01,07

Управление анизотропией дилатации в области мартенситного превращения в сплаве системы Ni-Mn-Ga-Si

© И.И. Мусабиров

Институт проблем сверхпластичности металлов РАН, Уфа, Россия

E-mail: irekmusabirov@mail.ru

Поступила в Редакцию 15 октября 2025 г. В окончательной редакции 29 октября 2025 г. Принята к публикации 30 октября 2025 г.

Мартенситное превращение в сплавах Гейслера может сопровождаться различными функциональными эффектами, перспективными для практического применения. Но этому препятствует высокая термоциклическая хрупкость в литом состоянии. В работе представлены результаты сравнения дилатационных свойств в области мартенситного превращения сплава Ni-Mn-Ga-Si в крупнозернистом состоянии и с бимодальной структурой, обладающей сниженной термоциклической хрупкостью. Показано, что в результате формирования бимодальной структуры горячей деформацией ковкой (700 °C, e = 3.2) возникают внутренние напряжения (микронапряжения) преимущественной ориентации, приводящие к образованию мартенситных двойников попрек оси сжатия последнего этапа ковки. Образец в форме стрежня, вырезанный вдоль этого направления, скачкообразно сжимается, а вырезанный поперек наоборот удлиняется в процессе прямого мартенситного превращения. Таким образом, с помощью горячей деформации ковкой возможно управление анизотропией дилатации в процессе мартенситного превращения сплавов Гейслера системы Ni-Mn-Ga-Si.

Ключевые слова: сплав Ni-Mn-Ga, сплав Гейслера, мартенситное превращение, дилатация, микронапряжения.

DOI: 10.61011/FTT.2025.10.61959.278-25

1. Введение

Сплавы Гейслера относятся к классу функциональных материалов с перспективой применения в различного рода устройствах на основе наблюдаемого эффекта магнитодеформации [1-4], магнитокалорического эффекта [5-8], эластокалорического эффекта [9-12] и др. В контексте магнитодеформационных свойств монокристаллические образцы демонстрируют величины деформации на порядок больше, чем поликристаллические. В сплавах системы Ni-Mn-Ga необратимая деформация может достигать почти 12% [13,14]. В то время как на не текстурированном поликристаллическом образце эти величины составляют менее 1% [15,16], а в текстурированном 2.6% [17]. Сравнительно большие трудозатраты изготовления монокристаллов заставляет ученых искать способы повысить функциональность поликристаллического материала. При этом необходимо решить проблему высокой термоциклической хрупкости [18,19]. Основные подходы повышения функциональности это формирование кристаллографической текстуры деформационным способом [20-22], либо направленная кристаллизация расплава и формирование вытянутых кристаллов [23,24]. Оптимально создание текстуры в материале деформационным способом, который к тому же позволяет повысить механические свойства материала. В работе [25] показано, что формирование бимодальной структуры в сплаве Гейслера системы Ni-Mn-Ga-Si приводит к многократному росту функциональной усталости. В функциональных материалах существует похожий способ снижения термоциклической хрупкости — формирование двухфазной структуры, где матричная фаза несет функциональную нагрузку, а вторичная фаза выполняет роль демпфера для внутренних напряжений фазового превращения [26–30]. При трансформации зеренной структуры деформационным способом необходимо установить влияние как размера кристаллитов, так и уровня дефектов и внутренних напряжений на физикомеханические свойства материала. В работе представлены результаты исследования влияния внутренних напряжений (микронапряжений) на дилатационные свойства сплава системы Ni-Mn-Ga-Si в крупнозернистом (КЗ) состоянии и с бимодальной структурой.

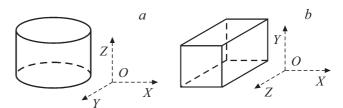
2. Материал и методика исследований

Сплав Ni_{56.2}Mn_{18.8}Ga_{23.2}Si_{1.8} выплавлен из элементов Ni, Mn, Ga и Si высокой чистоты методом дуговой плавки. Методика предполагает выплавку на медном водоохлаждаемом тигле. В результате выплавки в слитке формируются крупные вытянутые кристаллиты до нескольких миллиметров в длину. Трансформация такой структуры в бимодальную деформационно-термическим методом не реализуема. Преобразование литой структуры выполнено вакуумной индукционной переплавкой в тигле с низкой теплопроводностью. В результате сформирована равноосная структура с размером зерен

1838 И.И. Мусабиров

порядка $100\,\mu\text{m}$. Полученное состояние далее именуется как исходное состояние. В предыдущем исследовании этого сплава методом дифференциальной сканирующей калориметрии показано, что характеристические температуры мартенситного превращения имеют следующие значения: $M_S=75\,^{\circ}\text{C},\ M_F=64\,^{\circ}\text{C},\ A_S=73\,^{\circ}\text{C}$ и $A_F=87\,^{\circ}\text{C}$ для исходного состояния и $M_S=75\,^{\circ}\text{C},\ M_F=52\,^{\circ}\text{C},\ A_S=58\,^{\circ}\text{C}$ и $A_F=88\,^{\circ}\text{C}$ для кованного состояния [31]. При этом мартенситное превращение накладывается на магнитное превращение.

Всесторонняя изотермическая ковка (ВИК) выполнена при 700 °C на прессе Schenck-Trebel RMC 100 последовательными осадками на $35-40\,\%$ в направлениях $OZ \to OX \to OY \to OX \to OY \to OX \to OY$, где последние 4 прохода (протяжка) выполнены при кантовке образца вдоль оси OZ (рис. 1). Суммарная истинная степень деформации составила e=3.2. Заготовка сплава в исходном состоянии имела цилиндрическую форму с размерами $d=16.3\,\mathrm{mm},\ h=13.3\,\mathrm{mm}.$ В результате ковки заготовка приняла формы вытянутого параллелепипеда с размерами $11.0\,\mathrm{mm} \times 10.7\,\mathrm{mm} \times 23.8\,\mathrm{mm}.$


Анализ параметров тонкой структуры образцов проводили при комнатной температуре методом рентгеноструктурного анализа. Микроструктура исследована на растровом электронном микроскопе Mira 3 LMH (Tescan) в режиме композиционного контраста. Кривые температурной зависимости термического расширения записаны на дилатометре индукционного типа. Во всех случаях измерение выполнено вдоль длинной стороны образцов размером $7 \text{ mm} \times 1 \text{ mm}$.

3. Результаты и обсуждение

3.1. Микроструктура

Исследование микроструктуры выполнено в режиме ориентационного контраста в плоскости YOX (рис. 1, a) при комнатной температуре, т. е. в мартенситном состоянии сплава. Структура исходного состояния представляет собой мартенситные колонии, занимающие весь объем зерен (рис. 2, a). По характерному изменению ориентировок мартенсита можно оценить размер кристаллитов, который составляет 100-200 μm. Особо стоит отметить, что в результате вакуумной индукционной переплавки литые вытянутые кристаллы, характерные дуговой выплавке, трансформированы в равноосные зерна. Как показывают исследования кристаллографических ориентировок аналогично полученных сплавов, в зерне отсутствуют малоугловые границы. Это говорит о том, что структура исходного состояния является релаксированной с минимумом внутренних напряжений.

Микроструктура сплава после горячей деформации ковкой представлена на рис. 2, b, c. Как и в исходном состоянии, исследование выполнено в плоскости YOX (рис. 1, b). В деформированной заготовке это плоскость попрек оси протяжки. Вертикаль рисунка параллельна оси сжатия на финальном этапе ковки. Как видно

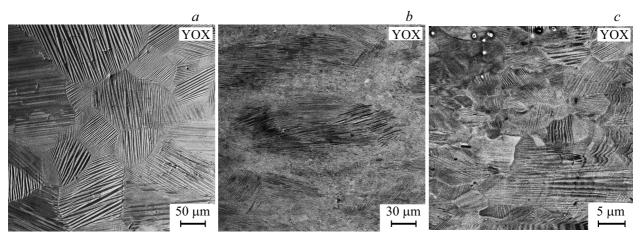
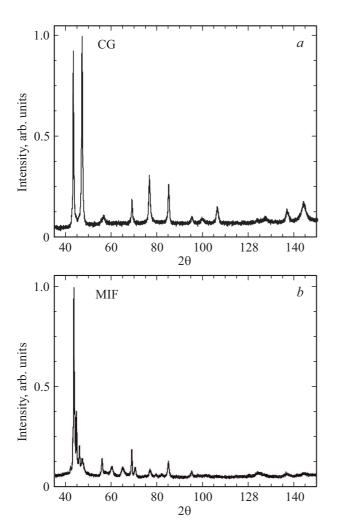


Рис. 1. Схема направлений заготовки в исходном и кованном состояниях

структура представляет собой бимодальную структуру типа "ожерелье". Весь объем занимают мартенситные колонии, по изменению ориентировок которых можно сделать заключение о размере кристаллитов. Исходные зерна размером около 100 μ m окружены прослойкой динамически рекристаллизованной мелкозернистой структуры. Размер рекристаллизованных зерен составляет около $5 \mu \text{m}$, а толщина прослойки $20-30 \mu \text{m}$ (рис. 2, c). Ранее нами уже показана возможность получения такой структуры горячей деформацией ковкой в сплавах системы Ni-Mn-Ga-Si [32-35]. Формирование "ожерелья" обусловлено тем, что в процессе горячей пластической деформации плотность дислокаций повышается и при определенной комбинации температуры, степени и скорости деформации на границе зерен плотность достигает критического порога, после чего начинается процесс динамической рекристаллизации. С увеличением истинной степени деформации происходит дальнейшее зарождение и рост новых зерен. Размер зерен в центре прослойки и на ее периферии практически одинаковый, что говорит об относительно медленной миграции границ новых зерен. В теле крупных зерен на фоне мартенситных колоний видно некоторое размытие контраста в теле двойников, свидетельствующее о наличии малоугловых разориентировок. Их наличие сказывается на характере двойниковых границ, которые в кованном состоянии не прямолинейные как в исходном состоянии, а несколько изгибаются на всем ее протяжении. Общий анализ структуры сплава показывает, что крупные зерна несколько сплющены вдоль оси сжатия финального этапа ковки. Металлографическая зеренная текстура с коэффициентом вытяжки около 3 формируется за счет протяжки и ориентирована вдоль ее оси. Ориентация плоскостей двойникования в крупных зернах имеет тенденцию к ориентировке поперек оси сжатия финального этапа ковки. В прослойке мелкозернистой структуры мартенсит ориентирован хаотически.


3.2. Параметры тонкой структуры сплава

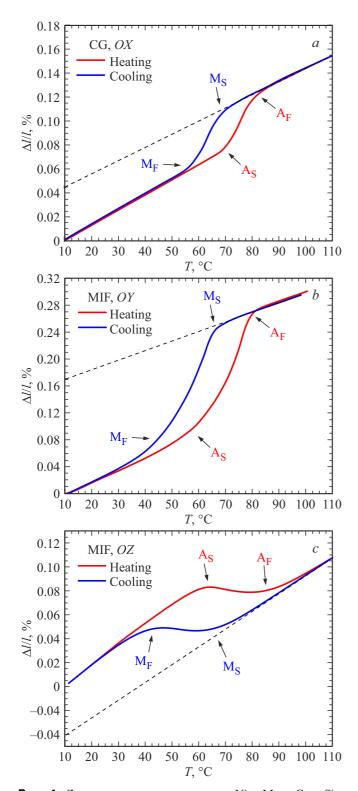
Параметры тонкой структуры сплава определяли при комнатной температуре (мартенситное состояние) путем сравнительного анализа дифрактограмм. На рис. 3 представлены дифрактограммы сплава в исходном и кованом состояниях. Расшифровка дифрактограмм показала, что как исходный сплав представляет собой

Рис. 2. Микроструктура сплава $Ni_{56.2}Mn_{18.8}Ga_{23.2}Si_{1.8}$ в исходном состоянии в плоскости YOX (a) и кованном состоянии в плоскости YOX (b,c).

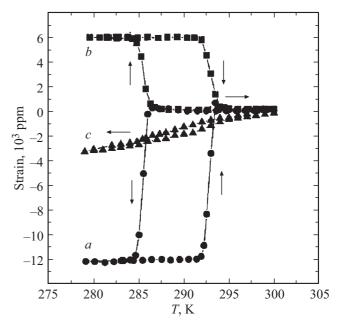
смесь двух фаз, одна из которых относится к тетрагональной (35 масс.%) решетке, а другая к ортором-бической (65 масс.%). Тетрагональная решетка имеет

Рис. 3. Дифрактограммы сплава $Ni_{56.2}Mn_{18.8}Ga_{23.2}Si_{1.8}$ в исходном (a) и кованном (b) состояниях.

симметрию I4/mmm с параметрами $a=b=0.3881\,\mathrm{nm}$ и $c=0.5963\,\mathrm{nm}$, а орторомбическая — Pmmm с параметрами $a=0.3719\,\mathrm{nm},\,b=0.4857\,\mathrm{nm}$ и $c=0.5963\,\mathrm{nm}.$ В результате горячей деформации ковкой массовое соотношение смеси фаз не изменилось.


Для определения микроискажений кристаллической решетки проанализированы уширения и позиции рефлексов методом модифицированного Вильямсона-Холла. Анализ показал, что в деформированном состоянии уровень микроискажений кристаллической решетки составляет 0.273 %, а в крупнозернистом состоянии 0.138 %. Ненулевое значение микроискажений кристаллической решетки в исходном состоянии обусловлено формированием двойниковой мартенситной структуры, которые согласно электронно-микроскопическим исследованиям имеют ширину порядка $1 \mu m$. В результате горячей деформации ковкой уровень микроискажений кристаллической решетки повышается примерно в два раза. Причинами, приводящими к росту величины микроискажений деформированного сплава, можно считать повышение плотности внесенных дислокаций в результате ковки.

3.3. Дилатация сплава в различном состоянии


Исследование термического расширения сплава выполнено в интервале мартенситного превращения при нагреве и охлаждении образца. На рис. 4, а представлены дилатационные кривые для сплава в исходном крупнозернистом состоянии. В процессе прямого превращения наблюдается слабозаметное обратимое скачкообразное сокращение длины образца. Если провести прямую, параллельную ангармоническому изменению длины в аустенитной фазе, то ее пересечение с осью ординат покажет вклад мартенситного превращения в изменение длины. В данном случае величина обратимой деформации составляет ~ 0.04%. Несмотря на малую величину скачкообразного изменения длины в процессе фазового

1840 И.И. Мусабиров

превращения, можно оценить характеристические температуры мартенситного превращения. На рисунке они отмечены стрелочками. Температуры несколько отличаются от температур, определенных методом ДСК [31].

Рис. 4. Дилатационные кривые сплава $Ni_{56.2}Mn_{18.8}Ga_{23.2}Si_{1.8}$ в исходном состоянии (a), в кованном состоянии на образце, вырезанном вдоль OY(b) и вдоль OZ(c).

Рис. 5. Кривые температурной зависимости термического расширения, измеренные вдоль кристаллографических направлений [001] (a) и [100] (b) монокристаллического образца и поликристалла (c) сплава $Ni_{52}Mn_{24}Ga_{24}$ [36].

Это обусловлено тем, что в дилатационном эксперименте термопара расположена близко к образцу, в то время как в эксперименте по ДСК она касается исследуемого образца. Таким образом, в исходном состоянии с крупнозернистой равноосной зеренной структурой в процессе мартенситного превращения происходит близкое к ангармоническому изменение длины образца.

Измерение дилатационных свойств кованного состояния выполнено для образцов, вырезанных в двух взаимно перпендикулярных направлениях. Первый образец вырезан вдоль оси сжатия финального прохода при ковке (OY, рис. 1, b), второй вдоль оси протяжки (OZ,рис. 1, b). В случае обоих образцов наблюдается обратимое изменение длины в процессе фазового превращения. Первый образец, как и образец в исходном состоянии, в процессе прямого мартенситного превращения демонстрирует "скачек вниз" на 0.17 %. У второго образца скачкообразное сокращение длины в процессе прямого мартенситного превращения сменяется на скачкообразное удлинение ("скачек вверх") на 0.05 %. Таким образом в состоянии после ковки сплав в области мартенситного превращения демонстрирует анизотропию термического расширения, которая определяется направлением оси сжатия.

4. Обсуждение

Анизотропия термического расширения сплавов Гейслера часто наблюдаемое явление. Так монокристаллические образцы всегда демонстрируют анизотропию в зависимости от направления измерения (рис. 5) [36– 38]. Эффект обусловлен преимущественной выборкой направлений двойникования в монокристаллических образцах. При этом показано, что ненаправленные внутренние напряжения, сформированные при закалке образца с температуры отжига, способствуют резкому снижению величины "скачка". Если при термообработке образец не подвергать отжигу при 500°C, то "скачек вниз" снижается с 1.2% (кривая a, рис. 5) до 0.4%.

Поликристаллический образец в отличие от монокристалла содержит зерна с различной кристаллографической ориентацией. В таком образце не должно формироваться преимущественное направление двойников. И в процессе мартенситного превращения скачкообразного изменения длины образца происходить не должно. Однако в литературе встречаются работы, в которых показано как наличие, так и отсутствие скачкообразного изменения длины поликристаллических образцов при мартенситном превращении [36,39,40]. Если даже скачкообразное изменение длины поликристаллического образца в процессе структурного превращения присутствует, его величина несколько меньше, чем у монокристаллов.

Ранее автором было показано, что анизотропия термического расширения в области мартенситного превращения в поликристаллическом образце сплава Гейслера обусловлена формированием преимущественной ориентации мартенсита [41]. В литом сплаве Ni_{2.08}Mn_{0.96}Ga_{0.96} в структуре мартенситной фазы наблюдается преимущественная ориентация двойников превращения. Если вырезать образец размерами $7 \, \text{mm} \times 1 \, \text{mm} \times 1 \, \text{mm}$ так чтобы мартенсит был преимущественно ориентирован поперек его длинной стороны, то образец в процессе прямого мартенситного превращения скачкообразно сокращается ("скачек вниз"). Если вырезать так, что мартенсит вдоль длинной стороны, то образец, наоборот, удлиняется ("скачек вверх"). В этом случае формирование преимущественной ориентации мартенсита было обусловлено наличием направленных внутренних напряжений, сформированных в процессе кристаллизации расплава при встречном росте кристаллов слитка в углубленном водоохлаждаемом тигле. Чтоб снять внутренние напряжения необходимо выполнить высокотемпературный отжиг. Для выбора температуры отжига необходимо знать температуру рекристаллизации сплава. Так в работе [42] показано, что в результате интенсивной пластической деформации кручением с истинной степенью деформации e=6 этого сплава отжиг при $400\,^{\circ}\mathrm{C}$ уже демонстрирует начало собирательной рекристаллизации. Но при температурах термообработки ниже 400°C может быть выполнено снятие внутренних напряжений только в материале с высоким уровнем плотности дефектов, сгенерированных очень высокой степенью деформации. В литом состоянии уровень явно ниже. Поэтому для снятия внутренних напряжений литого состояния выбрана более высокая температура. Отжиг литого образца при 650 °C в течение 2 часов привел к релаксации внутренних напряжений. В результате в процессе прямого мартенситного превращения сформировались двойники превращения с хаотической ориентацией и исчезло скачкообразное изменение длины образца.

В случае исследуемого в данной работе сплава направленные внутренние напряжения сформированы горячей деформацией ковкой при 700°C с истинной степенью деформации е = 3.2. Сравнительный анализ данных рентгеноструктурного анализа показывает, что уровень микронапряжений в релаксированной крупнозернистой и деформированной бимодальной структурах отличаются. Отметим, что исследования выполнены при комнатной температуре, т.е. в мартенситной фазе. Поэтому наличие двойников превращения размерами в поперечнике порядка 1 μ m вносят свой вклад в уровень микроискажений кристаллической решетки. Даже в крупнозернистой структуре он ненулевой, и составил 0.138 %. В кованном состоянии, так же в мартенситном состоянии он в два раза выше и составил 0.273 %. Как показали данные микроструктурного анализа, в крупнозернистом состоянии действительно наблюдается хаотическая ориентация двойников превращения, в то время как в кованном состоянии наблюдается некоторая их преимущественная ориентация. При вырезке образца длинной стороной вдоль оси сжатия финального этапа ковки, в его структуре двойники в основном ориентированы попрек длины. И такой образец демонстрирует "скачек вниз". Образец, вырезанный в перпендикулярном направлении и вдоль оси протяжки, демонстрирует "скачек вверх". Направление сжатия формирует преимущественную ориентацию внутренних напряжений. Это приводит к уменьшению выборки направлений при двойниковании структуры в процессе прямого мартенситного превращения. Повышение уровня внутренних напряжений возможно двумя способами. Либо с помощью повышения степени деформации, либо снижение температуры деформации на последнем этапе ковки. Продолжение данного направления исследований предполагает реализацию обоих способов.

Таким образом, в работе установлены основные закономерности влияния внутренних напряжений (микронапряжений) на анизотропию термического расширения образца сплава системы в процессе мартенситного превращения. Показано, что ось сжатия на финальном этапе формирует преимущественную ориентацию внутренних напряжений, которая приводит к преимущественной ориентации мартенсита и как следствие к анизотропии изменения геометрии образца при фазовом превращении.

Заключение

В сплаве Ni_{56.2}Mn_{18.8}Ga_{23.2}Si_{1.8} в результате дуговой выплавки и последующей индукционной переплавки в кварцевом тигле литая структура с вытянутыми кристаллами трансформирована в равноосную крупнозер1842 И.И. Мусабиров

нистую структуру с размером кристаллитов порядка $100\,\mu\mathrm{m}$. В результате горячей деформации ковкой при $700\,^{\circ}\mathrm{C}$ (e = 3.2) сформирована бимодальная структура типа "ожерелье", в которой исходные крупные зерна окружены прослойкой динамически рекристаллизованной мелкозернистой структуры. В такой структуре уровень микроискажений кристаллической решетки превышает таковое значение для исходного сплава примерно в два раза. В бимодальной структуре формируется преимущественная ориентация двойников превращения и анизотропия термического расширения в области мартенситного превращения.

Финансирование работы

Работа выполнена при финансовой поддержке государственного задания Института проблем сверхпластичности металлов РАН. Исследования выполнены на базе Центра коллективного пользования научным оборудованием Института проблем сверхпластичности металлов РАН "Структурные и физико-механические исследования материалов".

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] S. Tavares, K. Yang, M.A. Meyers. Progress in Materials Science **132**, 101017 (2023).
- [2] V. Chernenko. Magnetostrictive Ni-Mn-based Heusler alloys. Encyclopedia of Smart Materials. Elsevier (2022). C. 160– 176
- [3] Q. Yang, X. Wu, Y. Gu, Y. Shi. J. Alloys Compd. 1035, 181559 (2025).
- [4] S.Y. Yu, A.J. Gu, S.S. Kang, S.J. Hu, Z.C. Li, S.T. Ye, H.H. Li, J.J. Sun, R.R. Hao. J. Alloys Compd. 681, 1-5 (2016).
- [5] K. Ahn. J. Alloys Compd. 978, 173378 (2024).
- [6] В.В. Соколовский, М.А. Загребин, В.Д. Бучельников, В.В. Марченков. ФММ **124**, *11*, 1019-1024 (2023).
- [7] V.V. Sokolovskiy, A.P. Kamantsev, V.D. Buchelnikov, V.V. Marchenkov. Physics of Metals and Metallography 125, 14, 1805-1813 (2024).
- [8] В.И. Вальков, А.В. Головчан, И.Ф. Грибанов, О.Е. Ковалев, В.И. Митюк. ФТТ 66, 6, 988-999 (2024).
- [9] Y. Shen, W. Sun, Z.Y. Wei, Q. Shen, Y.F. Zhang, J. Liu. Scripta Materialia 163, 14-18 (2019).
- [10] Z. Li, Z. Li, Y. Lu, X. Lu, L. Zuo. Journal of Materials Science and Technology 117, 167-173 (2022).
- [11] C. Huang, Y. Wang, Z. Tang, X. Liao, S. Yang, X. Song. J. Alloys Compd. 630, 244-249 (2015).
- [12] J. Yang, H. Wang, Z. Li, N. Zou, H. Yan, B. Yang, L. Zuo. Acta Materialia 263, 119546 (2024).
- [13] R. Chulist, E. Pagounis, P. Czaja, N. Schell, H. Brokmeier. Adv. Eng. Mater. 23, 2100131 (2021).

[14] A. Sozinov, N. Lanska, A. Soroka, W. Zou. Appl. Phys. Lett. 102, 2, 021902 (2013).

- [15] Z. Zhou, P. Wu, G. Ma, B. Yang, Z. Li, T. Zhou, D. Wang, Y. Du. J. Alloys Compd. 792, 399–404 (2019).
- [16] S.Y. Yu, A.J. Gu, S.S. Kang, S.J. Hu, Z.C. Li, S.T. Ye, H.H. Li, J.J. Sun, R.R. Hao. J. Alloys Compd. 681, 1–5 (2016).
- [17] A.A. Mendonca, J.F. Jurado, S.J. Stuard, L.E.L. Silva, G.G. Eslava, L.F. Cohen, L. Ghivelder, A.M. Gomes. J. Alloys Compd. 738, 509–514 (2018).
- [18] W. Everhart, J. Newkirk. Heliyon 5, 5, e01578 (2019).
- [19] Q. Xia, X. Tian, W. Zhao, C. Tan, K. Zhang. Mater. Today Commun. 38, 108089 (2024).
- [20] R. Chulist, W. Skrotzki, C.-G. Oertel, A. Bohm, H.-G. Brokmeier, T. Lippmann. Int. J. Mat. Research. 103, 5, 575-579 (2012).
- [21] L. Wei, X. Zhang, M. Qian, X. Cui, L. Geng, J. Sun, L.V. Panina, H.-X. Peng. Mater. Design. 112, 339-344 (2016).
- [22] R. Chulist, A. Bohm, E. Rybacki, T. Lippmann, C.G. Oertel, W. Skrotzki. Mater. Sci. Forum 702–703, 169–172 (2011).
- [23] L. Wei, X. Zhang, J. Liu, L. Geng. AIP Advances 8, 5, 055312 (2018).
- [24] D. Li, Z. Li, J. Yang, Z. Li, B. Yang, H. Yan, D. Wang, L. Hou, X. Li, Y. Zhang, C. Esling, X. Zhao, L. Zuo. Scripta Materialia 163, 116-120 (2019).
- [25] I.I. Musabirov, I.M. Safarov, R.M. Galeyev, D.D. Afonichev, R.Y. Gaifullin, V.S. Kalashnikov, E.T. Dilmieva, V.V. Koledov, S.V. Taskaev, R.R. Mulyukov. Trans. Indian Inst. Met. 74, 2481–2489 (2021).
- [26] I.D. Kurlevskaya, E.Y. Panchenko, A.B. Tokhmetova, E.I. Yanushonite, A.S. Eftifeeva, N.Yu. Surikov, E.E. Timofeeva, Yu.I. Chumlyakov. Phys. Mesomech. 27, 398–408 (2024).
- [27] Е.Е. Тимофеева, Е.Ю. Панченко, М.С. Дмитриенко, Э.И. Янушоните, И.Д. Фаткуллин, Ю.И. Чумляков. Письма в ЖТФ **51**, *11*, 46-51 (2025).
- [28] Z. Lin, X. Wang, F. Zhu, B. Li, S. Bi. Mater. Today Commun. 47, 112952 (2025).
- [29] J. Meng, L. Xie, Q. Yu, J. Wang, C. Jiang. Acta Materialia 263, 119469 (2024).
- [30] Q. Zhai, F. Bu, Y. Cheng, J. Zhang, Y. He. J. Magn. Magn. Mater. 629, 173246 (2025).
- [31] Р.Ю. Гайфуллин, А.Б. Гаджиев, А.М. Алиев, С.В. Таскаев, И.И. Мусабиров. Радиотехника и электроника **68**, *4*, 346-352 (2023).
- [32] И.И. Мусабиров, И.М. Сафаров, Р.М. Галеев, Р.А. Гайсин, В.В. Коледов, Р.Р. Мулюков. ФТТ **60**, *6*, 1051-1057 (2018).
- [33] И.И. Мусабиров, И.М. Сафаров, Р.М. Галеев, Д.Д. Афоничев, Р.Ю. Гайфуллин, В.В. Коледов, С.В. Таскаев, Р.Р. Мулюков. Челябинский физико-математический журнал 5, 4-2, 601-611 (2020).
- [34] I.I. Musabirov, R.Y. Gaifullin, A.B. Gadjiev, A.M. Aliev, E.T. Dilmieva, S. Krämer, Yu.S. Koshkid'ko. J. Magn. Magn. Mater. 594, 171892 (2024).
- [35] И.И. Мусабиров, И.М. Сафаров, Р.М. Галеев, Д.Д. Афоничев, В.В. Коледов, А.И. Рудской, Р.Р. Мулюков. Физика и механика материалов **33**, *1*, 124-136 (2017).
- [36] W.H. Wang, G.H. Wu, J.L. Chen, C.H. Yu, S.X. Gao, W.S. Zhan, Z. Wang, Z.Y. Gao, Y.F. Zheng, L.C. Zhao. Appl. Phys. Lett. 77, 20, 3245–3247 (2000).

- [37] F. Xiong, Y. Liu, E. Pagounis. J. Magn. Magn. Mater. 285, 410-416 (2005).
- [38] T. Liang, C. Jiang, H. Xu. Mater. Scien. Engineer. A. **402**, 5-8 (2005).
- [39] A.N. Vasilev, E.I. Estrin, V.V. Khovailo, A.D. Bozhko, R.A. Ischuk, M. Matsumoto, T. Takagi, J. Tani. Int. J. Appl. Electromagn. Mechan. 12, 35-40 (2000).
- [40] Ю.В. Калетина, Е.Г. Герасимов, В.А. Казанцев, А.Ю. Калетин. ФТТ **59**, *10*, 1978-1983 (2017).
- [41] И.И. Мусабиров, Х.Я. Мулюков, В.В. Коледов, В.Г. Шавров. ЖТФ 81, 3, 108-111 (2011).
- [42] I.I. Musabirov, I.M. Safarov, R.R. Mulyukov, I.Z. Sharipov, V.V. Koledov. Letters on Materials 4, 4(16), 265-268 (2014).

Редактор Т.Н. Василевская