Барьеры Шоттки на основе пленок $n-\ln_2S_3$, полученных лазерным испарением

© И.В. Боднарь⁺, В.А. Полубок⁺, В.Ф. Гременок^{∗¶}, В.Ю. Рудь[†], Ю.В. Рудь^{¶¶}

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

⁺ Белорусский государственный университет информатики и радиоэлектроники,

220013 Минск, Белоруссия

* Объединенный институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

[†] Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

(Получена 22 марта 2006 г. Принята к печати 28 апреля 2006 г.)

Методом импульсного лазерного испарения исходных мишеней с последующим осаждением на стеклянные подложки при температурах 480–720 К выращены гомогенные тонкие (0.6–1.5 мкм) пленки *n*-In₂S₃, на которых впервые созданы барьеры Шоттки In/*n*-In₂S₃. Изучена температурная зависимость удельного сопротивления пленок *n*-типа проводимости и определена энергия активации донорных центров в них. Исследованы спектральные зависимости квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ полученных барьеров. Из анализа спектральных зависимостей $\eta(\hbar\omega)$ сделан вывод о характере межзонных переходов и оценена ширина запрещенной зоны в пленках In₂S₃. Сделан вывод о возможностях применения тонких пленок In₂S₃ в широкополосных фотопреобразователях оптического излучения.

PACS: 78.20.-e

1. Введение

В тонкопленочных солнечных элементах на основе многокомпонентных алмазоподобных халькогенидов CuInGaSe₂ с рекордной квантовой эффективностью и высокой радиационной стойкостью активной областью служит контакт между пленками CuInGaSe₂ и CdS [1-3]. Однако с учетом формирующихся в последнее время экологических норм возникла необходимость исключения из состава таких фотопреобразователей высокотоксичного кадмия [2]. В этой связи заметно возросла интенсивность поиска альтернативных решений столь важной проблемы [2]. В круг возможных кандидатов на замену CdS вовлечено и малоизученное бинарное соединение In_2S_3 [4–8]. В настоящей работе представлены первые результаты по созданию и исследованию поверхностно-барьерных структур на основе тонких пленок In₂S₃, выращенных методом импульсного лазерного испарения.

2. Экспериментальная часть

В качестве мишени для получения пленок служили монокристаллы бинарного соединения In₂S₃, выращенные методом Бриджмена-Стокбаргера. Предварительно указанное соединение синтезировали двухтемпературным методом из элементарных компонентов марки В4. Полученные кристаллы измельчали и загружали в двойные кварцевые ампулы, из которых внутренняя ампула имела небольшую конусность в области

расплава и заканчивалась цилиндрическим капилляром, обеспечивающим формирование монокристаллической затравки. Температуру в зоне расплава поддерживали $\sim (1400-1420)$ К, в зоне отжига ~ 920 К. Ампулу в печи с расплавом выдерживали в течение ~ 24 ч (для гомогенизации расплава), а затем опускали ее через фронт кристаллизации в нижнюю зону со скоростью ~ 0.18 мм/ч при градиенте температуры ~ 40 К/см.

В начальной стадии разработки процесса выращивания были подобраны условия получения монокристаллической затравки. Для образования затравки часть расплава (длина участка 5–7 мм) закристаллизовывали путем опускания ампулы, а затем в течение 72 ч проводили ее рекристаллизационный отжиг. На сформированной таким образом монокристаллической затравке проводили выращивание монокристаллов In_2S_3 . После кристаллизации всего расплава полученные кристаллы отжигали в течение 150 ч. Указанные условия позволили вырастить монокристаллы In_2S_3 диаметром 14–16 мм и длиной ~ 50 мм.

Пленки In_2S_3 получали методом импульсного лазерного испарения, который широко применяется для получения пленок сложных полупроводниковых соединений.

Система импульсного лазерного испарения включала промышленный лазер, работающий в режиме свободной генерации (длина волны излучения $\lambda = 1.06$ мкм, длительность импульса $\tau_p = 10^{-3}$ с, энергия в импульсе $E_p = 150-180$ Дж). Подложками служили химически очищенные плоские стекла Corning 7059, температуру которых поддерживали в диапазоне $T_s = 480-720$ К. Лазерный луч фокусировался на поверхности мишени In₂S₃ с помощью стеклянной линзы с фокусным рассто-

[¶] E-mail: gremenok@ifttp.bas-net.by

^{¶¶} E-mail: yuryrud@mail.ioffe.ru

янием 500 мм. Монокристаллы соединения In_2S_3 располагали под углом 45° к направлению лазерного луча. Частота следования импульсов составляла $3 \cdot 10^{-2}$ Гц при энергии в импульсе 150–180 Дж. Осаждение пленок проводили в вакуумной камере при остаточном давлении $2 \cdot 10^{-5}$ Па. Скорость конденсации составляла $(3-6) \cdot 10^5$ Å/с. Толщина полученных пленок на активной площади 2 см² составляла 0.6-1.5 мкм. Полученные пленки были зеркально гладкими и имели хорошую адгезию к поверхности стекла.

Состав выращенных монокристаллов и пленок определяли с помощью микрозондового рентгеноспектрального анализа на установке "Сатеса-MBX". Относительная погрешность определения концентрации компонентов не превышала 5%.

Структуру и параметры элементарной ячейки монокристаллов и мелкокристаллических пленок $\ln_2 S_3$ устанавливали рентгеновским методом. Дифрактограммы записывали на автоматически управляемом с помощью компьютера рентгеновском дифрактометре ДРОН-3М в Си K_{α} -излучении с графитовым монохроматором. Образцы для рентгеновских измерений готовили путем растирания монокристаллов с последующим прессованием их в специальном держателе. Для снятия механических напряжений, возникающих при растирании и прессовании кристаллов, их отжигали в вакууме при 650 К в течение ~ 2 ч. Пленки перед проведением рентгеновских исследований дополнительной обработке не подвергались.

3. Результаты и их обсуждение

Результаты микрозондового рентгеноспектрального анализа представлены в табл. 1. Видно, что содержание элементов в осажденных пленках хорошо согласуется с составом исходных монокристаллов. В результате измерений было установлено, что не наблюдается значительных отклонений локального состава в различных

Таблица 1. Состав полученных кристаллов и осажденных при разных T_s пленок *n*-In₂S₃

Образец	In, a	ат%	S, ат%	
	Ι	II	Ι	II
$In_2S_3,$ объемный образец	40.00	39.75	60.00	60.25
In_2S_3 $(T_s = 720 \mathrm{K})$	40.00	40.61	60.00	59.39
In_2S_3 $(T_s = 610 \mathrm{K})$	40.00	40.37	60.00	59.63
$\frac{\mathrm{In}_2\mathrm{S}_3}{(T_s=480\mathrm{K})}$	40.00	39.85	60.00	60.15

Примечание. I — расчетная концентрация, II — эксперимент.

Рис. 1. Дифрактограммы кристалла (a) и пленок n-In₂S₃, полученных при температурах осаждения $T_s = 720$ (b), 610 (c) и 480 K (d).

точках в пределах одной пленки, что свидетельствует об их однородности. Таким образом, использованный метод лазерного испарения позволяет получать тонкие пленки In_2S_3 , обеспечивая при этом достаточно высокую однородность состава вещества.

Таблица 2.	Электрические	И	оптические	параметры	пленок
<i>n</i> -In ₂ S ₃ при 3	00 K				

№ образца	T_s , K	<i>ρ</i> , 10 ⁵ Ом · см	<i>Е</i> _D , эВ	$E_g^{\text{ind}},$ $\Im \mathbf{B}$	$E_g^{ m d}$ $ \Im {f B}$
1	720	1.4	0.32	1.8	1.08 2.67
2	610	2.7	0.38	0.97	1.60
3	480	2.8	0.29	1.04 1.19	1.80 2.55

На рис. 1 представлены дифрактограммы монокристаллов и пленок In_2S_3 . Анализ показывает, что на дифрактограммах как монокристаллов, так и пленок присутствует система линий, соответствующая тетрагональной структуре. По измеренным значениям углов дифракции (2θ) были рассчитаны межплоскостные расстояния для различных плоскостей отражения, по которым с использованием метода наименьших квадратов определяли параметры элементарной ячейки. Они таковы: $a = (7.618 \pm 0.002)$ Å, $c = (32.295 \pm 0.005)$ Å для кристаллов и $a = (7.573 \pm 0.005)$ Å, $c = (32.25 \pm 0.01)$ Å для пленок.

Тонкие пленки In_2S_3 , как следует из определения знака термоэдс, обнаруживают, подобно исходному объемному кристаллу [4], электронный тип проводимости, который оказался нечувствительным к температуре осаждения пленок. Удельное сопротивление полученных пленок в исследуемом интервале T_s (табл. 2) лежит в диапазоне $(1.6-2.8) \cdot 10^5$ Ом · см при температуре измерения T = 300 K, что соответствует наиболее высокоомным исходным объемным кристаллам In_2S_3 [9]. Удельное сопротивление пленок ρ (рис. 2) в зависимости от температуры следует экспоненциальному закону

$$\rho \propto \exp(E_D/kT),$$
(1)

из которого в предположении сильной компенсации [10] можно определить энергию активации донорных центров E_D . Как видно из табл. 2, использованные температуры осаждения T_s обеспечивают получение пленок, сопротивление которых определяется присутствием глубоких донорных уровней с энергиями $E_D = 0.29 - 0.38$ эВ. Близкие энергии донорных уровней для $\ln_2 S_3$ сообщаются в [6].

Следует отметить, что термоциклирование пленок в диапазоне температур 290–390 К не вызывает какихлибо гистерезисных явлений в полученных зависимостях $\rho(T)$ (рис. 2). Это обстоятельство, как и слабая зависимость электрических свойств пленок *n*-In₂S₃ от температуры их осаждения T_s (табл. 2), позволяет высказать мнение об отсутствии какихлибо фазовых превращений, что подтверждается и исследованием кристаллической структуры пленок *n*-In₂S₃.

Вакуумным термическим испарением чистого индия на поверхность лазерно-осажденных пленок $n-\text{In}_2\text{S}_3$ создавались поверхностно-барьерные структуры $\ln/n-\text{In}_2\text{S}_3$. В качестве омического контакта использовался слой серебра. Измерения стационарных вольт-амперных характеристик показали, что структуры $\ln/n-\text{In}_2\text{S}_3$ обладают выпрямлением, причем пропускное направление отвечает отрицательной полярности внешнего смещения на полупроводнике, а коэффициент выпрямления составляет ~ 10 при напряжении U = 5 B (T = 300 K).

Освещение полученных структур $In/n-In_2S_3$ со стороны барьерной пленки вызывает появление фотонапряжения, причем пленка $n-In_2S_3$ заряжается отрицательно, что соответствует полярности выпрямления. Максимальная вольтовая фоточувствительность в полученных структурах составляет ~ 10 В/Вт при T = 300 К.

На рис. З приведены типичные спектральные зависимости относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ структур In/n-In₂S₃ при T = 300 К в условиях их освещения со стороны барьерного контакта. Спектры $\eta(\hbar\omega)$ нормированы на максимальную фоточувствительность образца 1. Видно, что для полученных барьеров In/n-In₂S₃ рост фоточувствительности начинается при энергии фотонов $\hbar\omega \gtrsim 0.9$ эВ и в образцах 1 и 3 продолжается вплоть до 3.5 эВ, тогда как в случае образца 2 насыщение на уровне максимальной фоточувствительности достигается начиная с $\hbar\omega \gtrsim 2$ эВ. Интерференционные особенности в виде пяти эквидистантных пиков (рис. 3, кривая 2, отмечены стрелками) установлены только для структуры, полученной на пленке 2, выращенной при температуре осажде-

Рис. 2. Температурная зависимость удельного сопротивления пленок n-In₂S₃, полученных при температурах осаждения $T_s = 720$ (1), 610 (2) и 480 (3).

Физика и техника полупроводников, 2007, том 41, вып. 1

ния $T_s = 610$ К. Пленки, осажденные при более высоких или более низких T_s , как видно из рис. 3 (кривые Iи 3), таких особенностей не проявляли. Если учитывать наличие интерференционных особенностей как свидетельство высокой однородности структуры пленок In_2S_3 , то следует считать, что наиболее совершенные пленки удается получать именно при $T_s = 610$ К. С учетом экспериментального значения толщины пленок In_2S_3 d = 0.8 мкм (образец 2) из соотношения для показателя преломления [11]

$$n = \frac{\lambda_m \lambda_{m-1}}{2d(\lambda_m - \lambda_{m-1})},\tag{2}$$

где λ_m — длина волны максимума $\eta(\hbar\omega)$, m — порядок интерференции, была сделана первая оценка показателя преломления $\ln_2 S_3$: n = 3.1.

Как видно из рис. 3, для структур на основе пленок In_2S_3 , выращенных при температуре осаждения от 480 до 720 К, спектры фоточувствительности — широкополосные и весьма схожи между собой. Изменение температуры осаждения пленок (рис. 3) сопровождается перераспределением в соотношении длинноволновой и коротковолновой составляющих фоточувствительности. На рис. 4 представлен анализ спектров фоточувствительности полученных структур на основании соотношений теории межзонного оптического поглощения в полупроводниках [12]. Длинноволновая часть спектров $\eta(\hbar\omega)$ (рис. 4, кривая *I*) спрямляется в координатах $(\eta\hbar\omega)^{1/2} = f(\hbar\omega)$. Это служит основанием для того, чтобы связать ее с непрямыми межзонными переходами

Рис. 3. Спектральные зависимости квантовой эффективности фотопреобразования структур $In/n-In_2S_3$ в зависимости от температуры осаждения пленок In_2S_3 . T_s , K: I - 720, 2 - 610, 3 - 480.

Рис. 4. Зависимость $(\eta \hbar \omega)^{1/2} = f(\hbar \omega)$ (1) и $(\eta \hbar \omega)^2 = f(\hbar \omega)$ (2) для структуры $\ln/n - \ln_2 S_3$ (образец 2) при T = 300 K.

и путем экстраполяции $(\eta \hbar \omega)^{1/2} \rightarrow 0$ оценить ширину запрещенной зоны для непрямых оптических переходов: $E_{o}^{\text{ind}} \approx 0.97$ при T = 300 К. Из рис. 4 также следует, что коротковолновая часть спектра фоточувствительности спрямляется в координатах $(\eta \hbar \omega)^2 = f(\hbar \omega)$, а экстраполяция $(\eta \hbar \omega)^2 \rightarrow 0$ дает значение ширины запрещенной зоны In₂S₃ для прямых межзонных переходов: $E_g^d = 1.60$ эВ при T = 300 К. Следует отметить, что эти данные не согласуются с аналогичными оценками для объемных кристаллов In₂S₃ [9]. В то же время следует признать, что аналогичные оценки E_g^d и E_g^{ind} для пленок In₂S₃, полученных при $T_s = 480$ и 720 К (табл. 2), оказываются более близкими к результатам E_g^d и E_g^{ind} для объемных кристаллов In₂S₃ [9]. Очевидно, что для выяснения причины такого несоответствия требуется проведение специальных исследований. Можно также полагать, что соединение In₂S₃ относится к фазам переменного состава и, следовательно, неоднозначность в оценках ширин запрещенной зоны пленок In₂S₃ может быть связана с изменением состава данного соединения в пределах области его гомогенности.

4. Заключение

Методом импульсного лазерного осаждения при различных температурах впервые получены гомогенные тонкие пленки n-In₂S₃, и показана возможность создания на их основе тонкопленочных барьеров Шоттки. Обсуждается характер межзонных оптических переходов в пленках In₂S₃, и оценивается энергия непрямых и прямых межзонных оптических переходов. Полученные структуры могут найти применение в высокоэффективных радиационно стойких солнечных элементах на основе твердых растворов CuInGaSe₂ в качестве барьерной компоненты вместо CdS.

Настоящая работа поддержана программой ОФН РАН "Новые принципы преобразования энергии в полупроводниковых структурах".

Список литературы

- [1] R. Ramanathan, M.A. Contreras, C.A. Perkins et al. Prog. Photovolt. Res. Appl., **11**, 225 (2003).
- [2] D. Hariskos, S. Spiering, M. Povalla. Thin Sol. Films, 480 (1), 99 (2005).
- [3] A. Jasenek, U. Rau. J. Appl. Phys., 90 (8), 650 (2001).
- [4] N. Neghavi, R. Henriquez, V. Laptev et al. Appl. Surf. Sci., 222 (1), 65 (2004).
- [5] C. Cuillen, T. Garcia, Y. Herrero et al. Thin Sol. Films, 112-115 (7), 451 (2004).
- [6] A.A. El Shazlyy, D. Abd Elhadyyz, H.S. Metwally, M.A.M. Seyam. J. Phys.: Condens. Matter, 10 (26), 5943 (1998).
- [7] Физико-химические свойства полупроводниковых веществ. Справочник, под ред. А.В. Новоселовой, В.Б. Лазарева (М., Наука, 1979).
- [8] Н.Х. Абрикосов, В.Ф. Банкина, Л.В. Порецкая, Е.В. Скуднова, С.Н. Чижевская. Полупроводниковые халькогениды и сплавы на их основе (М., Наука, 1975).
- [9] И.В. Боднарь, В.А. Полубок, В.Ю. Рудь, Ю.В. Рудь. ФТП, 37 (11), 1346 (2003).
- [10] Дж. Блекмор. Статистика электронов в полупроводниках (М., Мир, 1964).
- [11] М. Борн, Э. Вольф. Основы оптики (М., Наука, 1970).
- [12] Ю.И. Уханов. Оптические свойства полупроводников (М., Наука, 1977).

Редактор Л.В. Шаронова

Schottky barriers upon $n-\ln_2 S_3$ films obtained by the laser evaporation

I.V. Bodnar⁺, V.A. Polubok⁺, V.F. Gremenok^{*}, V.Yu. Rud[†], Yu.V. Rud

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia + Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, Belarus * Joint Institute of Solid State Physics and Semiconductors, National Academy of Sciences of Belarus, 220072 Minsk, Belarus † St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia

Abstract The In₂S₃ thin films ($d = 0.6 - 1.5 \,\mu$ m) were prepared by pulsed laser deposition of initial material onto glass substrates. The substrate temperature was in the range of 480-720 K. The as-grown samples were single phase, polycrystalline and the composition of the target material was maintained in the thin films. The crystal structure as determined by X-ray showed that tetragonal films of In₂S₃ phase were obtained. Dark electrical resistivity ρ as a function of the sample temperature and type conductivity was measured for as-grown films. The In₂S₃ films showed *n*-type conduction and the existence of deep donor levels. The In/n-In₂S₃ photosensitivity structures were prepared on the basis of the films obtained and spectral dependences of the relative quantum efficiency $\eta(\hbar\omega)$ were investigated. The long-wavelength exponential edge of $\eta(\hbar\omega)$ is determined by direct interband optical transitions in the In₂S₃ thin films and thus the optical band gap was calculated. It is concluded that the structures obtained can be used as broadband photovoltaic converters.