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Anomalous Hall effect and spin Hall effect originate due to spin−orbit coupling that in the Kohn−Luttinger
k · p formalism is represented by anomalous terms in the coordinate and velocity operators. Relation of these
operators to the Berry curvature in the momentum space is presented for electrons in GaAs type semiconductors.
For centrosymmetric semiconductors, transformational properties of Berry curvature are discussed.
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Current research in semiconductor spintronics is driven
by scientific curiosity and attractive perspectives of tech-
nological applications [1–6]. During the last decade, the
field witnessed brilliant experimental achievements, enjoyed
advancing new theoretical concepts and deeper understand-
ing of underlying physical mechanisms, and demonstrated
persistent efforts directed for applications. This recent
progress is essentially based on prior work on spin−orbit
coupling in crystals and electron confinement in nanoscale
devices [7,8]. An outstanding contribution into the early
work on spin−orbit phenomena was made by experimental
and theoretical work performed at the A.F. Ioffe Institute
(St. Petersburg) since early 1970s. In the context of present
paper, I emphasize prediction of the spin Hall effect (SHE)
by D’yakonov and Perel’ [9] and of the direct and inverse
photogalvanic effects by Ivchenko and Pikus [10]. Both deal
with generation of spin polarization by electric current, but
first one near the edges while second one in the bulk.

Theory of spin−orbit phenomena in solids developed
originally along a number of different lines related to the
anomalous Hall effect (AHE) [11], electric dipole spin
resonance (EDSR) [12,13], and optical orientation [14].
However, while the fields matured, close connections
between them became more visible E. g., identical equations
for spin scattering probabilities describe the photogal-
vanic effect [15] and AHE [16], as noticed recently by
Sinitsyn [17]. Similarly, identical mechanisms underlie
the collisional narrowing of EDSR lines [18] and the
D’yakonov–Perel’ spin relaxation [19], as is evident from
a recent study by Duckheim and Loss [20]. Also,
there exists an intimate connection between the AHE
and SHE [17,21,22], therefore, they confront the same
challenges that are discussed below. Meanwhile, the
difference between them is rather essential. AHE is a
bulk effect because of electric current conservation, while
SHE critically depends also on boundary conditions because
of spin current nonconcervation both in the bulk and at
the edge. E. g., SHE is possible even in media where
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bulk spin currents (a somewhat ambiguous notion) vanish
identically [23–26]. If to add spin interference effects
initiated by Datta and Das [27], spin blockade in strongly
confined systems [4,5], and giant magnetoresistance [28,29],
all these fields of research merged gradually into a single
body of solid state spintronics.

Anomalous Hall effect is a Hall voltage originating from
the magnetization of a ferromagnet rather than from an ex-
ternal magnetic field. Karplus and Luttinger [11] attributed
its origin to spin−orbit interaction. Because this interaction
is a relativistic (hence, usually a weak) effect, and is inherent
both in the Hamiltonian of the host crystal and in the
potentials of impurities, there is a number of competing
contributions to AHE conductivity. This explains the long
history of controversies in the theory of AHE. Original
theory of AHE [11] resulted in the transverse conductivity
that was independent of the impurity concentration and was
expressed completely in terms of the Bloch functions of the
host crystal. From this standpoint, AHE could be considered
as an intrinsic phenomenon. Soon afterwards, Smit [30]
proposed an extrinsic mechanism of AHE originating from
the Mott’ skew-scattering of free carriers by impurities. This
mechanism is completely due to the non-Bornian part of
the scattering amplitude. Remarkably, the spin-dependent
part of the impurity potential is tremendously enhanced by
the crystal field (by six orders of magnitude in GaAs) as
compared to its magnitude in vacuum [31].

In a revised theory, Luttinger [32] found a regular
expansion of the conductivity in powers of the impurity
potential λ. He concluded that the leading term in the
nondiagonal (Hall) part of the conductivity is of the order
of 1/(λni ), ni being the impurity concentration, while the
next term is of the order of (λni )0, i. e., it is independent of
both of λ and ni . Moreover, second term does not depend
on any properties of the impurities and is completely
determined by the properties of the host crystal. The
physical origin of this remarkable behavior of second term
is not clear from Luttinger’s calculations that are rather
cumbersome. Meantime, early experimental data on ni

dependence of AHE in iron quoted in Ref. [32], and also
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some more recent data, seem to suggest the dominance of
second term in some materials. Stability of second term
of the expansion in λ and its large magnitude, if really
supported by experimental data, suggest existence of some
fundamental requirements protecting this stability.

A different extrinsic mechanism for AHE, i. e., caused by
impurity scattering, was proposed by Berger [33]. The point
is that spin−orbit scattering is accompanied by

”
side jump“

of an electron in the configurational space. In systems pos-
sessing high spatial symmetry it is directed along (k× σ ),
k being electron quasi-momentum and σ a vector of Pauli
matrices. In a spin polarized system, 〈σ 〉 6= 0, side jump
produces electric current that is transverse to the driving
field E and proportional to magnetization. This mechanism
results in the same dependence of the anomalous Hall
resistance on ni as second term of the Luttinger theory [32].
Most remarkably, contribution of this mechanism to the
anomalous Hall conductivity depends neither of ni , nor on
the electron mean free time τ , hence, this extrinsic effect
bears features typical of an intrinsic phenomenon.

More recently, the concepts of Berry connection and
Berry curvature in the momentum space were applied to
the theory of AHE [34–41]. This approach is based on
a close relation between second term of the Luttinger
theory (see Eqs. (2.17), (3.15), and (4.21) of Ref. [32])
and the topological invariant of the theory of the Integer
Quantum Hall Effect by Thouless et al. [42,43]. It might
have potentiality to explain the remarkable stability of the
side jump term and to justify applying equations derived in
the dilute limit to dirty materials. For quantum SHE, such
stability was proven numerically by Sheng et al. [44].

However, to best of my knowledge, no general connec-
tion between the side jump mechanism and Berry curvature
has been established so far. In this paper, I apply the
equations for the side jump contribution derived by Noziéres
and Lewiner [45] for AHE and by Engel et al. [31] for SHE
to compare them with Berry curvature. The model used in
these papers is applicable to electrons in bulk GaAs.

In the framework of k · p theory, the Hamiltonian of
extrinsic spin−orbit coupling for electrons in GaAs type
semiconductors is

Hso = λ(σ × k) · ∇V(r), (1)

where the potential energy V(r) is a smooth function of r.
Applying (1) to a homogeneous external field E, with
V(r) = −eE · r (for electrons, e< 0), we get

HE
so = −eλ(σ × k) · E ≡ −eE · rso(k) . (2)

Eq. (2) indicates existence of spin−orbit contribution

rso(k) = λ(σ × k) (3)

to the operator r̂ of the electron coordinate

r̂ = r + rso(k) . (4)

While Eq. (1) reminds the Darwin term in Pauli equation,
the coefficint λ is strongly enhanced compared to its vacuum

value. In narrow gap semiconductors, in the framework
of 8× 8 Kane model, λ = (P2/3)[1/E2

G − 1/(EG + 1)2],
where EG is the forbidden gap, 1 is the spin−orbit splitting
of valence bands, and P is a properly normalized interband
momentum matrix element [46].

Semiclassical arguments based on electron dynamics in
the field of an impurity center that I do not reproduce here
result in a spin dependent side jump. In turn, side jump
results in a transverse Hall current [45]

Jsj = −2nλ
e2

~
(〈σ 〉 × E) , (5)

where n is the electron concentration. This current
originates from the anomalous coordinate rso of Eq. (3).
A similar equation for the spin Hall current under the SHE
conditions was derived in Ref. [31]. Remarkably, Jsj is
independent of any specific properties of the scatterers that
produced the current.

Eq. (4) suggests that the Hamiltonian of a perfect crystal
in a homogeneous electric field E can be written as

H = H0(k) − eE · r̂ . (6)

For our purposes, it is enough to choose for H0(k) the
nonrelativistic part of the k · p Hamiltonian. Then, the
relativistic part vso of the velocity operator v = (i /~)[H, r̂]
equals

vso = −i
e
~
λ
{[

(σ × k) · E, r
]

+
[
(E · r), (σ × k)

]}
= 2

e
~
λ(σ × E) . (7)

Because k̇ = (i /~)[H, k] = eE/~, it follows from (3) that

ṙso =
e
~
λ(σ × E) . (8)

Therefore
vso = 2ṙso . (9)

Factor of 2 in (7) and (9) originates from the field term in
the Hamiltonian of Eq. (6). An expression for the intrinsic
contribution to the anomalous Hall current immediately
follows from (7)

Jint = 2nλ
e2

~
(〈σ 〉 × E) . (10)

Therefore, for the Hamiltonian Hso of Eq. (1) the current
Jsj has exactly the same magnitude but the opposite sign
to Jint, Jsj = −Jint. It is important to emphasize that while
the derivation of (10) from Eq. (6) is straightforward and
formally correct, the Hamiltonian H is faulty because it
does not support any stationary state. For this reason, Jint

can contribute to the physical anomalous Hall current only
in conjunction with the terms originating from impurity
scattering. Recent experience with the theory of SHE
demonstrates convincingly that impurity scattering influ-
ences the results dramatically [22].
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Now let us express rso and vso in terms of microscopic
theory. For rso, a standard expression of the k · p theory can
be applied

rso(k) = i
∫

ūk(r)∇k uk(r) dr , (11)

where uk(r) are two-component Bloch spinors (the periodic
part of Bloch eigenfunctions), and integration is performed
over a unit cell. The right hand side of (11) is usually
termed as Berry connection; sometimes the opposite sign
convention is applied. Then, by definition, Berry curvature is

F(k) = ∇k × rso = i
∫
∇kūk(r)×∇kuk(r) dr . (12)

It follows immediately from (12) that for the anomalous
coordinate rso of Eq. (3)

F(k) = λ∇k × (σ × k) = 2λσ . (13)

Here the factor of 2 comes from the double cross product
because εi j `εm j` = 2δim, εi j ` is a Levi−Civita antisymmetric
tensor. Comparing with (7) results in the equation

vso =
e
~

(F× E) , (14)

relating anomalous velocity vso to the Berry curvature F.
Therefore, the mean value of the curvature 〈F〉 = 2λ〈σ 〉
can be used for calculating Jint of Eq. (10) as

Jint = n
e2

~
(〈F〉 × E) . (15)

For a parabolic spectrum, H0 = ~2k2/2m, a dynamic
equation for the electron coordinate is

d
dt

r̂ =
i
~
[
H, r̂

]
= v(k) +

e
2~

(F× E) , (16)

with v(k) = ~k/m. The coefficient 1/2 in second term
of (16) has the same origin as the factor of 2 in Eq. (9).

Therefore, for the spin−orbit Hamiltonian of Eq. (1), the
side jump contribution Jsj to anomalous Hall current can
be expressed in terms of the Berry curvature F(k), and
Jsj = −Jint. Equal magnitude and mutual cancelation of a
number of contributions to the anomalous Hall current is
a well known fact [45]; more recently, it was discussed
in Ref. [47] in terms of a semiclassical theory. However,
it is still not understood which of these cancelations are
accidental and which follow from general requirements.

One general comment should be made regarding Eq. (11)
that was written for noncentrosymmetric crystals with a
lifted spin degeneracy. For centrosymmetric crystals uk

should be substituted by uαk with α playing a role of a spin
index. Then rso becomes a 2× 2 matrix in spin space whose
spatial components x j

so do not transform as the components
of a vector of the configurational space under the rotations
in the spin space, and this is valid also for the components
of its curl, ∇k × rso, i. e., for the Berry curvature. Blount

has shown [48] that to restore the correct transformation
properties of ∇k × rso, it should be redefined as

F(k) = ∇k × rso(k)− i rso(k) × rso(k) , (17)

what is equivalent to a redefinition of Berry curvature.
As applied to rso of Eq. (3), this is equivalent to adding
a term 2λ2(σ × k) · k to the right hand side of Eq. (13).
This redefinition has no physical consequences for the
quantities that depend on F(k) only through its trace over
spin indices. Indeed, for the projection of rso(k)× rso(k)
onto arbitrary direction m̂,

tr
{

(rso × rso) · m̂
}

= εi j ` m`tr
{

xi
sox j

so

}
= 0 (18)

because tr{xi
sox j

so} = tr{x j
soxi

so}. Therefore, after averaging
over spin states at any given k, second term in (17) vanishes.
Also, this term can be sometimes disregarded because it is
of the second order in the spin−orbit coupling constant.

I am grateful to H.-A. Engel and B.I. Halperin for inspiring
collaboration on papers Ref. [22] and [31], and to N. Nagao-
sa for a fruitful discussion.
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