Кинетика резистивного отклика тонких пленок SnO_{2-*x*} в газовой среде

© С.В. Рябцев[¶], А.В. Юкиш, С.И. Ханго, Ю.А. Юраков, А.В. Шапошник, Э.П. Домашевская

Воронежский государственный университет, 394006 Воронеж, Россия

(Получена 13 июня 2007 г. Принята к печати 11 июля 2007 г.)

Получены данные о газовой чувствительности тонких пленок SnO_{2-x} в среде кислорода и водорода. Пленки были изготовлены окислением на воздухе слоев металлического олова при различных температурах. Немонотонная кинетика резистивного отклика образцов SnO_{2-x} в условиях газовой адсорбции объяснена участием во взаимодействии адсорбент-полупроводник "биографических" электронных состояний (определяемых технологией изготовления и обработки образцов), плотность которых зависит от температурного режима получения SnO_{2-x} .

PACS: 68.47.Fg, 68.35.Fx, 68.43.Pg

1. Введение

Большое значение резистивного отклика SnO₂ на различные газы в сочетании с термодинамической стабильностью и воспроизводимостью электрофизических свойств определяет научный и прикладной интерес к этому окислу. Газочувствительные свойства SnO₂ — полупроводника *n*-типа с шириной запрещенной зоны $E_{\rm g} \approx 3.6$ эВ определяются главным образом технологиями его получения, которых на сегодняшний день известно десятки. Однако поиск новых и оптимизация уже известных способов и технологий интенсивно продолжается.

В данной работе образцы оксида олова были приготовлены путем окисления на воздухе тонких слоев металлического олова, что позволяет получать максимально чистые от химических примесей пленки, так как в качестве исходных компонентов для них не используются какие-либо химические соединения. Кроме того, вариация температуры окисления слоев металлического олова дает возможность изменять в самых широких пределах степень дефектности пленок, так как пленки в процессе окисления проходят все возможные состояния от металлического олова до практически стехиометричесого состава SnO₂.

Преобладающим типом дефектов в пределах области гомогенности SnO₂, как показал термодинамический анализ равновесия собственных точечных дефектов [1], являются дважды ионизованные вакансии кислорода.

В монокристаллических образцах энергетические уровни вакансий кислорода $V_{\rm O}^+$ и $V_{\rm O}^{2+}$ лежат на глубине 30–40 и 140–150 мэВ ниже края зоны проводимости соответственно [2,3].

Для многих окислов обнаружено отклонение от стехиометрии в зависимости от температурных условий и среды, в которых они изготовляются или отжигаются.

Термогравиметрические исследования дефектности SnO₂ были проведены в работе [4]. Состав оксида

олова (IV) в соответствии с этим исследованием более точно отражается формулой SnO_{2-x} , где x — отклонение от стехиометрии. Концентрация вакансий кислорода меняется в процессе отжига образцов. Такое поведение характерно для многих окислов и проявляется в их оптических свойствах [5–8]. В нашей предыдущей работе [9] также сообщается о корреляции особенностей в оптических спектрах SnO_{2-x} со степенью дефектности оксидных слоев, полученных при различных температурных режимах.

Краткий анализ литературных данных, приведенный выше, показывает, что исследование дефектных пленок SnO_{2-x} в условиях адсорбционного воздействия представляет интерес как для понимания механизмов чувствительности сенсорных материалов, так и для установления деталей электронного строения самого оксида олова. Адсорбционное воздействие в данной работе рассматривается как управляющий параметр, который влияет на электронную подсистему оксида олова и помогает установить некоторые детали электронного строения.

2. Методика эксперимента

Пленки олова наносились на диэлектрические подложки с помощью магнетронной системы распыления в плазмообразующей среде аргона. Мишень была изготовлена из олова чистотой не менее 99.99%. Разрядный ток магнетрона в процессе напыления составлял 60 мА при напряжении 360 В и давлении аргона 10⁻³ Торр. Такой режим обеспечивал скорость нанесения олова около 1 нм/с. Полученные металлические пленки имели толщину 30 нм.

Окисление пленок олова проводилось в воздушной среде при температуре 230, 450 и 650°С.

Электропроводность пленок SnO_{2-x} в чистом водороде и кислороде изучалась на тестовых структурах из поликора (Al_2O_3), снабженных платиновым нагревателем, датчиком температуры и контактами для измерения

[¶] E-mail: Ryabtsev@niif.vsu.ru

электропроводности пленок. Контроль температурного режима тестовых структур и измерение электропроводности пленок, осуществлялись автоматически с помощью установки, включающей компьютер.

Эксперименты по газовой чувствительности пленок SnO_{2-x} проводились при температуре 220°C в проточной фторопластовой ячейке в газах 99.99% чистоты.

3. Результаты и их обсуждение

Состав полученных пленок исследовался методом просвечивающей электронной микроскопии в режиме общей дифракции [10]. Пленки, полученные при всех температурах, имели одинаковый фазовый состав. Кроме стабильной фазы тетрагонального диоксида олова, во всем интервале температур наблюдалась нестабильная для объемных образцов орторомбическая фаза SnO₂.

По данным сканирующей электронной микроскопии, средний размер кристаллитов в пленках не превышает 100 нм и существенно не изменяется с увеличением температуры отжига.

Газочувствительные, электрофизические и другие свойства SnO_2 определяются различными структурными дефектами. В соответствии с проведенными ранее оптическими исследованиями тонких слоев SnO_{2-x} [9] следует ожидать существенного отклонения от стехиометрии в пленках, которые получены окислением металлического олова в мягких температурных условиях (230 и 450°С). На рис. 1 приведены результаты исследования резистивного отклика дефектных пленок в различных газовых средах: в кислороде — газеакцепторе, в водороде — газе-доноре и в аргоне — нейтральном в отношении хемосорбции газе. В потоке чистого аргона при температуре эксперимента 230°С происходит эффективная десорбция и кислорода, и водорода.

Газы с большим электронным сродством называют газами-акцепторами. При хемосорбции они заряжаются отрицательно. Их поверхностные электронные состояния (ПЭС) расположены ниже уровня Ферми полупроводника (E_A на рис. 2, c). К числу газов-акцепторов относятся O_2 , Cl_2 , F_2 , NO_2 и др.

Газы-доноры, ПЭС которых расположены выше уровня Ферми полупроводника, напротив, заряжаются положительно, т.е. отдают электроны в полупроводник ($E_{\rm D}$ на рис. 2, a). К числу газов-доноров относятся H₂, СО и др.

Резистивный отклик SnO_{2-x} при адсорбции кислорода и водорода, приведенный на рис. 1, дан для трех пленок, которые окислены при температурах: 230, 450 и 650°С. Для сравнения резистивного отклика пленок, которые окислены при различных температурах, экспериментальные данные представлены в относительных единицах. В условиях адсорбции кислорода сопротивление сенсоров *n*-типа (*R*) увеличивается, поэтому отклик представлены в относительных представленых единицах.

Рис. 1. Резистивный отклик окисленных при температуре 230, 450, 650°С пленок SnO_{2-x} в среде кислорода (*a*) и в среде водорода (*b*).

который уменьшает сопротивление пленок — в единицах $\Delta\sigma/\sigma_0$ (σ — проводимость, σ_0 — проводимость при $t = t_0$). Разнонаправленный резистивный отклик пленок в водороде и кислороде неудобно представлять только в одной из выбранных систем координат, так как их отрицательные части асимптотически стремятся к 1. Обе системы координат равнозначны, поскольку отражают изменение концентрации носителей в полупроводниковой пленке.

Как видно из рис. 1, *а* и *b*, отклик пленок зависит от температуры окисления образцов. Полученные при температурах 230 и 450°С данные демонстрируют немонотонное изменение сопротивления в условиях адсорбции кислорода и водорода. Такое поведение резистивного отклика пленок мы связываем с дефектами структуры полупроводника.

Дефекты структуры, связанные с технологической обработкой образцов и с их предысторией, называют "биографическими", а электронные состояния, индуцированные такими дефектами, называют биографическими электронными состояниями (BES). BES существенно влияют, а иногда и определяют механизм и кинетику адсорбционного отклика полупроводника, помещенного в различные газовые среды.

Газовая чувствительность полупроводниковых сенсоров, т.е. изменение концентрации носителей заряда в приповерхностном слое полупроводника при адсорбции газов, описывается двумя основными механизмами:

1) хемосорбцией газов в заряженной форме [11], которая вызывает приповерхностный изгиб зон полупроводника, описываемый моделью Шоттки. Этот процесс приводит к изменению концентрации носителей заряда в приповерхностной области полупроводника;

2) непосредственным взаимодействием газов с электрически активными дефектами поверхности, которое не приводит к изгибу зон, но также изменяет концентрацию носителей заряда в полупроводнике [12].

Иллюстрацией второго механизма в системе SnO_{2-x} могло бы быть взаимодействие кислорода из газовой фазы с электрически активными биографическими вакансиями кислорода, которые и определяют электропроводность оксида олова (IV) по схеме:

$$V_{\mathrm{O}}^{0} \leftrightarrow V_{\mathrm{O}}^{+} + e^{-}, \quad V_{\mathrm{O}}^{+} \leftrightarrow V_{\mathrm{O}}^{2+} + e^{-}.$$

Кислород из газовой фазы, хемосорбируясь на поверхности полупроводника, может "залечивать" вакансии $V_{\rm O}^0$ и соответственно уменьшать концентрацию основных носителей заряда. Таким образом, кислород занимает регулярные позиции в ранее дефектной кристаллической решетке SnO₂. Но в этом случае представляется маловероятным обратный процесс десорбции "регулярного" кислорода при продувке ячейки аргоном при 230°C в силу достаточно высокой энергии образования вакансий кислорода — 0.75 эВ [1]. В эксперименте этот процесс проходит практически полностью, что отмечено выше.

В отношении отклика оксида олова на водород применение второго механизма также проблематично. Водород напрямую не взаимодействует с вакансиями кислорода, но может взаимодействовать с "регулярным" поверхностным кислородом. Этот процесс должен приводить к образованию дополнительных вакансий кислорода и тем самым увеличивать электропроводность оксида олова. Для залечивания этих дополнительных вакансий необходим кислород из газовой фазы. Однако сопротивление оксида возвращается к исходному значению без участия кислорода при продувке измерительной ячейки инертным газом при 230°С.

Необходимо также заметить, что второй механизм не объясняет немонотонное поведение отклика полупроводника при хемосорбции как кислорода, так и водорода.

Эти факты позволяют интерпретировать полученные экспериментальные данные в рамках первого механизма. При хемосорбции происходит заряжение частиц газов на поверхности полупроводника. В свою очередь это приводит к перераспределению зарядов в приповерхностном слое полупроводника и изменению положения

Физика и техника полупроводников, 2008, том 42, вып. 4

уровня Ферми относительно краев энергетических зон и локальных уровней, как показано на рис. 2.

BES, выведенные из равновесия хемосорбцией газа, начинают перезаряжаться в соответствии с их новым положением относительно уровня Ферми полупроводника. С точки зрения формальной кинетики общее изменение заряда поверхности обусловлено наложением двух процессов: появлением поверхностного адсорбционного заряда и перезарядкой BES, вызванной новыми условиями равновесия. Расчет приповерхностного заряда при адсорбции газов и перезарядке BES был проведен в работе [13], в котором было показано, что кинетика изменения приповерхностного заряда зависит от соотношения концентрации BES (N_{BES}) и электронных состояний адсорбционной природы (N_{ad}), а также от характеристических времен их перезарядки $(\tau_{\text{BES}}$ и $\tau_{\text{ad}})$. При выполнении условий $N_{\text{BES}} \gtrsim N_{\text{ad}}$ и $\tau_{\rm BES} > \tau_{\rm ad}$ кинетическая кривая изменения поверхностного заряда имеет максимум. В первый момент кинетика определяется заряжением относительно "быстрых" адсорбционных состояний, а затем перезарядкой "медленных" BES.

Такая немонотонная кинетика наблюдается для недоокисленных (230, 450°С) образцов SnO_{2-x} при адсорбции водорода (рис. 1, *b*). В первый момент времени, за счет переноса электронов с адсорбированного водорода в полупроводник, уменьшается изгиб энергетических зон. Таким образом, ранее незанятые уровни BES оказываются ниже уровня Ферми полупроводника, на эти BES начинают захватываться свободные электроны, и электропроводность после резкого ее увеличения начинает падать.

В случае адсорбции газа-акцептора следует учитывать влияние поверхностного барьера на кинетику перехода самих акцепторных адатомов в заряженную форму. Впервые такую задачу решили в работе [14]. Ее авторы показали, что скорость зарядки адсорбционных поверхностных состояний акцепторного типа с энергией Е_А уменьшается со временем, так как для переноса заряда на эти состояния необходимо преодолевать энергетический барьер, непрерывно возрастающий в процессе адсорбции (рис. 2, с). В соответствии с этой моделью, через определенное время после начала адсорбции газа-окислителя "медленной" подсистемой объектами перезарядки могут становиться адсорбционные поверхностные состояния ЕА, а "быстрой" — биографические дефекты E_{BES}. Проявлением этого процесса может быть менее выраженный максимум резистивного отклика низкотемпературного образца (230°C) в кислороде по сравнению с водородом (рис. 1, a, b) и даже его полное отсутствие, как это описано в монографии [15].

Образцы, окисленные при 650°С, имеют меньшую дефектность по кислороду. Для них выполняется соотношение $N_{\rm BES} < N_{\rm ad}$, поэтому резистивный отклик в среде кислорода и водорода имеет монотонный характер. При этом скорость отклика в кислороде существенно

Рис. 2. Зонная структура SnO_{2-x} в условиях адсорбции: a — газов-доноров, b — инертных газов, c — газов-акцепторов. E_{D} — энергетический уровень доноров, E_{A} — энергетический уровень акцепторов, qV_{s} — изменение изгиба энергетических зон на поверхности в процессе адсорбции газов, h_{film} — толщина пленки. l, 2 — биографические электронные состояния (BES): l — занятые, 2 — незанятые.

меньше, чем в водороде. Затянутый во времени резистивный отклик в среде кислорода (рис. 1, a) может быть объяснен в рамках упомянутой выше модели [14].

4. Заключение

Немонотонный резистивный отклик образцов SnO_{2-x}, которые получены при мягких термических режимах (230 и 450°С), объяснен наличием дефектов кислорода в кристаллической решетке. Поведение таких образцов в условиях газовой адсорбции соответствует кинетическим моделям [13,14], которые учитывают перезарядку биографических электронных состояний.

Список литературы

- К.П. Богданов, Д.П. Дмитров, О.Ф. Луцкая, Ю.М. Таиров. ФТП, **32** (10), 1158 (1998).
- [2] S. Samson, C.G. Fonstad. J. Appl. Phys., 44 (10), 4618 (1973).
- [3] C.G. Fonstad, R.H. Rediker. J. Appl. Phys., **42** (7), 2911 (1971).
- [4] J. Mizusaki, H. Koinuma, J. Shimoyama, M. Kawasaki, K. Fueki. J. Sol. St. Chem., 88, 443 (1990).
- [5] C. Ang, Z. Yu, L.E. Cross. Phys. Rev. B, 62 (1), 228 (2000).
- [6] L.A. Kappers, K.L. Sweeney, L.E. Halliburton, J.H.W. Liaw. Phys. Rev. B, **31** (10), 6792 (1985).
- [7] R. Gonzalez, G.P. Summers, Y. Chen. Phys. Rev. B, 30 (4), 2112 (1984).
- [8] R. Tohmon, H. Mizuno, Y. Ohki, K. Sasagane, K. Nagasawa, Y. Hama. Phys. Rev. B, **39** (2), 1337 (1989).
- [9] Э.П. Домашевская, С.В. Рябцев, Е.А. Тутов, Ю.А. Юраков, О.А. Чувенкова, А.Н. Лукин. Письма ЖТФ, **32** (18), 7 (2006).
- [10] Э.П. Домашевская, Ю.А. Юраков, А.Н. Лукин, С.В. Рябцев, О.А. Чувенкова, С.Б. Кущев, С.В. Каныкин, С.Г. Конников. Изв. вузов, сер. Материалы электронной техники, № 1, 52 (2006).
- [11] Ф.Ф. Волькенштейн. Электронные процессы на поверхности полупроводников при хемосорбции (М., Наука, 1987).
- [12] W. Göpel. Progr. Surf. Sci., 20, 9 (1985).
- [13] С.Н. Козлов. Изв. вузов, сер. Физика, № 4, 116 (1975).
- [14] В.Я. Сухарев, И.А. Мясников. ЖФХ, 60, 3016 (1986).
- [15] И.А. Мясников, В.Я. Сухарев, Л.Ю. Куприянов, С.А. Завьялов. Полупроводниковые сенсоры в физико-химических исследованиях (М., Наука, 1991).

Редактор Т.А. Полянская

Kinetics of the resistive response of SnO_{2-x} thin films in gas environment

S.V. Ryabtsev, A.V. Yukish, S.I. Hango, Y.A. Yurakov, A.V. Shaposhnick, E.P. Domashevskaya

Voronezh State University, 394006 Voronezh, Russia

Abstract The data on the gas sensitivity of SnO_{2-x} thin films in the environment of oxygen and hydrogen have been obtained. The films were made by oxidation of thin layers in air at various temperatures. Non-monotonous kinetics of a resistive response of SnO_{2-x} samples under the conditions of gas adsorption, is explained by the participation in interaction of semiconductor– adsorbent of biographic electronic states, whose density depends on the temperature regime for SnO_{2-x} obtaining.