Мощные лазерные диоды с длиной волны излучения 808 нм на основе различных типов асимметричных гетероструктур со сверхшироким волноводом

© В.В. Безотосный*, В.В. Васильева, Д.А. Винокуров, В.А. Капитонов, О.Н. Крохин*, А.Ю. Лешко, А.В. Лютецкий, А.В. Мурашова[¶], Т.А. Налет, Д.Н. Николаев, Н.А. Пихтин, Ю.М. Попов*, С.О. Слипченко, А.Л. Станкевич, Н.В. Фетисова, В.В. Шамахов, И.С. Тарасов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

* Физический институт им. П.Н. Лебедева Российской академии наук,

117924 Москва, Россия

(Получена 26 июня 2007 г. Принята к печати 4 июля 2007 г.)

Проведено сравнение параметров мощных многомодовых лазерных диодов с длиной волны излучения 808 нм, полученных на основе асимметричных гетероструктур со сверхшироким волноводом в системах твердых растворов AlGaAs/GaAs и (Al)GaInP/GaInAsP/GaAs. В лазерах на основе системы AlGaAs/GaAs максимальная оптическая мощность была ограничена катастрофической оптической деградацией зеркал SiO₂/Si и составила 4.7 Вт. В лазерах на основе системы (Al)GaInP/GaInAsP/GaAs максимальная оптическая мощность была ограничена термическим насыщением и составила 7 Вт. Полученные результаты показали, что с точки зрения увеличения максимальной оптической мощности и срока службы лазеров более надежной является система (Al)GaInP/GaInAsP/GaAs.

PACS: 42.55.Px, 78.55.Cr, 78.67.De

1. Введение

Полупроводниковые лазеры, излучающие на длине волны 808 нм, были разработаны и реализованы в системах AlGaAs/GaAs и GaInAsP/GaAs около двух десятилетий тому назад. Однако интерес к ним не ослабевает, поскольку они широко используются в системах для накачки твердотельных лазеров и волоконных усилителей. Динамичное развитие электронной промышленности требует постоянного усовершенствования лазерных диодов — увеличения их оптической мощности, яркости, эффективности, срока службы.

Для улучшения характеристик лазерных диодов с длиной волны излучения 808 нм используются разные подходы [1-6]. В частности, в одной из наших последних работ [6] было показано, что использование асимметричной гетероструктуры со сверхшироким волноводом в традиционной системе твердых растворов AlGaAs/GaAs позволило существенно снизить внутренние оптические потери и увеличить максимальную оптическую мощность. Кроме того, расширение волновода влечет за собой снижение плотности потока энергии на диэлектрическом выходном зеркале SiO₂, что также позволяет повысить максимальную оптическую мощность лазеров на гетероструктурах, содержащих алюминий. Тем не менее основной причиной, ограничивающей максимальную оптическую мощность таких лазеров, по-прежнему остается оптическая катастрофическая деградация зеркал. В данном аспекте лазерные гетероструктуры, не содержащие алюминий в активной области и волноводных слоях, могут оказаться более выигрышными по сравнению с гетероструктурой в системе AlGaAs/GaAs.

Цель настоящей работы заключалась в сравнении характеристик мощных полупроводниковых лазеров с длиной волны излучения 808 нм, полученных на основе асимметричных гетероструктур со сверхшироким волноводом в системах твердых растворов AlGaAs/GaAs и (Al)GaInP/GaInAsP/GaAs.

2. Экспериментальные образцы

Для эпитаксиального осаждения лазерных гетероструктур использовалась МОС-гидридная технология (газофазное осаждение из металлорганических соединений) пониженного давления. Температура роста составляла 725°С. В качестве источников элементов III группы использовались триметилалюминий, триметил- и триэтилгаллий, триметилиндий. В качестве источников элементов V группы использовались 100%-й арсин и 100%-й фосфин. Смесь силана с водородом использовалась в качестве лигатуры для получения *n*-типа проводимости, а диэтилцинк и бискицлопентадиенил магния — в качестве лигатуры для *p*-типа проводимости. В качестве газа-носителя использовался водород с точкой росы не выше — 100°С. Рост осуществлялся на подложках *n*-GaAs (001).

При разработке конструкции лазерных гетероструктур в качестве базовой была выбрана хорошо себя зарекомендовавшая в процессе создания мощных полупроводниковых лазеров асимметричная двойная гетероструктура раздельного ограничения со сверхшироким волноводом [7,8]. Определение толщины волновода и положения в нем активной области было направлено на минимизацию внутренних оптических потерь с целью увеличения

[¶] E-mail: a.murashova@mail.ioffe.ru

Рис. 1. Энергетические зонные диаграммы асимметричных лазерных гетероструктур раздельного ограничения в системах AlGaAs/GaAs (*a*) и (Al)GaInP/GaInAsP/GaAs (*b*). E_g — ширина запрещенной зоны, z — координата в направлении роста эпитаксиальных слоев.

максимальной мощности оптического излучения. В нашем случае внутренние оптические потери могут быть существенно снижены за счет расширения волновода. Однако это ведет к появлению мод высших порядков, которые значительно проникают в сильно легированные эмиттерные слои и эффективно поглощаются в них, что вызывает увеличение потерь и снижение оптической мощности лазера. Для подавления мод высших порядков используется асимметричная гетероструктура, в которой активная область сдвинута относительно центра волновода в ту точку, где фактор оптического ограничения фундаментальной моды максимален по сравнению с факторами оптического ограничения мод высших порядков. Для каждой из двух выбранных систем были вычислены оптимальные толщина волновода и смещение активной области.

В системе AlGaAs/GaAs лазерная гетероструктура состояла из эмиттерных слоев Al_{0.5}Ga_{0.5}As, волноводных слоев Al_{0.32}Ga_{0.68}As и активной области — квантовой ямы (КЯ) Al_{0.08}Ga_{0.92}As толщиной 120 Å. Ширина

волновода составляла 1.63 мкм, активная область была смещена к эмиттеру p-типа проводимости на 0.19 мкм (рис. 1, a).

В (Al)GaInP/GaInAsP/GaAs системе лазерная гетероструктура состояла из эмиттерных слоев (Al_{0.10}Ga_{0.90})_{0.52}In_{0.48}P, волноводных слоев Ga_{0.52}In_{0.48}P и активной области ненапряженной КЯ толщиной 100 Å. Ширина Ga_{0.87}In_{0.13}As_{0.75}P_{0.25} волновода составляла 2.1 мкм, активная область была смещена к эмиттеру *р*-типа проводимости на 0.21 мкм (рис. 1, *b*).

В табл. 1 и 2 дано подробное описание выращенных лазерных гетероструктур. Лазерные гетероструктуры в системе (Al)GaInP/GaInAsP/GaAs имели спейсеры — тонкие напряженные слои, которые использовались для повышения кристаллографического и оптического качества гетерограниц GaInP/GaInAsP.

С применением известных постростовых технологий из выращенных структур были изготовлены полупроводниковоые лазеры с апертурой излучения 100 мкм. Из каждой структуры изготавливались партии лазеров с различной длиной резонатора от 0.5 до 4.0 мм, и исследовались их пороговые, мощностные и спектральные характеристики.

3. Экспериментальные результаты

Основные параметры, характеризующие гетероструктуру, — пороговая плотность тока, внутренний квантовый выход, внутренние оптические потери — измерялись на серии естественно сколотых образцов с разными длинами резонатора.

Основные электрические и оптические характеристики образцов — ватт-амперные, вольт-амперные характеристики, коэффициент полезного действия (кпд), расходимость пучка и спектры излучения — измерялись на образцах с напыленными просветляющими и отражающими покрытиями SiO₂/Si.

Ватт-амперные характеристики измерялись в непрерывном режиме генерации при комнатной температуре (25° C). Остальные выходные параметры измерялись до непрерывной рабочей мощности 3 Вт при комнатной температуре. Также проводились исследования кпд, ваттамперных и вольт-амперных характеристик в диапазоне температур 25–55°C. Из этих измерений определялись коэффициенты температурной чувствительности пороговой плотности тока и дифференциальной эффективности.

Значения основных параметров тестированных лазерных диодов, полученных на основе двух материальных систем, суммированы в табл. 3. Значения приведены для лазеров с длиной резонатора 3 мм. Как видно из таблицы, параметры лазеров в обеих системах имеют близкие значения. Однако лазеры в системе (Al)GaInP/GaInAsP/GaAs имеют более высокие значения максимальной оптической мощности, примерно на 30%

№ слоя	Слой	Состав	Уровень легирования, см ⁻³	Толщина
1 2 3 4 5 6	<i>п</i> -подложка <i>п</i> -эмиттер волновод активная область (КЯ) волновод	$\begin{array}{c} GaAs(001) \\ Al_{0.5}Ga_{0.5}As \\ Al_{0.32}Ga_{0.68}As \\ Al_{0.08}Ga_{0.92}As \\ Al_{0.32}Ga_{0.68}As \\ Al_{0.32}Ga_{0.68}As \\ Al_{0.52}Ga_{0.58}As \\ Al_{0.52}As \\ Al_{0.52}A$	$2 \cdot 10^{18} \\ 1 \cdot 10^{18} (Si) \\ He \ легирован \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	350-400 мкм 2 мкм 1.0 мкм 120 Å 0.63 мкм 1 9 мкм
7	контактный <i>р</i> -слой	GaAs	$1 \cdot 10^{-10}$ (Zn) $1 \cdot 10^{20}$ (Zn)	0.6 мкм

Таблица 1. Асимметричная двойная гетероструктура раздельного ограничения в системе AlGaAs/GaAs

Таблица 2. Асимметричная двойная гетероструктура раздельного ограничения в системе (Al)GaInP/GaInAsP/GaAs

№ слоя	Слой	Состав	Уровень легирования, см ⁻³	Толщина
1	<i>п</i> -подложка	GaAs(001)	$5 \cdot 10^{18}$	350-400 мкм
2	<i>п</i> -эмиттер	$(Al_{0.10}Ga_{0.90})_{0.52}In_{0.48}P$	$1\cdot 10^{18}~(\mathrm{Si})$	2 мкм
3	волновод	$Ga_{0.52}In_{0.48}P$	Не легирован	1.26 мкм
4	спейсер	$Ga_{0.93}In_{0.07}As_{0.5}P_{0.5}$	» »	20 Å
5	активная область (КЯ)	$Ga_{0.87}In_{0.13}As_{0.75}P_{0.25}$	» »	100 Å
6	спейсер	Ga _{0.93} In _{0.07} As _{0.5} P _{0.5}	» »	20 Å
7	волновод	Ga _{0.52} In _{0.48} P	» »	0.84 мкм
8	<i>р</i> -эмиттер	$(Al_{0.10}Ga_{0.90})_{0.52}In_{0.48}P$	$3\cdot10^{18}~(Mg)$	1.5 мкм
9	контактный <i>р</i> -слой	GaAs	$5\cdot10^{18}~(\mathrm{Mg})$	0.25 мкм

Таблица 3. Параметры лазеров в двух системах

Параметр	AlGaAs/GaAs	(Al)GaInP/GaInAsP/GaAs
Пороговая плотность тока при бесконечной длине резонатора J ₀ , A/см ²	170	150
Внутренний квантовый выход η_i , %	>90	99
Внутренние оптические потери α_i , см ⁻¹	0.5	0.8
Максимальная выходная оптическая мощность P _{max} , Вт	4.7	7.0
Коэффициент полезного действия η_c , %	50*	55*
Расходимость излучения в вертикальной плоскости θ_{\perp} , град	26*	21*
Коэффициент температурной чувствительности порогового тока T ₀ , К	160	200
Коэффициент температурной чувствительности дифференциальной		
эффективности Т1, К	-	400

Примечание. * — измерения проводились на рабочей мощности 3 Вт.

превышающие максимальную оптическую мощность лазеров в системе AlGaAs/GaAs.

На рис. 2 приведены типичные ватт-амперные характеристики лазеров с длиной резонатора 3 мм на основе двух материальных систем. В лазерах на основе системы AlGaAs/GaAs, содержащих алюминий во всех слоях лазерной гетероструктуры, происходила катастрофическая оптическая деградация зеркал при плотности оптической мощности 3 MBt/см². По этой причине не достигалось характерное для непрерывного режима генерации насыщение ватт-амперной характеристики. В лазерах на основе (Al)GaInP/GaInAsP/GaAs, не содержащих алюминий в активном и волноводном слоях, оптическая мощность была ограничена термическим насыщением при плотности оптической мощности на зеркале 3.5 MBt/см². Полученные результаты свидетельствуют о более высокой надежности лазеров на основе

Рис. 2. Ватт-амперные характеристики и зависимости кпд от тока накачки в непрерывном режиме генерации (CW) для лазеров с длиной волны 808 нм на основе систем AlGaAs/GaAs (*1*) и (Al)GaInP/GaInAsP/GaAs (*2*).

(Al)GaInP/GaInAsP/GaAs при использовании покрытий SiO₂/Si и дают основания для предположений о большем сроке службы этих лазеров по сравнению с такими же лазерами на основе AlGaAs/GaAs.

4. Заключение

Методом МОС-гидридной эпитаксии выращены асимметричные лазерные квантово-размерные гетероструктуры раздельного ограничения со сверхшироким волноводом в системах твердых растворов AlGaAs/GaAs и (Al)GaInP/GaInAsP/GaAs, излучающие на длине волны 808 нм. На их основе изготовлены меза-полосковые лазеры с апертурой 100 мкм, и исследованы излучательные характеристики лазеров.

В лазерах на основе AlGaAs/GaAs максимальная оптическая мощность была ограничена катастрофической оптической деградацией зеркал SiO₂/Si и составила 4.7 Вт. В лазерах на основе (Al)GaInP/GaInAsP/GaAs максимальная оптическая мощность была ограничена термическим насыщением и составила 7 Вт. Полученные результаты еще раз доказали преимущество не содержащих алюминий твердых растворов при изготовлении лазеров с использованием покрытий SiO₂/Si.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 04-02-08183-офи), программ Президиума академии наук "Квантовые наноструктуры" и Отделения физических наук "Когерентное оптическое излучение полупроводниковых соединений и структур".

Список литературы

- T. Fukunaga, M. Wada, H. Asano, T. Hayakawa. Jpn. J. Appl. Phys., 34, pt 2 (9B), L1175 (1995).
- [2] J.K. Wade, L.J. Mawst, D. Botez, R.F. Nabiev, M. Jansen, J.A. Morris. Appl. Phys. Lett., 72 (1), 4 (1998).
- [3] T. Fukunaga, M. Wada, T. Hayakawa. Jpn. J. Appl. Phys., 38, pt 2 (4A), L387 (1999).
- [4] N. Tansu, D. Zhou, LJ. Mawst. IEEE Photon. Technol. Lett., 12 (6), 603 (2000).
- [5] R.M. Lammert, M.L. Osowski, S.W. Oh, C. Panja, J.E. Ungar. Electron. Lett., 42 (9), 535 (2006).
- [6] А.Ю. Андреев, А.Ю. Лешко, А.В. Лютецкий, А.А. Мармалюк, Т.А. Налет, А.А. Падалица, Н.А. Пихтин, Д.Р. Сабитов, В.А. Симаков, С.О. Слипченко, М.А. Хомылев, И.С. Тарасов. ФТП, 40 (5), 628 (2006).
- [7] N.A. Pikhtin, S.O. Slipchenko, Z.N. Sokolova, A.L. Stankevich, D.A. Vinokurov, I.S. Tarasov, Zh.I. Alferov. Electron. Lett., 40, 1413 (2004).
- [8] Д.А. Винокуров, С.А. Зорина, В.А. Капитонов, А.В. Мурашова, Д.Н. Николаев, А.Л. Станкевич, М.А. Хомылев, В.В. Шамахов, А.Ю. Лешко, А.В. Лютецкий, Т.А. Налет, Н.А. Пихтин, С.О. Слипченко, З.Н. Соколова, Н.В. Фетисова, И.С. Тарасов. ФТП, **39**, 388 (2005).

Редактор Л.В. Шаронова

High power 808 nm laser diodes based on different types of asymmetric heterostructures with ultra-thick waveguide

V.V. Bezotosniy*, V.V. Vasilyeva, S.A. Vinokurov, V.A. Kapitonov, O.N. Krokhin*, A.V. Lyutetskiy, A.V. Murashova, T.A. Nalet, D.N. Nikolaev, N.A. Pikhtin, Yu.M. Popov*, S.O. Slipchenko, A.L. Stankevich, N.V. Fetisova, V.V. Shamakhov, I.S. Tarasov

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * P.N. Lebedev Physical Institute, Russian Academy of Sciences, 117924 Moscow, Russia

Abstract In the present paper the characteristics of high-power multimode 808 nm laser diodes based on asymmetric heterostructures with ultra-thick waveguide and grown in AlGaAs/GaAs and (Al)GaInP/GaInAsP/GaAs alloy systems have been compared. The maximum output optical power of lasers based on AlGaAs/GaAs system was limited by catastrophic optical mirror damage and came to 4.7 W. The maximum output optical power of lasers based on (Al)GaInP/GaInAsP/GaAs system was limited by thermal rollover and reached 7 W. The results obtained have shown that (Al)GaInP/GaInAsP/GaAs system is more reliable in respect to the increase of laser maximum output optical power and lifetime.