Бескадмиевые тонкопленочные гетерофотоэлементы Cu(In,Ga)Se₂/(In₂S₃): создание и свойства

© В.Б. Залесский, В.Ю. Рудь^{*¶}, В.Ф. Гременок⁺, Ю.В. Рудь[°], Т.Р. Леонова, А.В. Кравченко, Е.П. Зарецкая⁺, М.С. Тиванов⁺

Институт электроники Национальной академии наук Беларуси,

220090 Минск, Беларусь

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁺ Объединенный институт физики твердого тела и полупроводников Национальной академии наук Беларуси, 220072 Минск, Беларусь

^о Физико-технический институт им. А. Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 29 ноября 2006 г. Принята к печати 15 декабря 2006 г.)

Методом термообработки металлических слоев Cu–In–Ga в инертной атмосфере N₂ в присутствии паров селена и серы выращены однородные пленки твердых растворов Cu(In,Ga)(S,Se)₂, на которые были нанесены пленки CdS или In₂S₃ и на их основе созданы тонкопленочные фотоэлементы: стекло/Мо/ *p*-Cu(In,Ga)(S,Se)₂/*n*-(In₂S₃,CdS)/*n*-ZnO/Ni-Al. Обсуждаются механизм токопереноса и процессы фоточувствительности в полученных структурах при их освещении естественным и линейно поляризованным излучением. Обнаружены широкополосная фоточувствительность тонкопленочных гетерофотоэлементов и наведенный фотоплеохроизм, свидетельствующие об интерференционном просветлении полученных структур. Сделан вывод о возможности применения экологически безопасных бескадмиевых тонкопленочных гетероструктур в качестве высокоэффективных фотопреобразователей солнечного излучения.

PACS: 78.20.-e, 81.15.-z, 85.30.Hi

1. Введение

Фундаментальные исследования алмазоподобных полупроводниковых соединений в направлении усложнения их атомного состава обеспечили прорыв в физике и технике полупроводников и привели, в частности, к созданию лабораторных тонкопленочных гетерофотоэлементов (ТГФ) стекло/Mo/Cu(In,Ga)Se₂/CdS/ZnO/Ni-Al с рекордной квантовой эффективностью (~ 19.8%) и экстраординарной радиационной стойкостью [1-4]. Однако сложность метода одновременного вакуумного соиспарения всех элементов твердого раствора Cu(In,Ga)Se₂ (ClGSe) и высокая токсичность используемых при создании ТГФ компонент (H₂Se и CdS) все еще сдерживают уже относительно давно назревшую необходимость в промышленном производстве этих солнечных элементов [3,5,6]. Альтернативная технология тонких пленок CIGSe (~2 мкм) требуемого состава для эффективного преобразования солнечной энергии основывается на термообработке базовых слоев Си-In-Ga в парах Se, поступающих в зону реакции с потоком газа H₂Se, что ограничивает применение такой технологии в массовом производстве фотопреобразователей [6]. Сейчас наступил этап активного поиска промышленной экологически безопасной технологии выращивания пленок СІGSе больших площадей и получения на их основе ТГФ. Данная работа является дальнейшим развитием этого актуального направления современной фотоэнергетики и посвящена разработке технологии бескадми-

2. Результаты и обсуждение

2.1. Получение однородных пленок CIGSe осуществлялось посредством процесса термообработки базовых слоев Cu-In-Ga, полученных в соответствии с необходимым для синтеза требуемого твердого раствора составом компонент. Пленки Cu-In-Ga наносились ионноплазменным испарением мишени из этих металлов в вакууме ($\sim 6 \cdot 10^{-4} \, \Pi a$) на стеклянные подложки как со специально подготовленной поверхностью, так и с подслоем молибдена, температура которых была ~ 100°С. Термообработка исходных пленок Cu-In-Ga проводилась в инертной атмосфере азота в присутствии паров селена в температурном интервале 250-520°С. Как показали физико-химические исследования, такой режим термообработки обеспечил синтез четверного твердого раствора с халькопиритной структурой [7]. Время процесса выбиралось исходя из требований обеспечения полноты реакции образования гомогенных пленок четверного твердого раствора необходимого состава.

Исследования пленок методом рентгеновского анализа на CuK_{α} -излучении с Ni-фильтром показали, что разработанный технологический процесс приводит к образованию равновесного твердого раствора с решеткой

евых ТГФ $Cu(In,Ga)Se_2/In_2S_3$, а также первым исследованиям их фотоэлектрических свойств в сравнении с известными ранее фотопреобразователями на основе $Cu(In,Ga)(S,Se)_2/CdS.$

[¶] E-mail: rudvas@spbstu.ru

Таблица 1. Атомный состав пленок Cu(In,Ga)Se₂ и Cu(In,Ga)(S,Se)₂, полученных термообработкой слоев Cu-In-Ga в атмосфере Se, S, N₂

No ofinasua	Атомный состав, ат%								
The oopusidu	Cu	In	Ga	Se	S				
1MX178S 1MX200	28.14 27.55	22.37 23.36	4.24 1.37	36.68 47.72	8.57 —				

халькопирита, параметры которой находятся в соответствии с правилом Вегарда.

Анализ элементного состава выращенных пленок выполнялся на сканирующем оже-микрозонде PHI-660 с локальностью ~ 0.1 мкм и чувствительностью ~ 0.1 ат %. Результаты этих исследований для типичных пленок приведены в табл. 1. Следует подчркнуть, что полученные пленки CIGSе имели высокую локальную однородность по поверхности.

Совокупность выполненных исследований однородных пленок *p*-Cu(In,Ga)Se₂ подтвердила также обеспечение возможностей управления их атомным составом и распределением компонент по толщине [7]. Концентрация свободных дырок при T = 300 К в таких пленках была $\sim 2 \cdot 10^{18}$ см⁻³ при холловской подвижности порядка 70 см²/(B · c).

Для получения ТГФ на наружную поверхность пленок *p*-CIGSe методом вакуумного термического напыления наносились пленки In₂S₃ толщиной ~ 40 нм [8]. На поверхность этих пленок методом магнетронного осаждения наносилась вначале высокоомная пленка ZnO ($d_l \approx 20-40$ нм, $R \approx 2.0 \cdot 10^7$ Ом · см), а затем легированная алюминием низкоомная пленка *n*-ZnO ($d_l \approx 0.5$ нм, $R = 3 \cdot 10^{-3} - 3 \cdot 10^{-4}$ Ом · см, $\mu = 18 \text{ см}^2/(\text{B} \cdot \text{c}), n = 1.4 \cdot 10^{20} \text{ см}^{-3}$ при T = 300 K). В завершение процесса на поверхность пленки *n*-ZnO методом вакуумного термического напыления через маску наносились токосъемные Ni-Al-контакты.

Тонкопленочные фотопреобразователи стекло /Мо/ *p*-Cu(In,Ga)Se₂/In₂S₃/ZnO/Ni-Al создавались на подложках с размерами ~ $2 \times 25 \times 75$ мм, а затем методом механического скрайбирования формировался ряд элементов площадью ~ 5×10 мм², каждый из которых был снабжен токосъемным контактом, тогда как общим контактом для всех ТГФ служила нанесенная на стекло пленка из Мо толщиной 0.5–0.8 мкм. На рис. 1 приведен внешний вид такого фотоэлемента.

Аналогичным образом были получены также $T\Gamma\Phi$ стекло /Mo/*p*-Cu(In,Ga)(S,Se)₂/CdS/*n*-ZnO/Ni-Al. Концентрация серы в пленках *p*-Cu(In,Ga)(S,Se)₂ (CIGSSe) устанавливалась параметрами процесса сульфиризирования и приведена в табл. 1. Барьерные пленки *n*-CdS толщиной 40–50 нм осаждались на поверхность CIGSSe химическим методом [9].

2.2. Исследования стационарных вольт-амперных характеристик (BAX) показали, что полученные ТГФ Mo/*p*-CIGSe/*n*-In₂S₃ обнаруживают четкое выпрямление, причем пропускное направление всегда реализуется при отрицательной полярности внешнего смещения на пленке *n*-In₂S₃. Коэффициент выпрямления в полученных ТГФ составлял $K \approx 3-25$ при напряжениях смещения $|U| \approx 1$ В. Типичная ВАХ одного из элементов

Рис. 1. Внешний вид тонкопленочного гетерофотоэлемента стекло /Mo/*p*-Cu(In,Ga)Se₂/*n*-In₂S₃/*n*-ZnO/Ni-Al на подложке размером 25×75 мм.

Рис. 2. Стационарные вольт-амперные характеристики (T = 300 K) гетерофотоэлементов стекло/Мо/*p*-Cu(In,Ga)Se₂/ *n*-In₂S₃/*n*-ZnO/Ni-Al (образец 1MX201-2, кривые *I* и *I'*) и стекло/Мо/*p*-Cu(In,Ga)(S,Se)₂/*n*-CdS/*n*-ZnO/Ni-Al (образец 1MX178S, кривые *2* и *2'*) в координатах: a - I = f(U), $b - \ln |I| = f(U)$, $c - \lg |I| = f(\lg U)$.

№ образца	Тип структуры	β	<i>R</i> ₀ , Ом	<i>U</i> ₀ , B	K, (U = 1 B)	$J_{\rm sc}^{\rm m}$, MA/cm ²	U_{∞}, \mathbf{B}	η,%	ħω ^m , э Β	$\delta_{1/2},$ əB	<i>S</i> ^m _{<i>U</i>} , В/Вт	$E_{\mathrm{G}}^{\mathrm{d}},$ ə B	$\begin{array}{c} P_{I},\%\\ (\Theta\approx70^{\circ},\\ \hbar\omega\approx1.5\mathrm{sB}) \end{array}$
1MX178S	CIGSSe/CdS	4.25	125	0.30	12	24	0.35	2.4	1.6-1.8	1.9	25	1.06	12
1MX187	CIGSe/In ₂ S ₃	_	94	0.26	3	29	0.25	3.2	1.2 - 1.7	1.8	15	0.98	5
1MX200	CIGSe/In ₂ S ₃	_	200	0.40	12	28	0.33	3.9	1.2 - 2.1	1.95	125	0.95	4
1MX201-2	CIGSe/In ₂ S ₃	1.93	170	0.38	25	35	0.38	4.7	1.3 - 1.9	1.95	400	0.95	7

Таблица 2. Фотоэлектрические свойства тонкопленочных гетерофотоэлементов Cu $(In,Ga)(S,Se)_2/CdS(In_2S_3)$ при T = 300 K

СІGSе/Іп₂S₃ приведена на рис. 2. Начальная часть прямой ветви ВАХ таких структур (U < 0.5 В) следует известному диодному уравнению (рис. 2, b, кривая I) с диодным фактором $\beta \approx 1.93$ (табл. 2). Такое значение величины β указывает на то, что прямой ток обусловлен рекомбинацией носителей заряда в активной области таких ТГФ. В то же время для ТГФ CIGSSe/CdS фактор $\beta \approx 4.25$ (табл. 2), что существенно выше, чем в случае барьеров CIGSe/In₂S₃. Это обстоятельство обычно связывается с изменениями в токопереносе из-за снижения совершенства гетерограницы раздела и соответственно указывает на то, что прямой ток определяется туннельно-рекомбинационным механизмом [10].

При напряжениях прямого смещения U > 0.5 B (рис. 2, *a*) ВАХ структур на основе $\ln_2 S_3$ и CdS начинает следовать линейному закону

$$I = \frac{U - U_0}{R_0},\tag{1}$$

где напряжение отсечки составляет $U_0 = 0.3 - 0.4$ В (табл. 2), а остаточное сопротивление R_0 для разных структур изменяется в пределах 100-200 Ом при T = 300 К.

Обратные ветви ВАХ сравниваемых типов ТГФ обычно описываются степенной зависимостью $|I| \propto |U|^m$, причем показатель степени *m* при $|U| \leq 0.3$ В оказался близким к 1 (рис. 2, *c*), что может свидетельствовать о туннелировании носителей или ограничении тока пространственным зарядом в режиме насыщения [11]. С ростом величины напряжения обратного смещения |U| > 0.4 В значение показателя степени достигает величины $m \approx 1.6$, что соответствует закону Чайлда–Ленгмюра и обычно связывается с токами, ограниченными пространственным зарядом в баллистическом режиме [12,13].

Таким образом, замена в полученных $T\Gamma\Phi$ барьерного слоя CdS на In_2S_3 не приводит к существенным изменениям в их электрических свойствах, но обеспечивает исключение из их состава высокотоксичного кадмия.

2.3. При освещении ТГФ из пленок CIGSe, выращенных селенизацией базовых слоев Cu–In–Ga в атмосфере N₂, воспроизводимо проявляется фотовольтаический эффект, вызванный разделением фотогенерированных пар в активной области структур CIGSe/In₂S₃. Фотонапряжение холостого хода $U_{\rm oc}$ и ток короткого замыка-

ния J_{sc} в соответствии с [10] в зависимости от мощности светового потока подчиняются логарифмическому и линейному законам соответственно. В табл. 2 даны значения $J_{\rm sc}$ и фотонапряжения насыщения U_∞ типичных ТГФ с барьерами In₂S₃ и CdS. Видно, что при плотности мощности падающего излучения $L \approx 100 \,\mathrm{mBt/cm^2}$ максимальное значение $J_{\rm sc}^{\rm m} \approx 35\,{\rm mA/cm^2}$ достигается в ТГФ с активной областью CIGSe/In2S3, что близко к аналогичному параметру в традиционно используемой активной области CIGSSe/CdS (табл. 2). Аналогичная ситуация для сравниваемых ТГФ имеет место и в отношении U_{∞} (табл. 2), которое близко к напряжению отсечки U₀ в этих же структурах и может быть принято за высоту энергетического барьера, которая для использованных материалов барьера (CdS и In₂S₃) оказалась практически одинаковой.

Обращает на себя внимание тот факт, что в ТГФ на основе пленок CIGSe, полученных селенизацией, фотонапряжение насыщения U_{∞} оказалось почти вдвое ниже, чем для ТГФ с использованием тонких пленок аналогичного состава, выращенных методом соиспарения компонент твердого раствора [3,13]. В то же время из анализа табл. 2 вытекает важное заключение, что в ТГФ с использованием слоев CIGSe, полученных селенизацией, более высокая квантовая эффективность фотопреобразования достигается при создании барьеров из пленок In₂S₃.

2.4. На рис. 3 представлены типичные спектры относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ ТГФ, полученных осаждением барьерных пленок In_2S_3 (кривые 1, 1') и CdS (кривые 2, 2') на поверхность пленок Cu(In,Ga)Se₂ и Cu(In,Ga)(S,Se)₂ соответственно. Из рисунка видно, что высокая фоточувствительность наблюдается в широкой спектральной области от 1 до 3.8 эВ. Резкий длинноволновый рост фоточувствительности проявляется при $\hbar \omega > 0.95$ эВ (рис. 3, кривые 1 и 2). Для обоих типов барьеров зависимости $\eta(\hbar\omega)$ спрямляются в координатах $(\eta\hbar\omega)^2 = f(\hbar\omega)$ (рис. 3, кривые 1' и 2'). Экстраполяция $(\eta \hbar \omega)^2 \rightarrow 0$ на основании теории межзонного поглощения в полупроводниках [10] дала возможность определить ширину запрещенной зоны для прямых межзонных переходов E_G^d (табл. 2), которая удовлетворительно согласуется с оценкой величины E_G из данных по оптическому пропусканию этих же пленок. Важно указать, что спектральный

Рис. 3. Спектры относительной квантовой эффективности фотопреобразования η (кривые I, 2) и зависимости $(\eta\hbar\omega)^2 = f(\hbar\omega)$ (кривые I', 2') гетерофотоэлементов стекло/Mo/*p*-Cu(In,Ga)Se₂/*n*-In₂S₃/*n*-ZnO/Ni-Al (образец 1MX201-2, кривые I, I') и стекло/Mo/*p*-Cu(In,Ga)(S,Se)₂/ *n*-CdS/*n*-ZnO/Ni-Al (образец 1MX178S, кривые 2, 2') в неполяризованном излучении. Освещение со стороны *n*-ZnO, T = 300 К. Кривые I и 2 смещены вдоль оси ординат.

контур $\eta(\hbar\omega)$ и величина $E_{\rm G}^{\rm d}$, определенные из измерений фоточувствительности исследуемых барьеров, оказались хорошо воспроизводимыми по всей площади пленок. Это соответствует также полученному из микроскопических исследований выводу о высокой локальной однородности пленок, выращенных в процессах селенизации и сульфиризации металлических слоев Cu–In–Ga.

Из рис. 3 (кривые 1 и 2) также вытекает вывод о том, что с ростом энергии падающих фотонов $\hbar \omega > E_{\rm G}^{\rm d}$ в спектрах $\eta(\hbar \omega)$ фотоэлементов на основе разных барьерных материалов (CdS и In₂S₃) фоточувствительность продолжает увеличиваться и только при $\hbar \omega > 1.6$ эВ наступает плавный спад η . В результате полная ширина спектров $\eta(\hbar \omega)$ на их полувысоте в лучших структурах на основе пленок In₂S₃ и CdS оказалась близкой и высокой, достигая $\delta_{1/2} \approx 1.95$ эВ (табл. 2). Это свидетельствует о достаточно хорошем качестве границы раздела, которое практически не падает при замене CdS \rightarrow In₂S₃, что подтверждается также близкими величинами фототока $J_{\rm sc}$ в сравниваемых ТГФ (табл. 2). Максимальная вольтовая фоточувствительность $S_U^m \approx 400$ в/Вт наблюдается для ТГФ на основе барьера CIGSe/In₂S₃, обеспечивающего и максимальную квантовую эффективность (табл. 2).

2.5. С переходом к освещению ТГФ линейнополяризованным излучением (ЛПИ) было установлено, что естественный фотоплеохроизм в них отсутствует [13–15]. Это связано с поликристалличностью всех слоев таких ТГФ. В условиях наклонного падения ЛПИ на приемную плоскость ZnO, как только угол падения Θ становится отличным от нуля, ТГФ начинают проявлять наведенный фотоплеохроизм $P_I > 0$ [15]. На рис. 4 приведена типичная зависимость коэффициента наведенного

Рис. 4. Зависимости коэффициента наведенного фотоплеохроизма P_I (кривая 1) и $P_I^{1/2}$ (кривая 2) при T = 300 K от угла падения Θ линейно поляризованного излучения на приемную плоскость гетерофотоэлемента стекло /Mo/*p*-Cu(In,Ga)Se₂/ *n*-In₂S₃/*n*-ZnO/Ni-Al (образец 1MX201-1, $\hbar \omega = 2$ эB).

Рис. 5. Спектры $P_1(\hbar\omega)$ гетерофотоэлементов стекло/Мо/ *p*-Cu(In,Ga)Se₂/*n*-In₂S₃/*n*-ZnO/Ni-Al (образец 1MX201-2, кривая *I*) и стекло/Мо/*p*-Cu(In,Ga)(S,Se)₂/CdS/*n*-ZnO/Ni-Al (образец 1MX178S, кривая 2) при *T* = 300 K.

фотоплеохроизма от угла падения ЛПИ. Эта зависимость, как следует из рис. 4, находится в соответствии с теорией и описывается квадратичным законом [14,15]

$$P_I \propto \Theta^2$$
 (2)

для обоих типов ТГФ (кривые 1 и 2). Однако величина коэффициента наведенного фотоплеохроизма оказалась существенно ниже оцененной из теории величины $P_1 \approx 30\%$ с учетом показателя преломления ZnO [15,16].

Типичные спектры $P_I(\hbar\omega)$ при фиксированном угле падения ЛПИ $\Theta = 70^{\circ}$ для ТГФ с различными барьерными пленками In₂S₃ и CdS приведены на рис. 5. Во всей области фоточувствительности коэффициент наведенного фотоплеохроизма оказался слабо зависящим от энергии фотонов и необычайно низким. Его величина оказалась в ~ 2 раза ниже ожидаемой из теории [15]. Можно считать, что установленная закономерность наведенного фотоплеохроизма в полученных ТГФ свидетельствует о влиянии процессов их интерференционного просветления во всем спектральном диапазоне фотопреобразования за счет нанесения на наружную плоскость барьерных слоев CdS и In₂S₃ тонких пленок ZnO [14,15]. Очевидно, что оптимизация процесса магнетронного осаждения пленок ZnO открывает возможности повышения квантовой эффективности фотопреобразования ТГФ, а применение поляризационной фотоэлектрической спектроскопии обеспечивает экспрессный мониторинг процессов создания антиотражающих однослойных покрытий из тонких пленок ZnO.

3. Заключение

Методом термообработки базовых слоев Cu-In-Ga в инертной атмосфере N₂ в присутствии паров селена и серы синтезированы однородные пленки твердых растворов Cu(In,Ga)(S,Se)₂, на которые были нанесены пленки CdS или In_2S_3 и на их основе созданы гетерофотоэлементы стекло/Mo/p-Cu(In,Ga)(S,Se)₂/n-(In₂S₃,CdS)/n-ZnO/Ni-Al. Анализ механизма токопереноса показал, что замена в полученных ТГФ барьерного слоя CdS на In_2S_3 не приводит к существенным изменениям в их электрических свойствах. Обнаруженные широкополосная фоточувствительность тонкопленочных гетерофотоэлементов и наведенный фотоплеохроизм свидетельствуют об интерференционном просветлении полученных структур. Установлено, что в гетерофотоэлементах с использованием слоев Cu(In,Ga)(S,Se)2 более высокая квантовая эффективность фотопреобразования обеспечивается при использовании в качестве барьера тонких пленок In₂S₃. Таким образом, в итоге выполненного физико-технологического исследования установлено, что в состав ТГФ в качестве барьерного материала могут быть введены пленки In₂S₃. Такая технология может найти применение при создании высокоэффективных экологически безопасных бескадмиевых ТГФ нового поколения, а применение поляризационной фотоэлектрической спектроскопии обеспечит мониторинг их широкодиапазонного просветления.

Работа профинансирована МНТЦ, проект В-1029 и поддержана программой ОФН РАН "Новые принципы преобразования энергии в полупроводниковых структурах".

Список литературы

- [1] Н.А. Горюнова. Химия алмазоподобных полупроводников (Л., ЛГУ, 1963).
- [2] Copper Indium Diselenide for Photovoltaic Applications, ed. by T.J. Coutts, L.L. Kazmerski and S. Wagner (Amsterdam, Elsevier, 1986).
- [3] K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, D. Young, M. Romero, R. Noufi, J. Ward, A. Duda. Prog. Photovolt. Res. Appl., 11, 225 (2003).
- [4] A. Goetzberger, C. Hebling, H.W. Schock. MSE, R40, 1 (2003).
- [5] I.M. Kotschau, M. Turcu, U. Rau, H.W. Schock. Mater. Res. Soc. Symp. Proc., 668, H4.5.1 (2001).
- [6] V. Alberts, J. Titus, R.W. Birkmire. Thin Sol. Films, 451–452, 207 (2004).
- [7] V.F. Gremenok, E.P. Zaretskaya, V.B. Zalesski, K. Bente, W. Schmitz, R.W. Martin, H.J. Möller. Sol. Energy Mater. and Solar Cells, 89, 129 (2005).
- [8] И.В. Боднарь, В.А. Полубок, В.Ф. Гременок, В.Ю. Рудь, Ю.В. Рудь. ФТП, 41, 48 (2007).
- [9] А.М. Поликанин, О.В. Гончарова, С.А. Сергиеня, В.Ф. Гременок, В.Б. Залесский. ЖПС, 71, 683 (2004).
- [10] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984).
- [11] Г. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [12] E. Hernandes. Crys. Res. Technol., 33, 285 (1988).
- [13] V.Yu. Rud', Yu.V. Rud', H.-W. Schock. Sol. St. Phenomena, 67–68, 421 (1999).
- [14] Ф.П. Кесаманлы, В.Ю. Рудь, Ю.В. Рудь. ФТП, 33, 513 (1999).
- [15] В.Ю. Рудь. Автореф. докт. дис. (УлГУ, 2005).
- [16] Е.М. Воронкова, Б.П. Гречушников, Г.И. Дистлер, И.П. Петров. Оптические материалы для инфракрасной техники (М., Наука, 1965).

Редактор Т.А. Полянская

Cd-free Cu(In,Ga)Se₂/In₂S₃ thin film heterophotoelements: preparation and properties

V.B. Zalesski, V.Yu. Rud'*, V.F. Gremenok+, Yu.V. Rud'°, T.R. Leonova, A.V. Kravchenko, E.P. Zaretskaya+, M.S. Tivanov+

Institute of Electronics, National Academy of Sciences of Belarus, 220090 Minsk, Belarus * St. Petersburg State Politechnic University, 195251 St. Petersburg, Russia + Joint Institute of Solid State and Semiconductor Physics, National Academy of Sciences of Belarus, 220072 Minsk, Belarus ° Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Homogeneous thin films of $Cu(In,Ga)(S,Se)_2$ solid solutions were grown by treatment of metallic Cu-In-Galayers in Se and S vapour under N₂ inert atmosphere. CdS, In_2S_3 films were deposited into $Cu(In,Ga)Se_2$ films and glass/Mo/*p*-Cu(In,Ga)(S,Se)₂/*n*-(In₂S₃,CdS)/*n*-ZnO/Ni-Al solar cells were formed. The current transfer mechanism and photosensitivity process in the obtained structures at illumination by the natural and linearly polarized radiation is discussed. The wide-band photosensivity and induced photopleochroism due to interference enlighten of the prepared structures were found. The conclusion on the possibility of the application these ecologically safe Cd-free thin film heterostructures in high efficiency photovoltaic devices was made.