05,08

Магнитные характеристики и коэффициенты Блоха в тонких пленках $Sr_2Fe_{1-x}Mo_{1+x}O_{6-\delta}$

© Д.А. Киселев 1 , С.С. Старухина 1 , А.С. Быков 1 , А.В. Петров 2 , А.Г. Юденков 3 , Н.А. Каланда 2,¶

1 НИТУ "МИСИС".

Москва, Россия

² ГО "НПЦ НАН Беларуси по материаловедению",

Минск, Беларусь

³ НТЦ "Белмикросистемы" ОАО "Интеграл",

Минск, Беларусь

¶ E-mail: kalanda@physics.by

Поступила в Редакцию 20 августа 2025 г. В окончательной редакции 20 августа 2025 г. Принята к публикации 14 октября 2025 г.

Проведена отработка режимов получения однофазных пленок $Sr_2Fe_{1-x}Mo_{1+x}O_{6-\delta}$, полученных методом ионно-лучевого напыления и исследованы их магнитные характеристики. Обнаружено, что зависимость намагниченности от температуры M(T), измеренная в магнитном поле 0.1 T, не подчиняется закону Блоха ни для одной из изученных пленок. Для ее описания потребовалось применение поправок Дайсона, учитывающих вклад магнонов с большими волновыми векторами. Установлено, что как для состава пленок с избытком железа, так и с его недостатком, с увеличением сверхструктурного упорядочения катионов Fe/Mo (P) величина B (коэффициент Блоха) растет. При этом, в пленках состава $Sr_2Fe_{1.2}Mo_{0.8}O_{6-\delta}$ с ростом P термостабильность ниже, чем в пленках состава $Sr_2Fe_{0.9}Mo_{1.1}O_{6-\delta}$, тогда как с понижением P — наоборот. Показано, что, контролируя состав и режимы синтеза пленок составов $Sr_2Fe_{1.2}Mo_{0.8}O_{6-\delta}$ и $Sr_2Fe_{0.9}Mo_{1.1}O_{6-\delta}$, можно управлять значением B, а значит, и термостабильностью спиновой поляризации всей системы.

Ключевые слова: двойные перовскиты, ионно-лучевое напыление, магнитные характеристики, антиструктурные дефекты, коэффициенты Блоха.

DOI: 10.61011/FTT.2025.10.61970.239a-25

1. Введение

Современная спинтроника нуждается в материалах со стабильной спиновой поляризацией при комнатной температуре, для создания устройств энергонезависимой памяти, сенсоров, элементов нейроморфных вычислений и логических элементов. Перспективным кандидатом является двойной перовскит Sr_2FeMoO_6 , который обладает полуметаллическими свойствами, высокой температурой Кюри ($T_C \sim 420-450~{\rm K}$) и теоретически 100~% спиновой поляризацией [1-6].

Ключевым фактором, определяющим свойства Sr_2FeMoO_6 , является степень сверхструктурного упорядочения катионов Fe и Mo. Антиструктурные дефекты $[Fe_{Mo}]/[Mo_{Fe}]$ и различные степени окисления катионов $(Fe^{2+}/Fe^{3+}/Fe^{4+})$ и $(Mo^{4+}/Mo^{5+}/Mo^{6+})$ разрушают дальнее магнитное упорядочение, что приводит к снижению спиновой поляризации и ухудшению магнитных характеристик.

В тонких пленках [7,8] чувствительность к дефектам усиливается из-за кислородных вакансий, межфазных напряжений и катионной нестехиометрии. Одним из методов управления свойствами является варьирование состава в системе $Sr_2Fe_{1-x}Mo_{1+x}O_6$, что позволяет регу-

лировать магнитный порядок и подавлять антиструктурные дефекты [8].

Одним из путей управления свойствами является варьирование состава в системе $\mathrm{Sr_2Fe_{1-x}Mo_{1+x}O_6}$. Изменение параметра x позволяет регулировать магнитный порядок, зарядовые состояния катионов (соотношение $\mathrm{Fe^{3+/Fe^{2+}}}$ и $\mathrm{Mo^{5+/Mo^{6+}}}$), коэрцитивную силу и температуру Кюри [3,4], а также подавлять антиструктурные нарушения. Однако для предотвращения образования примесных фаз необходим точный контроль состава при росте пленок [7].

Особый практический интерес представляют пленки составов $Sr_2Fe_{1,2}Mo_{0,8}O_{6-\delta}$ ($SF_{1,2}M_{0,8}O$) и $Sr_2Fe_{0.9}Mo_{1.1}O_{6-\delta}$ ($SF_{0.9}M_{1.1}O$). Состав с избытком Fe демонстрирует повышенное намагничивание насыщения, а с избытком Мо — лучшую катионную упорядоченность. Однако синтез таких пленок требует прецизионного контроля из-за склонности к образованию примесных фаз (например, SrMoO₄, SrFeO₃ или оксидов железа), которые радикально ухудшают функциональные свойства материала [7,8]. Таким образом, достижение высоких функциональных характеристик в пленках $Sr_2Fe_{1-x}Mo_{1+x}O_6$ требует точного управления составом, оптимизации режимов роста и всестороннего анализа дефектной структуры.

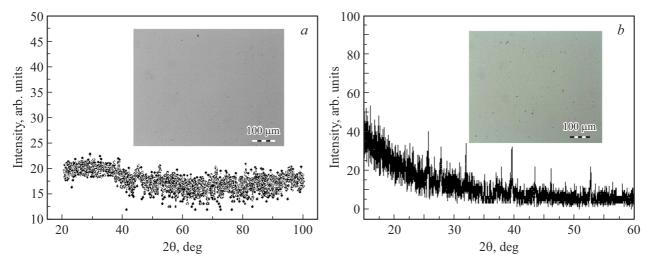
Промышленное применение материалов в устройствах спинтроники требует высокой воспроизводимости их физико-химических характеристик, которая напрямую зависит от степени спиновой поляризации носителей заряда, которой можно целенаправленно управлять, контролируя параметры сверхструктурного упорядочения катионов Fe/Mo в двойных перовскитах и величину коэффициента Блоха. Этот параметр служит важным инструментом для моделирования и прогнозирования функциональности перспективных устройств — от элементов магнитной памяти с произвольным доступом (MRAM) в смартфонах и высокоэффективных спинвольтаических элементов для солнечных батарей до кубитов и интерфейсов в квантовых компьютерах [9].

На основании вышесказанного, целью данной работы является исследование влияния сверхструктурного упорядочения катионов на магнитные свойства и параметры закона Блоха в нестехиометрических тонких пленках ${\rm Sr}_2{\rm Fe}_{1-x}{\rm Mo}_{1+x}{\rm O}_6$ для управления их спиновой поляризацией и получения воспроизводимых характеристик, необходимых в приложениях спинтроники.

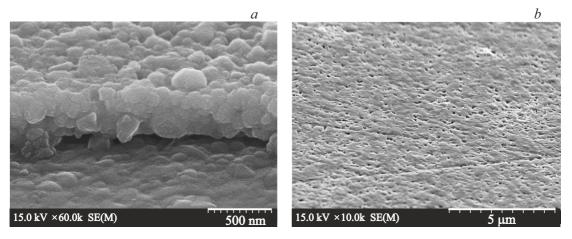
2. Методики приготовления и исследования образцов

Пленки составов $Sr_2Fe_{1.2}Mo_{0.8}O_{6-\delta}$ $(SF_{1.2}M_{0.8}O)$ и $Sr_2Fe_{0.9}Mo_{1.1}O_{6-\delta}$ ($SF_{0.9}M_{1.1}O$). толщиной порядка $\sim 1\,\mu\mathrm{m}$ наносились методом ионно-плазменного напыления на вакуумной установке Z-400 ("Leybold-Heraeus"), оснащенной безмасляной системой откачки на базе турбомолекулярного насоса. В качестве распыляемого материала использовались мишени составов SF_{1.2}M_{0.8}O и $SF_{0.9}M_{1.1}O$, диаметром 50 mm и толщиной 5 mm. Камера вакуумной установки была оборудована фланцевым двухлучевым ионным источником с замкнутым дрейфом электронов на основе ускорителя с анодным слоем и магнетронной распылительной системой. Особенностью ионного источника является возможность генерирования двух независимых ионных пучков, один из которых служит для распыления материала мишени, а второй для очистки подложек. Предварительно производилась очистка подложек ионным пучком. Для этого камера вакуумной установки откачивалась до остаточного давления 10^{-3} Pa. В ионный источник подавался Ar до рабочего давления $2.0 \cdot 10^{-2}$ Ра. Время очистки, энергия ионов и ток разряда во всех экспериментах были постоянными и составляли, соответственно, 3 min, 700 eV, 40 mA. Расход газов контролировался автоматическими регуляторами расхода газа РРГ-1. Распыление мишеней осуществлялось аргоном (энергия ионов 1250 eV, ток $65 \,\mathrm{mA})$ на подложки поликора ($\mathrm{Al_2O_3}$), обеспечивающие химическую инертность и высокую адгезию к пленкам системы $Sr_2Fe_{1-x}Mo_{1+x}O_{6-\delta}$. Остаточное давление аргона в газовой камере соответствовало $5 \cdot 10^{-2}$ Pa. Температура подложки, согласно техническим возможностям установки, была 670 К. Толщина нанесенных пленок измерялась на различных участках пленок-свидетелей при помощи интерферометра МИИ-4 и корректировалась изменением времени нанесения слоев.

Дополнительный отжиг пленок в потоке смеси газов (Ar, $1\%\,H_2/Ar$, $3\%\,H_2/Ar$ и $5\%\,H_2/Ar$) осуществлялся в термоустановках, температура в которых поддерживалась с помощью регулятора температуры РИФ-101 и контролировалась Pt-Pt/Rh(10%) термопарой с точностью $\pm 0.5\,K$.


Фазовый состав пленок и степень сверхструктурного упорядочения катионов железа и молибдена (P, %) определялись на основании анализа дифракционных данных, полученных на установке ДРОН-3 в CuK_{α} -излучении с использованием базы данных "ICSD-PDF2" (Release 2000), программ "POWDERCELL" и "FULLPROF" [10,11].

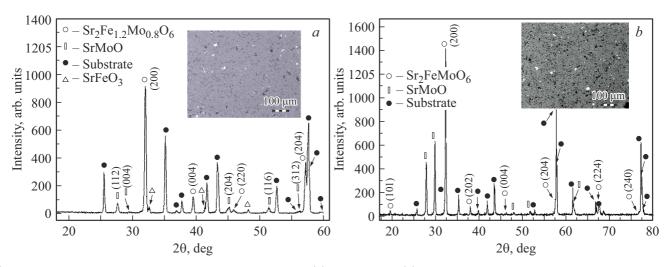
Микроструктура и морфология зерен изучались на металлографическом микроскопе "OLYMPUS GX-41", а также методом сканирующей электронной микроскопии на установке "Hitachi S-4800". Температурные зависимости намагниченности пленок исследовались на универсальной установке фирмы "Cryogenic Limited" в диапазоне 4.2—300 К, в магнитном поле 0.1 Т, с точностью не более 2 %.


3. Экспериментальные результаты и их обсуждение

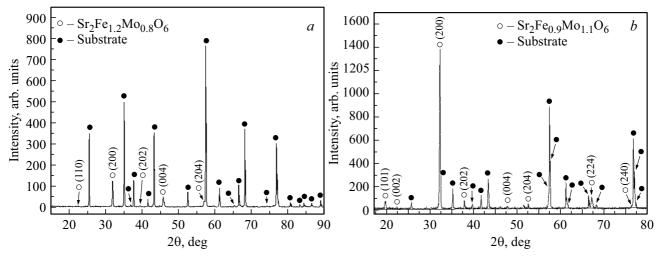
Достижение структурного совершенства тонких пленок $Sr_2Fe_{1-x}Mo_{1+x}O_{6-\delta}$, синтезируемых методом ионнолучевого напыления (ИЛН), требует тщательной оптимизации ряда взаимосвязанных технологических параметров, включая скорость осаждения, температуру послеростового отжига пленок и парциальное давление кислорода. Преимуществом метода ИЛН является возможность формирования плотной пленки при относительно низких температурах, что способствует снижению количества дефектов [7,8]. Скорость напыления играет ключевую роль в формировании микроструктуры пленки. Оптимальная скорость обеспечивает равномерное распределение мелких зерен в пленках, что положительно сказывается на их магнитных свойствах [8]. Эффективной представляется двухступенчатая стратегия: начальная пониженная скорость способствует формированию буферного слоя между пленкой и подложкой для увеличения адгезии и уменьшению напряжения на границе "пленка-подложка". Последующая повышенная скорость напыления уменьшает временные затраты на напыление и увеличивает однородность основной части пленки [7]. Скорость осаждения при толщине пленки до 20 nm составляла 2 nm/min; при дальнейшем увеличении толщины пленки до 1 µm скорость увеличивалась до 18 nm/min.

При изучении структуры и микроструктуры пленок $SF_{1.2}M_{0.8}O$ и $SF_{0.9}M_{1.1}O$, не обнаружено образования

Рис. 1. Рентгеновские дифрактограммы пленок $SF_{1.2}M_{0.8}O$ (*a*) и $SF_{0.9}M_{1.1}O$ (*b*), напыленных в два этапа. Скорость осаждения при толщине пленки до 20 nm составляла 2 nm/min; при дальнейшем увеличении толщины пленки до 1 μ m скорость увеличивалась до 18 nm/min. На вкладках изображена микроструктура пленок, полученная с помощью оптической микроскопии.


Рис. 2. Изображения, полученные с помощью сканирующей микроскопии, микроструктуры пленок $SF_{1.2}M_{0.8}O$ (a) и $SF_{0.9}M_{1.1}O$ (b), напыленных в два этапа. Пленки осаждались на втором этапе со 12 nm/min с последующим отжигом при 1173 K в течение 1 h в потоке аргона.

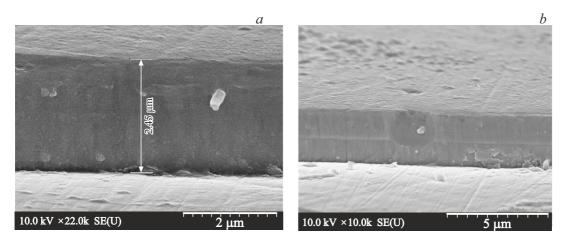
структуры двойного перовскита и других фаз, то есть пленки являются аморфными, имеют зеркальную черную поверхность при отсутствии в них зернистости (рис. 1).


Высокая скорость напыления на втором этапе приводит к тому, что атомы/молекулы осаждаются слишком быстро. У них не хватает времени и энергии (получаемой от подложки или в ходе вторичных процессов) для эффективной поверхностной диффузии, поиска энергетически выгодных позиций (точек роста) и формирования крупных кристаллитов. В результате, преобладает процесс случайного "замораживания". Данный механизм эффективно подавляет сегрегацию компонентов сложного соединения, поскольку разнотипные атомы, осаждаясь почти одновременно, "замораживаются" на месте без возможности диффузии и образования областей, обога-

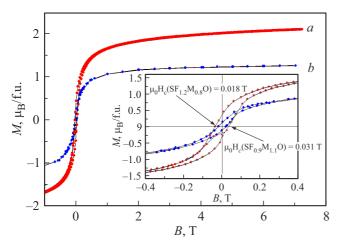
щенных тем или иным элементом. Быстрое осаждение фиксирует неравновесные состояния и структурные дефекты. Указанные факторы способствуют формированию метастабильных твердых растворов или аморфных фаз, характеризующихся хорошей наноразмерной гомогенностью, но термодинамически неравновесных. В итоге, высокая скорость напыления существенно увеличивает плотность дефектов в осаждаемом материале.

Для структурирования пленок и уменьшения количества дефектов была проведена их послеростовая термообработка в инертной среде и снижение скорости напыления на втором этапе до $12\,\mathrm{nm/min}$. Серия экспериментов показала, что оптимальным режимом является отжиг при $T=1173\,\mathrm{K}$ в течение $1\,\mathrm{h}$, в потоке аргона. По данным сканирующей электронной микроскопии, пленки $\mathrm{SF}_{1.2}\mathrm{M}_{0.8}\mathrm{O}$ и $\mathrm{SF}_{0.9}\mathrm{M}_{1.1}\mathrm{O}$ были пористыми, с

Рис. 3. Рентгеновские дифрактограммы пленок $SF_{1.2}M_{0.8}O$ (*a*) и $SF_{0.9}M_{1.1}O$ (*b*), напыленных в два этапа. Пленки осаждались на втором этапе со скоростью 12 nm/min с последующим отжигом при 1173 K в течение 1 h в потоке аргона. На вкладках изображена микроструктура пленок.


Рис. 4. Рентгеновские дифрактограммы пленок $SF_{1.2}M_{0.8}O$ (*a*) и $SF_{0.9}M_{1.1}O$ (*b*), напыленных в два этапа. Пленки осаждались на втором этапе со скоростью 8 nm/min с последующим отжигом при $T=1173\,\mathrm{K}$ в течение 1 h в потоке смеси инертных газов $1\,\%\,H_2/\mathrm{Ar}$.

развитым рельефом поверхности и слабой адгезии к подложке (рис. 2). Согласно полученным рентгеновским дифракционным данным пленки являлись фазовонеоднородными: в образце $SF_{1.2}M_{0.8}O$ дополнительно выявлены фазы $SrFeO_3$ и $SrMoO_4$ (рис. 3,a), а в образце $SF_{0.9}M_{1.1}O$ наряду с основной фазой двойного перовскита обнаружена примесь $SrMoO_4$ (рис. 3,b). Основной фазой в пленках обоих составов являлся двойной перовскит, имеющий тетрагональную симметрию (пространственная группа I4/m).

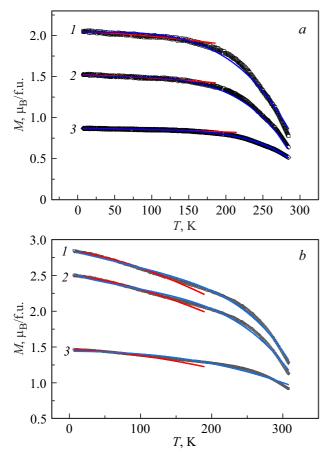

Коэффициент сверхструктурного упорядочения катионов Fe и Mo оказался низким. Для пленки $SF_{0.9}M_{1.1}O$ он составил $P\approx58\,\%$, что свидетельствует о высокой концентрации антиструктурных дефектов типа $[Fe_{Mo}]$ и $[Mo_{Fe}]$ на уровне $n\approx21\,\%$. В пленке $SF_{1.2}M_{0.8}O$

сверхструктурное упорядочение полностью отсутствует $(P\approx 0\,\%)$ и $n\approx 25\,\%$. Эти особенности микроструктуры, а именно, фазовая неоднородность пленок и высокая концентрация антиструктурных дефектов, могут негативно влиять на их магнитные свойства, что требует дальнейшей оптимизации условий их получения.

Снижение скорости напыления на втором этапе до 8 nm/min и увеличение толщины пленки до 3 μ m, с последующим отжигом при T=1173 К в течение 1 h в потоке смеси инертных газов 1 % $\rm H_2/Ar$ привело к однофазности пленок $\rm SF_{0.9}M_{1.1}O$, уменьшению концентрации антиструктурных дефектов $n\approx 18$ % при $P\approx 64$ %. В то же время, в пленках состава $\rm SF_{1.2}M_{0.8}O$ также наблюдается однофазность, тогда как сверхструктурное

Рис. 5. Изображения сканирующей электронной микроскопии микроструктуры пленок $SF_{1.2}M_{0.8}O$ (a) и $SF_{0.9}M_{1.1}O$ (b), напыленных в два этапа. Пленки осаждались на втором этапе со скоростью 8 nm/min, с последующим отжигом при $T=1173~{\rm K}$ в течение 1 h в потоке смеси инертных газов 1 % $H_2/{\rm Ar}$.

Рис. 6. Полевые зависимости намагниченности пленок $SF_{0.9}M_{1.1}O$ (a) и $SF_{1.2}M_{0.8}O$ (b), которые осаждались на втором этапе со скоростью 8 nm/min, с последующим отжигом при $T=1173~{
m K}$ в течение $1~{
m h}$ в потоке смеси инертных газов $1~{
m W}$ $H_2/{
m Ar}$.


упорядочение отсутствует ($P \approx 0\,\%$), рис. 4. При изучении микроструктуры пленок наблюдается увеличение их плотности, адгезии и уменьшения шероховатости рельефа поверхности (рис. 5).

При проведении сравнительного анализа магнитных свойств полученных пленок было обнаружено, что пленки $SF_{1.2}M_{0.8}O$ и $SF_{0.9}M_{1.1}O$ характеризуются различными величинами намагниченности насыщения M_s (рис. 6). При температуре $10~\rm K$ и магнитном поле, приложенном вдоль плоскости пленки, намагниченность насыщения составила $M_s \sim 1.8~\mu_{\rm B}/{\rm f.u.}$ для пленки $SF_{1.2}M_{0.8}O$ и $M_s \sim 2.47~\mu_{\rm B}/{\rm f.u.}$ для $SF_{1.1}M_{0.9}O$.

Эти значения значительно ниже теоретически предсказанной величины $M_{\mathrm{theory}} = 4\,\mu\mathrm{B/f.u.}$ [4]. При этом, ко-

эрцитивная сила составляет $\mu_0 H_c = 0.031\,\mathrm{T}$ для пленки $\mathrm{SF}_{1.2}\mathrm{M}_{0.8}\mathrm{O}$ и $\mu_0 H_c = 0.018\,\mathrm{T}$ для пленки $\mathrm{SF}_{0.9}\mathrm{M}_{1.1}\mathrm{O}$.

Меньшее значение намагниченности насыщения пленки $SF_{1,2}M_{0,8}O$ обусловлено более высокой концентрацией антиструктурных дефектов ([Fe_{Mo}] и [Mo_{Fe}]), чем в пленках $SF_{0.9}M_{1.1}O$. Данные дефекты нарушают катионное упорядочение Fe/Mo, изменяют ориентацию сильно гибридизированных $4d\,t_{2g}$ — орбиталей катионов Mo^{5+} (S=1/2) и 3d $(t_{2g}^3e_g^2)$ — орбиталей катионов Fe^{3+} (S=5/2), что подавляет ферримагнитное упорядочение между подрешетками Fe и Мо [3-5]. Кроме того, в условиях кислородного дефицита $(\delta > 0)$ часть катионов ${\rm Fe}^{3+} \ (3d^5)$ может восстанавливаться до Fe^{2+} (3 d^6), которые в октаэдрическом кристаллическом поле Fe^{2+} , как правило, находятся в высокоспиновом состоянии $(t_{2g}^4 e_g^2, S=2)$. Появление ионов Fe^{2+} способствует образованию кластеров типа Fe^{2+} $-O^{2-}$ $-Fe^{2+}$, в которых сверхобменное взаимодействие является антиферромагнитным, согласно правилам Гуденафа-Канамори-Андерсена [12]. Таким образом, в структуре пленки $SF_{1.2}M_{0.8}O$ могут присутствовать как антиструктурные дефекты, так и антиферромагнитные кластеры на основе Fe²⁺, что в совокупности способствует формированию магнитнонеоднородной структуры, которая увеличивает коэрцитивную силу [7,8]. Пленки SF_{0.9}M_{1.1}O характеризуются более однородной магнитной структурой по сравнению с $SF_{1.2}M_{0.8}O$, что подтверждается бо́льшими значениями намагниченности насыщения M_s и меньшими величинами $\mu_0 H_c$ для составов с избытком молибдена по сравнению с пленками, содержащими избыток железа (рис. 6). Для увеличения сверхструктурного упорядочения катионов Fe/Mo в пленках SF_{1.2}M_{0.8}O и $SF_{0.9}M_{1.1}O$ проводились послеростовые отжиги при $T = 1173 \, {\rm K}$ в течение 1 h в потоке смеси инертных газов 3 % Н₂/Аг и 5 % Н₂/Аг. Согласно данным РФА

Рис. 7. Температурные зависимости намагниченности для пленок $SF_{1.2}M_{0.8}O$ (a), со сверхструктурным упорядочением катионов Fe/Mo P=0%, P=62% и P=74% для кривых (3), (2) и (1), соответственно, и для пленок $SF_{0.9}Mo_{1.1}O$ (b) с P=64%, P=72% и P=80% для кривых (3), (2) и (1), соответственно, измеренные во внешнем магнитном поле 0.1 Т. Черные линии — экспериментальные данные; красные линии аппроксимация экспериментальных данных функцией (1); синие линии — аппроксимация экспериментальных данных функцией (2).

пленки $SF_{1.2}M_{0.8}O$ после отжига в смеси инертных газов $3\%\,H_2/Ar$ имели P=62%, а после отжига в смеси инертных газов $5\%\,H_2/Ar$ имели P=74%. При этом пленки $SF_{0.9}M_{1.1}O$ после отжига в смеси инертных газов $3\%\,H_2/Ar$ имели P=72%, а после отжига в смеси инертных газов $5\%\,H_2/Ar$ имели P=80%.

Так как закон Блоха является физической основой для моделирования, прогнозирования и реализации функциональности современных устройств, рассмотрим зависимость его параметров от состава и сверхструктурного упорядочения катионов Fe/Mo в пленках $\mathrm{Sr}_2\mathrm{Fe}_{1-x}\mathrm{Mo}_{1+x}\mathrm{O}_{6-\delta}$ как с избытком железа (x>0), так и с его недостатком (x<0). Температурная зависимость намагниченности в пленках $\mathrm{SF}_{1.2}\mathrm{M}_{0.8}\mathrm{O}$ и $\mathrm{SF}_{0.9}\mathrm{M}_{1.1}\mathrm{O}$, описывается законом Блоха. Ее поведение с ростом температуры определяется сложным взаимодействием

магнитных подрешеток, дефектов структуры и тепловых флуктуаций. К основным закономерностям относится следующее: в низкотемпературной области с ростом температуры происходит нарушение магнитного упорядочения из-за возбуждения магнонов (спиновых волн). Для акустических магнонов с дисперсией $E(k) \sim k^2$, их число растет пропорционально $T^{3/2}$, что приводит к уменьшению намагниченности. В этом случае температурная зависимость намагниченности, согласно закону Блоха, имеет вид:

$$M(T) = M(0)(1 - BT^{3/2}),$$
 (1)

где M(0) — максимальная намагниченность пленок, B — постоянная Блоха, являющаяся подгоночным параметром, который характеризует вклад магнонных возбуждений в уменьшение намагниченности.

Обнаружено, что лучшая аппроксимация по закону Блоха зависимости M(T), измеренной во внешнем магнитном поле 0.01 Т, была реализована в интервале температур $4.2 < T < 110 \, \mathrm{K}$ (рис. 7). Величины подгоночных коэффициентов представлены в таблице 1. В пленках $\mathrm{SF}_{1.2}\mathrm{M}_{0.8}\mathrm{O}$ и $\mathrm{SF}_{0.9}\mathrm{M}_{1.1}\mathrm{O}$ наличие антиструктурных дефектов ($[\mathrm{Fe}_{\mathrm{Mo}}]$ и $[\mathrm{Mo}_{\mathrm{Fe}}]$) нарушает идеальное упорядочение подрешеток Fe^{3+} (S=5/2) и Mo^{5+} (S=1/2). Это усиливает рассеяние спиновых волн, увеличивая B и ускоряя уменьшение намагниченности.

Повышение температуры выше $150\,\mathrm{K}$ приводит к возбуждению магнонов с большими волновыми векторами \mathbf{k} , для которых закон дисперсии отклоняется от квадратичного, а также к усилению взаимодействия между магнонами.

Для учета этих эффектов в закон Блоха необходимо вводить поправки. В модели Дайсона [13] это отклонение описывается добавлением слагаемого $Ct^{5/2}$:

$$M(T) = M_0(1 - BT^{3/2} - CT^{5/2}), (2)$$

где B и C — положительные константы. Слагаемое $CT^{5/2}$ связано с учетом неквадратичности закона дисперсии и взаимодействий магнонов. Полученные результаты по аппроксимации функциями (1) и (2) пленок $SF_{1.2}M_{0.8}O$ и $SF_{0.9}Mo_{1.1}O$ представлены в таблицах 1 и 2.

Рассчитанные для пленок $SF_{1.2}M_{0.8}O$ значения постоянной Блоха с учетом поправки Дайсона $B=(3.11-0.786)\cdot 10^{-5}~{\rm K}^{-3/2}$ и для пленок $SF_{0.9}Mo_{1.1}O$ $B=(2.04-0.902)\cdot 10^{-5}~{\rm K}^{-3/2}$ практически соответствуют значениям, обнаруженным другими авторами (например, $7.03\cdot 10^{-5}~{\rm K}^{-3/2}$ для $Sr_2FeMoO_{5.5}S_{0.5}$ [14]; $5.9\cdot 10^{-5}~{\rm K}^{-3/2}$ для $Fe_{29}Hi_{49}P_{14}B_6Si_2$ [15]). Близкие значения полученных результатов с другими авторами можно связать с помощью хорошей подгонки, согласно выражению (2) при коэффициенте детерминации $(R^2>0.98)$ (см. таблицы 1,2).

При рассмотрении зависимости постоянной Блоха от параметра P замечено, что как для состава пленок с избытком железа, так и с его недостатком с увеличением сверхструктурного упорядочения катионов Fe/Mo

Погрешность

Таблица 1. Подгоночные коэфициенты, полученные при аппроксимации температурной зависимости намагниченности пленок $SF_{1.2}M_{0.8}O$ различными функциями

Аппроксимация температурной зависимости

Значение

_	магниченности с помон $M(T) = M(0)(1 - T)$	дью функции
	$P\sim74\%$	<u> </u>
M(0)	2.04492	$4.48746 \cdot 10^{-4}$
В	$2.66253 \cdot 10^{-5}$	$2.56302 \cdot 10^{-7}$
R^2	0.9374	
	$P\sim62\%$	
M(0)	1.52008	$3.11629 \cdot 10^{-4}$
В	$2.48737 \cdot 10^{-5}$	$2.39733 \cdot 10^{-7}$
R^2	0.9422	
	$P\sim 0\%$	
M(0)	0.86803	$1.24652 \cdot 10^{-4}$
В	$1.74234 \cdot 10^{-5}$	$1.68798 \cdot 10^{-7}$
R^2	0.9371	
	магниченности с помог $M(T) = M(0)(1 - BT^{3/2})$ $P \sim 74\%$ $M(T) = M(0)(1 - BT^{3/2})$	$\frac{(2-CT^{5/2})}{(2-CT^{5/2})}$
	$\frac{M(1) - M(0)(1 - B1)}{P \sim 74\%}$	
M(0)	2.04191	0.09548
В	$3.11 \cdot 10^{-5}$	$2.14 \cdot 10^{-7}$
С	$2.71 \cdot 10^{-7}$	$1.24 \cdot 10^{-8}$
R^2	0.9907	
	P 62%	
M(0)	1.52296	0.05829
В	$2.42 \cdot 10^{-5}$	$7.52 \cdot 10^{-8}$
С	$2.19 \cdot 10^{-7}$	$1.02 \cdot 10^{-8}$
R^2	0.9943	
	$P \sim 0\%$	
M(0)	0.87661	0.01359
В	$7.86 \cdot 10^{-6}$	$4.21 \cdot 10^{-8}$
С	$1.19 \cdot 10^{-7}$	$6.42 \cdot 10^{-9}$

Таблица 2. Подгоночные коэфициенты, полученные при аппроксимации температурной зависимости намагниченности пленок $SF_{0.9}Mo_{1.1}O$ различными функциями

	Значение	Погрешность
	жимация температури тниченности с помог M(T) = M(0)(1 -	цью функции
	$P\sim80\%$	
M(0)	2.83249	$3.21 \cdot 10^{-4}$
В	$8.09 \cdot 10^{-5}$	$2.51 \cdot 10^{-7}$
R^2	0.9687	
	$P\sim72\%$	
M(0)	2.49409	$2.86 \cdot 10^{-4}$
В	$77 \cdot 10^{-5}$	$2.54 \cdot 10^{-7}$
R^2	0.9711	
	$P\sim64\%$	
M(0)	1.4643	$2.42 \cdot 10^{-4}$
В	$5.25 \cdot 10^{-5}$	$1.14 \cdot 10^{-7}$
R^2	9.9721	
намаі <i>М</i>	тниченности с помог $(T) = M(0)(1 - BT^3)$ $P \sim 80\%$	цью функции $(C^{1/2} - Ct^{5/2})$
M(0)	2.83249	$3.21 \cdot 10^{-4}$
$\frac{B}{B}$	$2.04 \cdot 10^{-5}$	$\frac{3.21 \cdot 10^{-4}}{1.04 \cdot 10^{-4}}$
D	2.0. 10	
С	$2.44 \cdot 10^{-7}$	
C R^2	$2.44 \cdot 10^{-7}$ 0.9877	$1.22 \cdot 10^{-8}$
	$2.44 \cdot 10^{-7}$ 0.9877 $P \sim 72\%$	
R^2	0.9877	
	0.9877 $P \sim 72\%$	$1.22 \cdot 10^{-8}$
R^2 $M(0)$	0.9877 $P \sim 72\%$ 2.54613	$1.22 \cdot 10^{-8}$ $2.92 \cdot 10^{-4}$
R^2 $M(0)$ B	0.9877 $P \sim 72\%$ 2.54613 $1.33 \cdot 10^{-5}$	$1.22 \cdot 10^{-8}$ $2.92 \cdot 10^{-4}$ $8.69 \cdot 10^{-8}$
R ² M(0) B C	0.9877 $P \sim 72\%$ 2.54613 $1.33 \cdot 10^{-5}$ $2.24 \cdot 10^{-7}$	$1.22 \cdot 10^{-8}$ $2.92 \cdot 10^{-4}$ $8.69 \cdot 10^{-8}$
R ² M(0) B C	0.9877 $P \sim 72\%$ 2.54613 $1.33 \cdot 10^{-5}$ $2.24 \cdot 10^{-7}$ 0.9843	$1.22 \cdot 10^{-8}$ $2.92 \cdot 10^{-4}$ $8.69 \cdot 10^{-8}$
R^2 $M(0)$ B C R^2	0.9877 $P \sim 72\%$ 2.54613 $1.33 \cdot 10^{-5}$ $2.24 \cdot 10^{-7}$ 0.9843 $P \sim 64\%$	$1.22 \cdot 10^{-8}$ $2.92 \cdot 10^{-4}$ $8.69 \cdot 10^{-8}$ $1.17 \cdot 10^{-8}$
R ² M(0) B C R ²	0.9877 $P \sim 72\%$ 2.54613 $1.33 \cdot 10^{-5}$ $2.24 \cdot 10^{-7}$ 0.9843 $P \sim 64\%$ 1.43937	$1.22 \cdot 10^{-8}$ $2.92 \cdot 10^{-4}$ $8.69 \cdot 10^{-8}$ $1.17 \cdot 10^{-8}$ $1.17 \cdot 10^{-4}$

0.9981

 R_2

величина B растет. Увеличение B означает, что материал более легко теряет свою намагниченность (и, следовательно, спиновую поляризацию) при нагревании, что плохо для термостабильности электронных устройств. Причем в пленках $SF_{1.2}M_{0.8}O$ с ростом P, согласно данным таблиц 1 и 2, термостабильность ниже, чем в пленках $SF_{0.9}Mo_{1.1}O$, тогда как с понижением P — наоборот. Таким образом, контролируя состав и режимы синтеза пленок $SF_{1.2}M_{0.8}O$ и $SF_{0.9}Mo_{1.1}O$, можно управлять значением B, а значит, и стабильностью спиновой поляризации.

4. Заключение

На основании полученных выше результатов, можно сделать следующие выводы:

- оптимизация режимов осаждения позволила синтезировать однофазные пленки $Sr_2Fe_{1.2}Mo_{0.8}O_{6-\delta}$ ($SF_{1.2}Mo_{0.8}O$) и $Sr_2Fe_{0.9}Mo_{1.1}O_{6-\delta}$ ($SF_{0.9}M_{1.1}O$) с улучшенными структурными характеристиками и различным сверхструктурным упорядочением катионов Fe/Mo. Для этого применялось двухэтапное напыление, со снижением скорости на втором этапе с 18 до 8 nm/min и последующий отжиг при 1173 K в течение 1 h в различных смесях инертных газов;
- исследование магнитных свойств выявило неоднородную магнитную структуру всех пленок. Данное поведение объясняется двумя основными факторами: наличием антиструктурных дефектов, которые разрушают упорядочение по узлам кристаллической решетки и подавляют ферримагнитное упорядочение, а также в условиях кислородного дефицита ($\delta > 0$) часть катионов $\mathrm{Fe}^{2+}(3d^5)$ может восстанавливаться до $Fe^{2+}(3d^6)$, которые в октаэдрическом кристаллическом поле Fe²⁺, как правило, находятся в высокоспиновом состоянии $(t_{2g}^4 e_g^2, S=2)$. Появление ионов Fe^{2+} способствует образованию кластеров типа $Fe^{2+}\!-\!O^{2-}\!-\!Fe^{2+}$, в которых сверхобменное взаимодействие является антиферромагнитным, согласно правилам Гуденафа-Канамори-Андерсена. Таким образом, в структуре пленки SF_{1.2}M_{0.8}O могут присутствовать как антиструктурные дефекты, так и антиферромагнитные кластеры на основе Fe²⁺, что в совокупности способствует формированию магнитнонеоднородной структуры, которая увеличивает коэрцитивную силу пленок;
- обнаружено, что зависимость намагниченности от температуры M(T), измеренная в магнитном поле 0.1 Т, не подчиняется закону Блоха (не аппроксимируется с $R^2 \to 100\,\%$) ни для одной из изученных пленок. Для ее описания потребовалось применение поправок Дайсона, учитывающих вклад магнонов с большими волновыми векторами. Установлено, что как для состава пленок с избытком железа, так и с его недостатком, с увеличением сверхструктурного упорядочения катионов Fe/Mo величина B растет. Причем в пленках $SF_{1.2}M_{0.8}O$, с ростом P, термостабильность ниже, чем в пленках

 $SF_{0.9}Mo_{1.1}O$, тогда как с понижением P, наоборот. Таким образом, контролируя состав и режимы синтеза пленок $SF_{1.2}M_{0.8}O$ и $SF_{0.9}Mo_{1.1}O$, можно управлять значением B, а значит, и термостабильностью спиновой поляризации.

Финансирование работы

Данная работа поддержана в рамках задания "ФКС 1.1.1" ГПНИ Республики Беларусь "Материаловедение, новые материалы и технологии", подпрограмма "Физика конденсированного состояния и создание новых функциональных материалов и технологий их получения" ("Физика и техника материалов"), проекта БРФФИ № Ф24В-005, а также в рамках гранта РНФ № 24-19-00729, https://rscf.ru/project/24-19-00729.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] D.D. Sarma. Curr. Opin. Solid State Mater. Sci. 5, 4, 261 (2001).
- [2] T. Fix, A. Barla, C. Ulhaq-Bouillet, S. Colis, J.P. Kappler, A. Dinia. Chem. Phys. Lett. 434, 276 (2007).
- [3] D. Serrate, J.M. DeTeresa, M.R. Ibarra. J. Phys. Condens. Matter. 19, 1 (2007).
- [4] M. Yarmolich, N. Kalanda, S. Demyanov, H. Terryn, J. Ustarroz, M. Silibin, G. Gorokh. Beilstein J. Nanotechnol. 7, 1202 (2016).
- [5] G. Suchaneck, N. Kalanda, E. Artiukh, M. Yarmolich, N.A. Sobolev. J. Alloys Compd. 860, 158526 (2021).
- [6] С.Е. Демьянов, А.В. Петров. ФТТ, 64, 1788 (2022).
- [7] G. Suchaneck, N. Kalanda, E. Artsiukh, G. Gerlach. Phys. Status Solidi B 257, 1900312 (2020).
- [8] N.A. Kalanda, S.E. Demyanov, A.V. Petrov, D.V. Karpinsky, M.V. Yarmolich, S.K. Oh, S.C. Yu, D.-H. Kim. J. Electron. Mater. 45, 3466 (2016).
- [9] Y. Shao, P. Kh. Amiri. Adv. Mater. Technol. 8, 2300676 (2023).
- [10] W. Kraus, G. Nolze. J. Appl. Crystallogr. 29, 301 (1996).
- [11] J. Rodr?guez-Carvajal. Commission on powder diffraction (IUCr). Newsletter **26**, 12 (2001).
- [12] C. Ritter, M.R. Ibarra, L. Morellon, J. Blasco, J. Garcia, J.M. De Teresa. J. Phys. Condens. Matter. 12, 8295 (2000)
- [13] F.J. Dyson. Phys. Rev. 102, 1230 (1956)
- [14] G. Huo, X. Ren, L. Qian, N. Zhang, S. Liu, X. Yuan. J. Magn. Magn. Mater. 343, 119 (2013)
- [15] S.M. Bhagat, M.L. Spano, K.V. Rao. J. Appl. Phys. 50, 1580 (1979).

Редактор А.Н. Смирнов