Зонный спектр и двойной фазовый переход проводимости металл–диэлектрик–металл в упругонапряженном бесщелевом Cd_x Hg_{1-x}Te

© Е.Ф. Венгер, С.Г. Гасан-заде[¶], М.В. Стриха, Г.А. Шепельский

Институт физики полупроводников им. В.Е. Лашкарева Национальной академии наук Украины, 01650 Киев, Украина

(Получена 29 августа 2006 г. Принята к печати 30 августа 2006 г.)

При одноосной упругой деформации у бесщелевого полупроводника Cd_xHg_{1-x} Те между дном зоны проводимости и вершиной валентной зоны образуется энергетическая щель. Оказывается, что зонная структура нового состояния зависит от исходного расположения валентных подзон, т.е. от состава *x*. Для x < 0.135-0.140 материал становится полупроводником с непрямой запрещенной зоной. Если же 0.140 < x < 0.160, то при больших деформациях зона легких дырок Γ_6 в точке $\mathbf{k} = 0$ оказывается выше зоны Γ_8 . В результате полупроводник становится прямозонным, и происходит двойной фазовый переход проводимости металл-диэлектрик-металл. При этом, по мере роста деформации, тип проводимости бесщелевого полупроводника при низких температурах меняется в следующей последовательности: электронная металлическая-электронная активационная-прыжковая-дырочная металлическая проводимость.

PACS: 71.20.Nr, 71.28.+d, 71.30.+h, 62.20.Fe

1. Введение

Твердый полупроводниковый раствор Cd_xHg_{1-x}Te при составах $x \le 0.160 \ (T = 4.2 \, \text{K})$ находится в бесщелевом состоянии, когда дно зоны проводимости в точке ${f k}=0$ соприкасается с вершиной валентной зоны. При этом во всем диапазоне составов $0 < x < x_0$ (величина x_0) зависит от температуры) энергетический спектр такого бесщелевого полупроводника (БП) описывается инверсной зонной моделью Гровса-Пола. В соответствии с этой моделью экстремум зоны Γ_6 при составах $x < x_0$ уже располагается ниже экстремумов подзон Γ_8 , а кривизна зоны Г₆ и крутой ветви зоны Г₈ меняется на противоположную (см. рис. 1, a). Энергетический зазор между Γ_6 и Г₈ становится отрицательным и носит название "отрицательной запрещенной зоны" $|E_g| = E_{\Gamma 6} - E_{\Gamma 8}$. Для дальнейшего важно подчеркнуть, что при постоянной температуре зазор $|E_g|$ определяется исключительно значением состава x. Он максимален при x = 0, т.е. для HgTe, и равен 0 при $x = x_0$. При $x > x_0$ Cd_xHg_{1-x}Te становится полупроводником с обычным порядком зон и нормальной (положительной) запрещенной зоной E_g.

БП Cd_xHg_{1-x} Те относится к бесщелевым полупроводникам второго рода. В таких материалах отсутствие энергетической щели связано не со случайным вырождением зон (как, например, у Pb_xSn_{1-x} Te), а является следствием симметрии кристаллической решетки. Поэтому лишь такое внешнее воздействие, которое понижает симметрию кристалла, приводит к снятию вырождения зон Γ_8 и образованию между ними энергетической щели. Понятно, что при этом должны происходить качественные изменения электронных свойств БП. Поэтому исследование БП при упругой одноосной деформации [1–5] в недавнее время вызвали значительный интерес. Было установлено, что наложение упругого направленного напряжения **P** на БП Cd_xHg_{1-x} Те приводит к образованию у него в точке **k** = 0 энергетической щели, которая линейно растет с увеличением *P*. Кроме того, в плоскости, перпендикулярной к оси сжатия, у валентной зоны тяжелых дырок Γ_8 возникает петля экстремумов. Вершина петли лежит выше середины энергетической щели $\varepsilon_0(P)$, индуцированной сжатием в точке **k** = 0 (рис. 1, *b*). При этом закон дисперсии вблизи экстремума валентной зоны в продольном направлении описывается малой эффективной массой. Резонансный акцепторный уровень (или "акцепторная зона"), которые в отстутвии деформации находятся в зоне проводимости, при наложении *P* также расщепляются. В результате нижний из расщепленных уровней, следуя за вершиной

Рис. 1. Трансформация зонного спектра бесщелевого полупроводника под влиянием одноосного сжатия при T = 4.2 К. Сплошные линии — **P** || **k**, штриховые — **P** \perp **k**.

[¶] E-mail: gassan@isp.kiev.ua

валентной зоны, выходит в образованную деформацией энергетическую щель [4].

На основании результатов, полученных из измерений электрических, гальваномагнитных и фотоэлектрических свойств БП, можно заключить, что однооснонапряженный БП Cd_xHg_{1-x} Те представляет собой полупроводник с совершенно необычным спектром свободных и связанных состояний. Кроме того, бесщелевой Cd_xHg_{1-x} Те может представлять также и прикладной интерес как перспективный материал для разработки перестраиваемых по энергии приемников и источников излучения дальнего инфракрасного (ИК) диапазона [6].

Недавно в упругонапряженном $Cd_xHg_{1-x}Te$ (x = 0.10 - 0.14)в условиях ударной ионизации электрическим полем было обнаружено достаточно интенсивное стимулированное ИК-излучение (диапазон около 100 мкм) [7]. Этот результат вызывает новый интерес к упругонапряженному состоянию БП. В частности, следует возвратиться к особенностям зонной структуры упругонапряженного БП, которые остались не до конца изученными. Речь идет о влиянии удаленной зоны Γ_6 на вид экстремумов зоны тяжелых дырок Γ_8 , а также на состояния акцепторных уровней. Понимание этих особенностей может облегчить индентификацию оптических переходов, ответственных за упомянутое выше стимулированное излучение одноосно-напряженного Cd_xHg_{1-x} Te. Наконец, дальнейшие исследования БП необходимы и для устранения противоречий между результатами, полученными ранее в разных работах для материала с различным составом х. В частности, нуждается в объяснении появление в валентной зоне упругодеформированного $Cd_xHg_{1-x}Te$ (даже при очень низких температурах $T = 1.7 - 4.2 \,\mathrm{K}$) свободных дырок с аномально высокими подвижностями [1].

В настоящей работе приведены результаты теоретических расчетов энергетического спектра БП Cd_xHg_{1-x} Те вблизи экстремумов зон Γ_8 и Γ_6 в зависимости от состава *x* и сделаны численные оценки. Для сопоставления с расчетными оценками здесь же приведены результаты измерений деформационных, температурных и магнитополевых зависимостей коэффициента Холла R_H и удельного электрического сопротивления ρ образцов БП Cd_xHg_{1-x} Те для нескольких значений *x*.

2. Теоретические соотношения

Для упругонапряженного БП вид экстремумов валентной зоны, полученный в приближении модели Латтинджера, т.е. без учета влияния зоны Γ_6 , показан на рис. 1, *b* [1,2]. В точке **k** = 0 возникает индуцированная сжатием петля экстремумов, вершина которой лежит выше середины энергетической щели $\varepsilon_0(P)$. При этом закон дисперсии вблизи экстремума валентной зоны и энергетическое положение мелкого акцептора описывались малой эффективной массой. Следует отметить, что

Физика и техника полупроводников, 2007, том 41, вып. 3

подробного теоретического рассмотрения в [1] проведено не было — авторы ограничились простой оценкой. В [2] было показано, что решение задачи об энергии ионизации и волновой функции акцептора с учетом наличия петли экстремумов в действительности имеет более сложный вид. Интерпретация экспериментальных результатов, полученных в [1], была поставлена под сомнение в [2]. В частности, появление легких дырок в валентной зоне [1] связывалось в [2] с возможной неоднородностью по *x* исследованных в [1] образцов. Позднее, в обзоре [3] была показана схема зонной структуры упругодеформированного БП Cd_xHg_{1-x} Те с учетом вклада зоны Γ_6 , однако теоретические расчеты при этом приведены не были.

Важно отметить, что для решения задачи о зонном спектре Cd_xHg_{1-x} Те в первую очередь — для составов x, близких к критическому значению $x_0 = 0.160$ (T = 4.2 K), двухзонное приближение Латтинджера, принятое в [1,2], становится уже неприемлемым. Здесь требуется применение трехзонного приближения в рамках модели Кейна, поскольку влиянием близко расположенной зоны Γ_6 пренебречь уже нельзя. Перестройка деформацией энергетического спектра БП $\xi(k)$ для случая большого спин-орбитального расщепления и бесконечной массы тяжелых дырок определяется [5] выражением

$$\frac{k^2}{2m} = \frac{[\xi(k) - \varepsilon_g(P)][\xi(k)^2 - \varepsilon_0^2/4]}{|\varepsilon_g| \left[\xi(k) + \frac{\varepsilon_0}{2} P_2(\cos\theta)\right]}.$$
 (1)

Здесь ε_g — "отрицательная запрещенная зона" в недеформированном материале (рис. 1), $\varepsilon_g(P) = \varepsilon_g$ + $(c - a)\varepsilon_{def}$ — изменение этого параметра в однооснодеформированном кристалле (в дальнейшем мы рассматриваем деформацию вдоль кубической оси z), $\varepsilon_0 = 2b(\varepsilon_{zz} - \varepsilon_{xx})$ — энергия расщепления вырожденного терма Γ_8 , где $\varepsilon_{def} = \Sigma \varepsilon_{ii}$ — тензор деформации, a, bи c — деформационные потенциалы, m — эффективные массы легкой подзоны Γ_8 и терма Γ_6 в приближении симметричных зон (когда эффективная масса тяжелых дырок считается бесконечной), $P_2 = (3x^2 - 1)/2$, θ — угол между волновым вектором k и направлением сжатия.

Индуцированная давлением энергетическая щель определяется областью энергий, для которых правая часть (1) отрицательна, т.е. возможны лишь решения с мнимой энергией ξ . Из уравнения (1) следует, что электронный экстремум находится в точке $\mathbf{k} = 0$ и имеет энергию $\varepsilon_0/2$. При выполнении соотношения $\varepsilon_g(P) < \varepsilon_0/4$ дырочные экстремумы расположены при $\mathbf{k} \to \infty$, $\theta = \pm \pi/2$ и имеют энергию $\varepsilon_0/4$. При учете конечности эффективной массы тяжелых дырок экстремумы смещаются в область конечных волновых векторов, а их энергия несколько понижается. Закон дисперсии вблизи петлеобразного дырочного экстремума определяется выражением $k_z^2/2m_z$ с малой продольной эффективной массой [1,2].

Однако по мере смещения вершины зоны Г₆ вверх с увеличением деформации Р величина энергетического зазора в точке $\mathbf{k} = 0$ существенно уменьшается (рис. 1, *c*) по сравнению со значением ε_0 , полученным в рамках двухзонного приближения Латтинджера. В точке $\varepsilon_g(P) = \varepsilon_0/4$ валентная зона в приближении бесконечно большой массы тяжелых дырок становится плоской в поперечном к сжатию направлении. Когда же выполняется обратное соотношение: $\varepsilon_g(P) > \varepsilon_0/4$, полупроводник вновь становится прямозонным (рис. 1, d, e). Спектры электронов и дырок для продольного направления вблизи экстремума теперь описываются соотношениями с малыми кейновскими эффективными массами. Последние перенормированы на зависящую от давления фактическую ширину запрещенной зоны $\varepsilon_0/2 - \varepsilon_g(P)$ (расстояние между верхним расщепленным термом Г₈ и термом Γ_6):

$$\xi_{c\parallel} = \frac{\varepsilon_0}{2} + \frac{|\varepsilon_g|}{\frac{\varepsilon_0}{2} - \varepsilon_g(P)} \frac{k_{\parallel}^2}{2m},$$

$$\xi_{v\parallel} = \varepsilon_g(P) - \frac{|\varepsilon_g|}{\frac{\varepsilon_0}{2} - \varepsilon_g(P)} \frac{k_{\parallel}^2}{2m}.$$
 (2)

Отметим, что для больших значений k эти спектры приобретают линейный кейновский вид.

Для поперечного направления аналитическое общее решение уравнения (1) весьма громоздко. Однако вблизи краев зон справедливы соотношения

$$\xi_{c\perp} = \frac{\varepsilon_0}{2} + \frac{|\varepsilon_g|}{\frac{\varepsilon_0}{2} - \varepsilon_g(P)} \frac{k_{\perp}^2}{6m},$$

$$\xi_{v\perp} = \varepsilon_g(P) - \frac{|\varepsilon_g|}{\frac{\varepsilon_0}{2} - \varepsilon_g(P)} \frac{\varepsilon_g(P) - \frac{\varepsilon_0}{4}}{\varepsilon_g(P) + \frac{\varepsilon_0}{2}} \frac{k_{\perp}^2}{2m}.$$
 (3)

Для больших значений **k** эти спектры приобретают тот же линейный кейновский вид, что и для продольного направления. Как видно из (3), эффективные массы носителей для поперечного направления больше, чем для продольного. Так, эффективная поперечная масса электронов превышает продольную в 3 раза. Для дырок соотношение поперечной и продольной масс зависит от величины деформации. Как уже говорилось ранее, в точке $\varepsilon_g(P) = \varepsilon_0/4$ поперечная масса в принятом приближении бесконечна, а в точке $\varepsilon_g(P) = \varepsilon_0/2$, как видно из (3), соотношение поперечной и продольной масс стремится к 4. Для промежуточного значения $\varepsilon_g(P) = 3\varepsilon_0/8$ поперечная масса превышает продольную в 7 раз. Точный учет конечности массы тяжелых дырок несколько уменьшает эти соотношения.

Согласно [3], значения деформационных потенциалов a, b, c для Cd_xHg_{1-x} Те при T = 4.2 К таковы, что $\delta \varepsilon_g(P)/\delta P = 6$ мэВ/кбар, $\delta \varepsilon_0(P)/\delta P = 2$ мэВ для $P ||\langle 001 \rangle$ и лишь немногим отличаются для других кристаллографических направлений [2]. Отсюда следует, что для области реально достижимых упругих деформаций предельный случай $\varepsilon_g(P) > \varepsilon_0/4$ (когда материал становится прямозонным) может быть реализован только при относительно малых значениях $|\varepsilon_g| < 15-20$ мэВ. Таким образом, прямозонное состояние может быть достигнуто лишь для составов *x*, достаточно близких к критическому значению x_0 . Для меньших же значений *x* зона Γ_6 в точке $\mathbf{k} = 0$ остается по энергии ниже зоны тяжелых дырок Γ_8 во всем диапазоне реально достижимых упругих деформаций кристаллов Cd_xHg_{1-x} Те.

Сопоставление экспериментальных результатов с теорией

Для экспериментальной проверки адекватности модели и правильности приведенных выше оценок были проведены измерения деформационных зависимостей удельного электрического сопротивления ρ и коэффициента Холла $R_{\rm H}$ для образцов с несколькими значениями x. Результаты этих измерений могут также ответить на следующий вопрос: в каком именно экстремуме зоны тяжелых дырок Γ_8 — боковом ($\mathbf{k} \neq 0$) или расположенном в центре зоны Бриллюэна ($\mathbf{k} = 0$) — появляются свободные дырки с аномально высокими подвижностями.

Исследованные образцы ориентировались рентгенографически, а состав x и пространственная однородность образцов по x определялись с помощью рентгеновского микроанализатора с точностью до 0.003. Параметры образцов приведены в таблице. Для всех исследуемых образцов концентрация акцепторов превышала концентрацию доноров ($N_A > N_D$). Однако в исходном состоянии образцы сохраняли электронный тип проводимости во всем температурном диапазоне из-за большого отношения подвижностей электронов и тяжелых дырок $\mu_e/\mu_h \approx 100$.

Результаты измерений $\rho(P)$ и $R_{\rm H}(P)$ приведены на рис. 2. Как видно из рисунка, для образцов 1 и 2 по мере увеличения упругого напряжения наблюдается характерный максимум ρ и смена знака коэффициента Холла $R_{\rm H}$ с дальнейшим выходом ρ и $R_{\rm H}$ на полку при максимальных P (рис. 2, a, b). Отметим, что для образца 2 (с несколько большим значением $|\varepsilon_g|$) эти особенности сдвинуты в область более высоких деформаций. Совокупность представленных на рис. 2, a, bданных для образцов 1 и 2 может быть объяснена переходом БП при значениях деформации P > 2-3 кбар

Параметры исследованных образцов Cd_xHg_{1-x} Te. T = 4.2 K

№ образца	Состав, х	$ \varepsilon_g $, мэВ	<i>n</i> , см ⁻³	$\mu_n, \mathrm{cm}^2/\mathrm{B}{\cdot}\mathrm{c}$
1	0.157	~ 5	$3.83\cdot 10^{14}$	$6.81\cdot 10^5$
2	0.149	~ 21	$5.27\cdot 10^{14}$	$2.69\cdot 10^5$
3	0.098	~ 116	$9.23\cdot 10^{14}$	$1.24\cdot 10^5$
4	0.039	~ 227	$1.14\cdot10^{15}$	$1.72 \cdot 10^5$

Физика и техника полупроводников, 2007, том 41, вып. 3

Рис. 2. Зависимости удельного сопротивления ρ и коэффициента Холла $R_{\rm H}$ от величины деформации для образцов с разными значениями состава x: a — образец 1, b — 2, c — 3, d — 4. T = 4.2 K.

в прямозонное состояние с энергетической щелью. При этом начальный рост $\rho(P)$ и $R_{\rm H}(P)$ очевидно связан с "вымораживанием" электронов из зоны проводимости на акцептор. Напомним, что нижний уровень акцептора по мере роста Р следует за вершиной валентной зоны и смещается в образованную деформацией энергетическую щель. Максимум и дальнейший спад $\rho(P)$ наряду со сменой знака R_H связаны с вкладом в проводимость конкурирующего механизма — ионизацией дырок в валентную зону. Последнее обусловлено уменьшением глубины залегания акцепторов по отношению к вершине валентной зоны. В области максимально достижимых деформаций (P_{max}) подвижность свободных дырок, оцененная из произведения $R_{\rm H}$ на $(1/\rho)$, достигает значений $5 \cdot 10^5 \, \text{см}^2/\text{B} \cdot \text{с}$, что близко по величине к подвижности электронов. Такое значение подвижности дырок может быть связано только с наличием у валентной зоны экстремума Γ_6 с малой эффективной массой [2,3]. При этом для удельного сопротивления выполняется соотношение $\rho_{\perp}/\rho_{\parallel} \approx 1.5 - 2.5$. Последнее отражает степень анизотропии эффективной массы дырок вблизи экстремума и неплохо согласуется с приведенными выше теоретическими оценками.

Для образцов же 3 и 4 с меньшими значениями x (т.е. с большими $|\varepsilon_g|$) наблюдаются монотонные зависимости $\rho(P)$, а смена знака $R_{\rm H}$ отсутствует (рис. 2, *c*, *d*). Во всем диапазоне деформаций сохраняется электронный тип проводимости, что позволяет говорить о незначительном влиянии боковых экстремумов валентной зоны на глубину залегания акцептора. Важным дополнительным фактом является характер магнитополевых зависимостей коэффициента Холла для исследованных образцов. Для образцов 1 и 2 при P = 0, с одной стороны, и $P_{\rm max}$ — с другой, в диапазоне магнитных полей H = 0-5 кЭ коэффициент $R_{\rm H}$ практически не зависит от H. Это свидетельствует о том, что проводимость образца в обоих случаях определяется только одним типом носителей тока: электронов (P = 0) или свободных дырок (P_{max}) соответственно. В области же промежуточных деформаций (P = 1-2.5 кбар) $R_{\rm H}$ демонстрирует сильную зависимость от H, в том числе со сменой знака. Последнее указывает на присутствие в образце по крайней мере двух типов носителей. У образцов же 3 и 4 во всем диапазоне H и P коэффициент Холла сохраняет знак, соответствующий электронному типу проводимости.

Рассмотрим теперь температурные характеристики ρ и $R_{\rm H}$ для разных значений упругого напряжения. Именно из них можно получить полезную информацию об энергиях активации для проводимостей разного типа. На рис. 3–5 показаны зависимости от температуры $\rho(P)$ и $R_{\rm H}(P)$ для образцов первой и второй группы соответственно. У образца 1 в зависимостях ρ от T (рис. 3) для всех P, кроме значений вблизи нуля и $P_{\rm max}$ можно выделить несколько (как правило три) активационных участка. Особенно отчетливо все участки проявляются при промежуточных значениях P (кривые 6–9). В области больших температур энергию активации, оче-

Рис. 3. Температурные зависимости ρ для разных значений упругой деформации. Образец 1. Величины деформаций указаны на вставках.

Рис. 4. Температурные зависимости $R_{\rm H}$ для разных значений упругой деформации P, кбар: кривая I - 0, 2 - 0.6, 3 - 1.2, 4 - 2.2, 5 - 3.1. Образец 1. H = 300 Э. Сплошные линии $- R_{\rm H}$, штриховые $- + R_{\rm H}$.

Рис. 5. Температурные зависимости: $a - \rho$ и $b - R_{\rm H}$ для разных значений упругой деформации *P*, бар: кривые 1 - 0, 2 - 150, 3 - 230, 4 - 350, 5 - 480, 6 - 700, 7 - 900, 8 - 1150, 9 - 1500. Образец 4. Холл-эффект измерялся при H = 400 Э.

видно, следует соотнести с междузонными переходами. Следующий участок (по мере понижения температуры) нужно связать с переходом акцепторный уровень–зона проводимости. Интересно, что при этом в промежуточном (между указанными участками) диапазоне *T* может наблюдаться даже уменьшение удельного электрического сопротивления с понижением температуры. Как известно, такая зависимость проявляется у достаточно качественных кристаллов Cd_xHg_{1-x}Te *p*-типа полупроводниковой фазы (x = 0.20-0.30) и связана с ростом подвижности дырок при практически постоянной концентрации носителей. Это соответствует области температур, где доминирует уже примесная проводимость, однако "истощение" акцепторов оказывается еще не существенным. Наконец, в области наиболее низких температур ($T = 1.7 - 10 \,\mathrm{K}$) отчетливо проявляется третий активационный участок — с наименьшими энергиями активации єз. Этот участок следует связать с прыжковой проводимостью по акцепторной зоне. При этом наблюдается явная зависимость ε_3 от величины упругой деформации. При P = 0 проводимость в этой области температур практически не зависит от Т и, таким образом, носит металлический характер. С увеличением деформации ε_3 сперва растет (кривые 5-8), достигает максимума $\varepsilon_3 = (0.3 - 0.4)$ мэВ (кривая 9), а затем начинает уменьшаться и при P_{max} (кривая 8) становится практически равной нулю. Это связано с уменьшением глубины залегания акцептора и увеличением перекрытия волновых функций соседних акцепторных состояний. Последнее можно объяснить только появлением в точке $\mathbf{k} = \mathbf{0}$ экстремума валентной зоны Γ_6 с малыми эффективными массами. Таким образом, в диапазоне упругих напряжений P = 0 - 3 кбар наблюдается двойной переход проводимости металл-диэлектрик-металл. Знакопеременные зависимости коэффициента Холла от температуры у образца 1 (рис. 4) также свидетельствуют об участии в проводимости нескольких типов носителей тока разного знака. Этот результат вполне согласуется с изложенной выше интерпретацией зависимостей $\rho(P)$ от температуры.

Температурные зависимости ρ и $R_{\rm H}$ для образцов с меньшими x (с большой исходной величиной "отрицательной запрещенной зоны") имеют значительно более простой вид (рис. 5, *a*, *b*). Из них следует, что в этом случае во всем диапазоне используемых упругих деформаций легкие дырки отстутствуют. Проводимость же, очевидно, определяется двумя механизмами. В области относительно небольших напряжений — вымораживанием электронов на акцепторные состояния, а при больших деформациях, когда вклад свободных электронов резко уменьшается, — другим механизмом. Последний, скорее всего, связан с прыжковым переносом по акцепторной зоне.

4. Заключение

В упругонапряженном состоянии структура валентной зоны бесщелевого полупроводника $Cd_x Hg_{1-x}$ Те зависит от величины деформации и исходного положения зон легких и тяжелых дырок (Γ_6 и Γ_8 соответственно) в точке **k** = 0. Расстояние между ними (ширина "отрицательной запрещенной зоны") в исходном кристалле (P = 0) при постоянной температуре задается исключительно

составом х. При любых значениях х воздействие упругого напряжения приводит вначале (помимо образования энергетической щели) к возникновению боковых экстремумов у зоны тяжелых дырок Г₈. В результате БП (или полуметалл) превращается в непрямозонный полупроводник с узкой энергетической щелью, ширина которой линейно растет с увеличением Р. Если состав х оказывается меньше значения 0.135-0.140 ("отрицательная запрещенная зона" $|E_g| > 20-25$ мэВ), то при любых реально достижимых для Cd_xHg_{1-x}Te значениях деформации материал остается непрямозонным полупроводником. Если же исходное значение Eg по абсолютной величине меньше 20-25 мэВ, (0.140 < x < 0.160), то при максимально достижимых напряжениях ($P \approx 3.5 \, \text{кбар}$) зона легких дырок Γ_6 в точке $\mathbf{k} = 0$ оказывается выше зоны Г₈. В результате полупроводник становится прямозонным, и происходит двойной фазовый переход проводимости металл-диэлектрик-металл. При этом по мере роста Р тип проводимости БП при низких температурах меняется в следующей последовательности: электронная металлическая-электронная активационная-прыжковаядырочная металлическая проводимость.

Список литературы

- Ф.Т. Васько, С.Г. Гасан-заде, В.А. Ромака, Г.А. Шепельский. Письма ЖЭТФ, 41, 100 (1988).
- [2] А.В. Германенко, Г.М. Миньков, Е.Л. Румянцева, О.Э. Рут. ЖЭТФ, 94, 242 (1988).
- [3] A.V. Germanenko, G.M. Minkov. Phys. Status Solidi B, **184**, 9 (1994).
- [4] Е.В. Баханова, Ф.Т. Васько. ФТТ, 32, 86 (1990).
- [5] Ф.Т. Васько, М.В. Стриха. УФЖ, **35** (5), 617 (1990).
- [6] С.Г. Гасан-заде, Г.А. Шепельский, Е.А. Сальков. ФТТ, 31, 35 (1997).
- [7] Е.Ф. Венгер, С.Г. Гасан-заде, М.В. Стриха, С.В. Старый, Г.А. Шепельский. ФТП, 34, 791 (2000).

Редактор Л.В. Беляков

Band spectrum and double phase transition of a conductivity metal-dielectric-metal in elastically strained gapless $Gd_xHg_{1-x}Te$

E.F. Venger, S.G. Gasan-zade, M.V. Strikha, G.A. Shepelskii

V.E. Lashkariov Institute of Semiconductor Physics. National Academy Sciences of Ukraine, 01650 Kiev, Ukraine

Abstract The energy gap between the conductivity band bottom and the valence band top occurs in a gapless semiconductor $Cd_xHg_{1-x}Te$ under uniaxial elastic deformation. The band structure of the new state depends on the initial position of the valence subbands, i.e. on the composition *x*. For *x* smaller than 0.135-0.140 the material becomes the semiconductor with an indirect gap. On the contrary, when 0.140 < x < 0.160, the Γ_6 band in $\mathbf{k} = 0$ point is situated higher that the Γ_8 band under high deformations. In this case the semiconductor becomes a direct gap one, and the double phase transition of the conductivity metal-dielectric-metal occurs. The type of gapless semiconductor conductivity with a uniaxial strain increase at low temperatures changes as follows: electron metalic-electron activaton-hoppinghole metallic conductivity.