приведена синими треугольниками; сплошные линии — упрощенная теоретическая аппроксимация $I_c(T)$. Светлые кружки — зависимость объемного сопротивления образца от температуры R(T) в районе перехода в СП-состояние (правая ось). На вставке показана ВАХ туннельного контакта с рис. 6 при $T=4.3\,\mathrm{K}$ в широком диапазоне напряжений смещения. b — зависимостиритического тока от температуры в нормированных координатах. Помимо экспериментальных данных с панели "а", красными треугольниками и черными квадратами приведены данные $I_c(T)/I_c(0)$ для двух других контактов на базе поликристалла СаКFe₄As₄. Предельный случай $\omega=0$ на основе аппроксимационной кривой $\Delta_{\mathrm{S}}(T)$ (рис. 3, b) показан пунктирной линией, аппроксимация формулой (2) показана сплошной линией.

Весовые коэффициенты ϕ , ω , χ — вклад зон с большой СП-щелью в зависимость андреевского избыточного тока, критического СП-тока и андреевской проводимости при нулевом смещении, соответственно. Для сравнения приведены вклады зон с $\Delta_{\rm L}^{\rm eff}$ в общую проводимость $\chi_{\rm exc}$ и $\chi_{\rm Ic}$, оцененные по данным $I_{\rm exc}(T)$ и $I_{\rm c}(T)$ соответственно

Данные $I_{ m exc}(T)$		Данные $I_{\mathrm{c}}(T)$		Данные $G_{\mathrm{ZBC}}^{\mathrm{A}}(T)$
ϕ	χехс	ω	ΧIc	χ
0.79-0.87	0.54-0.67	0.94-0.98	0.83-0.94	0.68-0.72

зависимость для последовательной ScS-SnS-структуры, полученной на другом образце CaKFe₄As₄ из той же закладки. Наблюдается схожесть их формы. Сплошные линии соответствуют упрощенной теоретической аппроксимации $I_{\rm c}(T)$ с использованием двух слагаемых на основе БКШ-образных зависимостей $\Delta(T)$, при этом использование только одного слагаемого не позволяет качественно описать экспериментальные данные. Видно, что обе аппроксимации стремятся к $T_{\rm c} \approx 36.3-36.7$ K, что отлично согласуется с R(T) объемного образца, показанным на рис. $T_{\rm c}$ 0 открытыми кружками.

Нами было получено несколько экспериментальных зависимостей $I^*(T)$, а данные, приведенные на рис. 7, b в нормированных координатах, представляют репрезентативную выборку этих результатов. Видна хорошая воспроизводимость. На рис. 7, b присутствуют оба набора данных с панели рис. 7, a, вид символов сохранен. Нами проведена аппроксимация этих зависимостей в рамках выражения (2); исходя из определений (3), (9), можно

заключить, что весовой коэффициент ω для зависимости $I_{\rm c}(T)$ должен соответствовать весовому коэффициенту ϕ зависимости $I_{\rm exc}(T)$. В результате оцененный диапазон ω составил 0.94-0.98 (рис. 7,b), тем не менее, соответствие ω и ϕ не наблюдается. Возможные причины этого обсуждаются ниже.

4. Обсуждение

Для удобства сравнения полученные весовые коэффициенты ω , $\chi_{\rm Ic}$, а также ϕ , $\chi_{\rm exc}$ и χ приведены в таблице.

Таким образом, вклад зон с большой СП-щелью в общую проводимость был оценен тремя способами: непосредственно как весовой коэффициент χ для зависимости $G_{\rm ZBC}^{\rm A}(T)$, а также, используя коэффициенты ϕ и ω , путем пересчета по формуле (9); величины обозначены как $\chi_{\rm exc}$ и $\omega_{\rm Ic}$, соответственно. Полученные диапазоны величин $\chi_{\rm exc}$ и χ оказались близки, что

говорит о качественной согласованности оценок парциальной проводимости эффективной зоны с большой СП-щелью в нормальном состоянии на основе анализа температурного поведения особенностей, вызванных ЭНМАО. Соответствие оценок $\chi_{\rm Ic}$ и χ оказалось хуже, их диапазоны не пересекаются, что может говорить о излишней упрощенности выражения (2), которое не учитывает соотношение геометрических размеров контакта с лондоновской глубиной проникновения, а также распаривающего влияния критических плотностей тока.

В целом, сравнивая величины χ_{exc} , χ_{Ic} и χ можно сделать вывод о доминировании вклада эффективных зон с большой СП-щелью в общую проводимость CaKFe₄As₄.

Следует учесть, что использованное изотропное двухщелевое приближение на основе формул (2), (6), (7) является серьезным упрощением, что ограничивает его применение к исследованию многозонного транспорта в такой сложной системе как $CaKFe_4As_4$ [3]. Тем не менее, наиболее физически корректной в данном случае представляется оценка χ_{exc} , полученная на основе анализа андреевского избыточного тока. Приведем несколько аргументов в пользу данного утверждения.

На dI/dV-спектрах на рис. 1-3 особенности от малой СП-щели почти не различимы, что создает определенные трудности исследования этого параметра порядка. С одной стороны, как было указано выше, это может быть вызвано малой концентрацией куперовских пар в соответствующих зонах. Последнее подтверждается данными таблицы, в особенности результатами аппроксимации зависимостей $I_{c}(T)$ (представленными на рис. 7, b), которые соответствуют небольшому вкладу от зон с малой щелью, в среднем менее 12%. Другим фактором подавления амплитуды особенностей от малой СП-щели на dI(V)/dV-спектрах SnS-контактов может быть ее сильная анизотропия в k-пространстве, в том числе с присутствием точек нулей в распределении [22,23]. В последнем случае, определяемый в ЭНМАО-эксперимента параметр порядка $\Delta_{\rm S} \equiv \Delta_{\rm S}^{\rm out}$, а $\Delta_{\rm S}^{\rm in} o 0$. В таком случае следует ожидать уменьшение весовых коэффициентов ω и χ , в то время как аппроксимация $I_{\rm exc}(T)$ и весовой коэффициент ϕ не изменятся.

Неупругое рассеяние, размывающее щелевые пики плотности электронных состояний, согласно подходу [19,20], практически не влияет на $I_{\rm exc}(T)$, при этом доминирует в динамике андреевских процессов именно в области "пьедестала", ограничивая его высоту, т. е. величину андреевской проводимости при нулевом смещении $G_{\rm ZBC}^{\rm A}$. Принимая во внимание увеличение $\Gamma(T)/\Delta(T)$ с температурой, не учитываемое в подходе [19,20], следует ожидать более быстрое понижение $G_{\rm ZBC}^{\rm A}(T)$ вблизи $T_{\rm c}$ по сравнению с предсказаниями формулы (7). Наконец, малая, однако ненулевая величина барьерного параметра Z, согласно [15], влияет только на абсолютное значение $I_{\rm exc}(0)$, не меняя его температурную зависимость.

Суммируя вышесказанное, аппроксимация именно $I_{\rm exc}(T)$ и оцененный весовой коэффициент ϕ представляются наиболее "устойчивыми" относительно учета

дополнительных параметров реального SnS-контакта на базе CaKFe₄As₄. В то же время, требуется расширение существующих теоретических представлений [19,20] для корректного описания $G_{\rm ZBC}^A(T)$ и разработка новых моделей, предсказывающих температурное поведение $I_{\rm c}(T)$ для случая планарного контакта или СП-закоротки малой толщины в слоистом сверхпроводнике.

Таким образом, можно оценить вклад зон с большой СП-щелью в общую проводимость как $\chi_{\rm exc}\approx 0.54-0.67$. Данное значение близко к $\chi_{122}\approx 0.5$, оцененному ранее с помощью ЭНМАО-спектроскопии [21] и инфракрасной Фурье-спектроскопии [34] в родственных пниктидах ${\rm Ba}({\rm Fe,Ni})_2{\rm As}_2$ семейства 122.

5. Выводы

Путем анализа особенностей I(V) и dI(V)/dV-характеристик различных туннельных структур, созданных в поликристаллах CaKFe₄As₄, определены амплитуды и температурные зависимости микроскопических сверхпроводящих параметров порядка $\Delta_i(T)$, а также зависимости андреевского избыточного тока $I_{\rm exc}(T)$, андреевской проводимости при нулевом смещении $G_{\rm ZBC}^{\rm A}(T)$ и сверхтока от температуры $I_{\rm c}(T)$. На основе проведенной тремя способами оценки парциальных проводимостей двух эффективных зон с использованием измеренных напрямую $\Delta_i(T)$ и сравнения полученных результатов оценен $\approx 54-67\,\%$ вклад зон с большой сверхпроводящей щелью в общую проводимость.

Благодарности

Работа выполнена при поддержке Российского научного фонда, проект № 24-72-10109. Измерения частично проведены с использованием оборудования Центра коллективного пользования Физического института им. П.Н. Лебедева РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- A. Iyo, K. Kawashima, T. Kinjo, T. Nishio, S. Ishida, H. Fujihisa, Y. Gotoh, K. Kihou, H. Eisaki, Y. Yoshida. J. Am. Chem. Soc. 138, 3410 (2016).
- [2] G. Mebratie, T. Negussie, G. Kahsay. Nano Select, 0:e202400124 (2024).
- [3] F. Lochner, F. Ahn, T. Hickel, I. Eremin. Phys. Rev. B 96, 094521 (2017).
- [4] D. Mou, T. Kong, W.R. Meier, F. Lochner, L.-L. Wang, Q. Lin, Y. Wu, S.L. Bud'ko, I. Eremin, D.D. Johnson, P.C. Canfield, A. Kaminski. Phys. Rev. Lett. 117, 277001 (2016).
- [5] W. Liu, L. Cao, S. Zhu, L. Kong, G. Wang, M. Papaj, P. Zhang, Y.-B. Liu, H. Chen, G. Li, F. Yang, T. Kondo, S. Du, G.-H. Cao, S. Shin, L. Fu, Z. Yin, H.-J. Gao, H. Ding. Nature Commun. 11, 5688 (2020).

- [6] R. Yang, Y. Dai, B. Xu, W. Zhang, Z. Qiu, Q. Sui, C.C. Homes, X. Qiu. Phys. Rev. B 95, 064506 (2017).
- [7] S.Z. Zhao, H.-Y. Song, L.L. Hu, T. Xie, C. Liu, H.Q. Luo, C.-Y. Jiang, X. Zhang, X.C. Nie, J.-Q. Meng, Y.-X. Duan, S.-B. Liu, H.-Y. Xie, H.Y. Liu. Phys. Rev. B 102, 144519 (2020).
- [8] K. Cho, A. Fente, S. Teknowijoyo, M.A. Tanatar, K.R. Joshi, N.M. Nusran, T. Kong, W.R. Meier, U. Kaluarachchi1, I. Guillamon, H. Suderow, S.L. Bud'ko, P.C. Canfield1, R. Prozorov. Phys. Rev. B 95, 100502(R) (2017).
- [9] L. Cao, Y. Song, Y.-B. Liu, Q. Zheng, G. Han, W. Liu, M. Li, H. Chen, Y. Xing, G.-H. Cao, H. Ding, X. Lin, S. Du, Y.-Y. Zhang, G. Li, Z. Wang, H.-J. Gao. Nano Research 14, 3921 (2021).
- [10] A. Fente, W.R. Meier, T. Kong, V.G. Kogan, S.L. Bud'ko, P.C. Canfield, I. Guillamon, H. Suderow. Phys. Rev. B 97, 134501 (2018).
- [11] E. Piatti, D. Torsello, F. Breccia, T. Tamegai, G. Ghigo, D. Daghero. Nanomaterials 14, 1319 (2024).
- [12] P.K. Biswas, A. Iyo, Y. Yoshida, H. Eisaki, K. Kawashima, A.D. Hillier. Phys. Rev. B 95, 140505(R) (2017).
- [13] R. Khasanov, W.R. Meier, Y. Wu, D. Mou, S.L. Bud'ko, I. Eremin, H. Luetkens, A. Kaminski, P.C. Canfield, A. Amato. Phys. Rev. B 97, 140503(R) (2018).
- [14] V. Ambegaokar, A. Baratoff. Phys. Rev. Lett. 10, 486 (1963).
- [15] M. Octavio, M. Tinkham, G.E. Blonder, T.M. Klapwijk. Phys. Rev. B 27, 6739 (1983).
- [16] R. Kümmel, U. Gunsenheimer, R. Nicolsky. Phys. Rev. B 42, 3992 (1990).
- [17] Z. Popovic, P. Miranovic. Eur. Phys. J. Plus 138, 767 (2023).
- [18] Z. Popovic, S.A. Kuzmichev, T.E. Kuzmicheva. J. Appl. Phys. 128, 013901 (2020).
- [19] U. Gunsenheimer, A.D. Zaikin. Phys. Rev. B 50, 6317 (1994).
- [20] U. Gunsenheimer, A.D. Zaikin. Europhys. Lett. **41**, 195 (1998).
- [21] T.E. Kuzmicheva, S.A. Kuzmichev, K.S. Pervakov, V.A. Vlasenko. JETP Lett. 112, 786 (2020).
- [22] T.P. Devereaux, P. Fulde. Phys. Rev. B 47, 14638 (1993).
- [23] С.А. Кузьмичев, Т.Е. Кузьмичева. Физика низких температур **42**, 1284 (2016). [S.A. Kuzmichev, Т.Е. Kuzmicheva. Low Temp. Phys. **42**, 1008 (2016).]
- [24] J. Moreland, J.W. Ekin. J. Appl. Phys. 58, 3888 (1958).
- [25] Т.Е. Кузьмичева, С.А. Кузьмичев, К.С. Перваков, В.А. Власенко. Письма в ЖЭТФ **118**, 526 (2023). [Т.Е. Kuzmicheva, S.A. Kuzmichev, K.S. Pervakov, V.A. Vlasenko. JETP Letters **118**, 514 (2023)].
- [26] T.E. Kuzmicheva, S.A. Kuzmichev, N.D. Zhigadlo. Phys. Rev. B 100, 144504 (2019).
- [27] С.А. Кузьмичев, К.С. Перваков, В.А. Власенко, А.Ю. Дегтяренко, С.Ю. Гаврилкин, Т.Е. Кузьмичева. Письма в ЖЭТФ **116**, 702 (2022). [S.A. Kuzmichev, K.S. Pervakov, V.A. Vlasenko, A.Yu. Degtyarenko, S.Yu. Gavrilkin, T.E. Kuzmicheva. JETP Letters **116**, 723 (2022).]
- [28] T. Kuzmicheva, K. Pervakov, V. Vlasenko, A. Degtyarenko, S. Kuzmichev. J. Supercond. Novel Magn. 37, 379 (2024).
- [29] S. Kuzmichev, T. Kuzmicheva, I. Morozov, A. Boltalin, A. Shilov. SN Appl. Sci. 4, 189 (2022).
- [30] С.А. Кузьмичев, И.В. Морозов, А.И. Шилов, Е.О. Рахманов, Т.Е. Кузьмичева. Письма в ЖЭТФ **120**, 130 (2024). [S.A. Kuzmichev, I.V. Morozov, A.I. Shilov, Ye.O. Rakhmanov, T.E. Kuzmicheva. JETP Lett. **120**, 125 (2024).]

- [31] В.А. Москаленко. Физ. мет. металловед. 8, 503 (1959).
 [V.A. Moskalenko. Phys. Met. Metallogr. 8, 25 (1959).]
- [32] H. Suhl, B.T. Matthias, L.R. Walker. Phys. Rev. Lett. 3, 552 (1959).
- [33] Т.Е. Кузьмичева, С.А. Кузьмичев. Физика низких температур **45**, 1366 (2019). [Т.Е. Kuzmicheva, S.A. Kuzmichev. Low Temp. Phys. **45**, 1161 (2019)].
- [34] Yu.A. Aleshchenko, A.V. Muratov, G.A. Ummarino, S. Richter, A.A. Thomas, R. Hühne. J. Phys.: Condens. Matter. 33, 045601 (2021).

Редактор Ю.Э. Китаев