Эмиссия электронов из многослойных ансамблей вертикально связанных квантовых точек InAs в матрице *n*-GaAs

© А.А. Гуткин[¶], П.Н. Брунков, А.Ю. Егоров⁺, А.Е. Жуков⁺, С.Г. Конников

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

⁺ Санкт-Петербургский физико-технологический научно-образовательный центр Российской академии наук 195220 Санкт-Петербург, Россия

(Получена 24 декабря 2007 г. Принята к печати 29 декабря 2007 г.)

Методом адмиттанс-спектроскопии в структурах с барьером Шоттки проведено исследование эмиссии электронов из многослойных массивов вертикально связанных квантовых точек InAs в матрицу *n*-GaAs (концентрация электронов $n \approx 2 \cdot 10^{16} \text{ сm}^{-3}$). Установлено, что в области температур ниже $\sim 70 \text{ K}$ эмиссия электронов в диапазоне темпов $3 \cdot 10^4 - 3 \cdot 10^6 \text{ c}^{-1}$ происходит путем термически активированного туннелирования через промежуточные виртуальные состояния. При увеличении числа слоев в массиве квантовых точек от 3 до 10 наблюдается уменьшение скорости эмиссии электронов.

PACS: 73.21.La, 73.63.Kv

Эмиссия носителей заряда, захваченных на квантовые точки (КТ) в полупроводниковой матрице, существенно влияет на параметры электронных приборов, построенных на основе таких гетероструктур [1,2]. Исследование механизмов этой эмиссии, определение ее скоростей и различных факторов, влияющих на их величину, является необходимым условием совершенствования подобных приборов.

Эффективным методом изучения эмиссионных свойств и электронных состояний КТ является измерение температурных зависимостей различных квазистационарных и нестационарных процессов в полупроводниковых структурах с потенциальным барьером, в области объемного заряда которых находится массив КТ [1-6]. Подобные исследования были выполнены для массивов из одного [1,2,5,6] и трех [4] слоев КТ InAs в GaAs. Однако влияние числа слоев на изменение скоростей эмиссии носителей тока, захваченных массивом КТ, при этом не изучалось. Между тем в многослойных ансамблях вертикально связанных КТ эти величины могут заметно отличаться от скоростей, определенных для одного слоя, вследствие изменений энергии связи носителей и степени заполнения электронных состояний КТ, которые зависят от числа слоев в массиве [7–10]. Степень влияния этих факторов на скорость эмиссии в свою очередь должна зависеть от механизма эмиссии.

В настоящей работе проведено исследование скоростей эмиссионных процессов для электронов из массивов, содержащих 3, 6 и 10 слоев вертикально связанных КТ InAs в эпитаксиальных слоях *n*-GaAs (концентрация электронов $n \approx 2 \cdot 10^{16}$ см⁻³), на поверхности которых формировался барьер Шоттки. Толщины и легирование слоев *n*-GaAs были выбраны таким образом, что при нулевом напряжении смещения область объемного заряда барьера Шоттки не достигала массива КТ, тогда как с увеличением напряжения обратного смещения на

структуре массив КТ оказывался внутри этой области. Описание образцов и некоторые их параметры приведены в работе [10] (образцы 1, 2 и 3 соответственно с 3, 6 и 10 слоями КТ). Спектры фотолюминесценции исследованных структур при температуре T = 10 К содержали широкую полосу (ширина на уровне половины максимума ~ 0.08 эВ), связанную с рекомбинацией носителей в КТ. Максимум этой полосы при увеличении числа слоев смещался от ~ 1.27 до ~ 1.25 эВ. Основным методом исследования в настоящей работе являлась адмиттанс-спектроскопия [5,11]. При этом амплитуда переменного зондирующего напряжения составляла 10 мВ.

На рис. 1 представлены зависимости дифференциальной емкости (С) исследуемых образцов от напряжения обратного смещения (V) при температуре $T = 50 \, \text{K}$ и различных частотах (f) зондирующего напряжения. Как видно из зависимостей C(V), увеличение числа слоев КТ в образце вызывает более сильное падение емкости с ростом f в области плато и ступеньки, связанных с перезарядкой состояний в КТ [10]. Это означает, что с увеличением числа слоев КТ скорость эмиссии электронов (e_n) из массива КТ уменьшается, что качественно согласуется с наблюдавшимся в [10] увеличением средней энергии связи электронов, захваченных этим массивом. Условию квазистатичности емкости [10] при температуре 50 K удовлетворяют зависимости C(V), измеренные при $f = 10 \, \mathrm{к} \Gamma \mathrm{u}$. Количественные данные о скорости эмиссии носителей заряда из КТ могут быть получены из температурных зависимостей активной проводимости (G) барьеров при различных частотах и напряжениях смещения на барьере Шоттки [5,11].

Как показывает анализ квазистатических зависимостей C(V) [10], при некоторой величине V_0 напряжения обратного смещения, соответствующей моменту касания областей объемного заряда барьера Шоттки и массива слоев КТ, внешнее напряжение падает практически целиком на первой области. Поэтому при $V = V_0$ квазиуровень Ферми в массиве КТ близок к уровню Ферми массива в нейтральной матрице, т.е. в исследуе-

[¶] E-mail: agut@defect.ioffe.ru

Рис. 1. Зависимости дифференциальной емкости С (1-3) и второй производной $d^2 C/dV^2$ (4) барьеров Шоттки от обратного напряжения смещения V для образцов с 3 (a), 6 (b) и 10 (c) слоями КТ при температуре 50 К и частоте зондирующего сигнала f, МГц: 1 — 1; 2 — 0.1; 3, 4 — 0.01.

мых образцах характеризует равновесное заполнение КТ электронами в слое n-GaAs с концентрацией электронов $n \approx 2 \cdot 10^{16} \,\mathrm{cm}^{-3}$. Напряжению V_0 на зависимости C(V)отвечает переход от резкого падения емкости, связанного с включением в область объемного заряда массива КТ, к области "плато", вызванной большой плостностью заряда в узком слое, содержащем слои КТ. Такому переходу соответствует максимум на зависимости d^2C/dV^2 от V [1]. Следующий максимум d^2C/dV^2 наблюдается при напряжении V₁, когда квазиуровень Ферми в массиве КТ опускается ниже состояний с наибольшей энергией связи электронов и вклад состояний массива КТ в дифференциальную квазистатическую емкость исчезает [1]. Как видно из рис. 1, а, b, c (кривые 4), величины V₀ и V₁ составляют приблизительно -1.8 и -3.8 B, -0.5 и -2.0 B, -0.5 и -1.9 В соответственно для образцов с 3, 6 и 10 слоями КТ.

Таким образом, измеряя зависимость активной проводимости G от температуры T при обратных смещениях в диапазоне от V₀ до V₁, мы сканируем по энергии состояния массива КТ начиная с уровня их равновесного заполнения. При этом, согласно [5,11], положение максимума кривой G(T) определяет температуру, при которой скорость эмиссии электронов (e_n) с зондируемых энергетических уровней массива КТ приблизительно равна πf , а относительная величина максимума G(T) характеризует относительную плотность состояний в массиве КТ вблизи зондируемого уровня энергии, определяемого положением квазиуровня Ферми.

Пример зависимостей G(T) для частоты 100 кГц представлен на рис. 2. Эти данные показывают, что в образце с 3 слоями КТ в равновесии частично заполнены и возбужденные состояния КТ. Об этом свидетельствует падение величины максимума кривых G(T) при уменьшении |V| от 2.75 до 2.00 В и начало повторного ее возрастания при дальнейшем уменьшении |V| от 2.00 до 1.90 В (рис. 2, а). Для образцов с 6 и 10 слоями КТ такое повторное возрастание отсутствует (рис. 2, b и с), т.е. при понижении энергетического уровня зондируемых заполненных состояний происходит монотонное уменьшение их плотности. Последнее при приблизительно гауссовом распределении плотности основных состояний КТ по энергии [10] означает, что эти состояния в равновесии заполнены не более чем наполовину, а заполнение возбужденных состояний незначительно.

Рис. 2. Зависимости дифференциальной активной проводимости G барьеров Шоттки на частоте 0.1 МГц при различных напряжениях обратного смещения V от температуры T для образцов с 3 (a), 6 (b) и 10 (c) слоями КТ.

Рис. 3. Зависимости скорости эмиссии e_n электронов из массива КТ от температуры при различных напряжениях обратного смещения V для образцов с 3 (a), 6 (b) и 10 (c) слоями КТ.

Эти результаты качественно согласуются с данными анализа емкостных характеристик исследуемых образцов [10], согласно которым полное число электронов, захваченных в равновесии массивом КТ, слабо меняется с увеличением числа слоев в массиве.

Температурные зависимости скоростей эмиссии электронов из массива КТ, полученные из зависимостей G(T) при разных частотах в диапазоне $10^4 - 10^6$ Гц для разных напряжений смещения в интервале $V_0 - V_1$, показаны на рис. 3. Прежде всего отметим, что зависимости $\lg e_n = f(1/T)$ нелинейны, так что энергия активации эмиссии электронов из заполненных состояний массива КТ увеличивается с ростом температуры. Будем для оценки определять энергию активации (E_a) эмиссии в предположении о чисто термическом механизме этого процесса, т.е. в соответствии с соотношением

$$e_n = AT^2 \exp(-E_a/kT),$$

где *А* — постоянная, *k* — постоянная Больцмана. Тогда оказывается, что в образце с 3 слоями КТ для наиболее

мелких заполненных состояний, которые зондируются при $V \approx V_0 = -1.8$ В, энергия активации E_a при низких температурах ($T \approx 9-10 \,\mathrm{K}$) составляет $\sim 2 \,\mathrm{мэB}$. В то же время даже для наиболее глубоких состояний КТ, которые зондируются при $V \approx V_1$, энергия активации эмиссии во всех оразцах при максимальных температурах составляет 50-65 мэВ и меньше средней энергии связи электрона в КТ, которая с увеличением числа слоев от 3 до 10 растет от ~ 80 до ~ 120 мэВ [10]. Эти закономерности показывают, что в диапазоне скоростей $3 \cdot 10^4 - 3 \cdot 10^6 c^{-1}$ (диапазон температур $\leq 70 \, \text{K}$) эмиссия электронов из исследованных массивов КТ происходит путем термически активированного туннелирования. При этом наблюдаемое с ростом температуры существенное увеличение энергии активации эмиссии для состояний с одной и той же энергией связи свидетельствует о том, что промежуточным состоянием для этого процесса являются виртуальные состояния, а не возбужденное состояние КТ.

Сопоставление данных, приведенных на рис. 3, *a*, *b*, *c* для различных образцов, показывает, что с увеличением числа слоев в массиве происходит заметное увеличение температур, при которых начинает наблюдаться эмиссия электронов из равновесно заполненных массивов в диапазоне скоростей $3 \cdot 10^4 - 3 \cdot 10^6 c^{-1}$. Так, для образцов с 3, 6 и 10 слоями КТ область таких температур лежит соответственно при ~ 7.7–19, 18–36 и 31–50 К, а энергия активации эмиссии составляет ~ 2–5, ~ 10–18 и ~ 20–33 мэВ (рис. 3, *a*, *b*, *c*). Такое увеличение качественно согласуется с увеличением средней энергии связи электронов из-за взаимодействия слоев КТ и понижением уровня Ферми для массива КТ вследствие увеличения плотности состояний, вызванного увеличением числа КТ в массиве [10].

Таким образом, проведенные исследования свидетельствуют, что эмиссия электронов из массива вертикально связанных КТ InAs в *n*-GaAs при температурах T < 70 K происходит путем термически активированного туннелирования через промежуточное виртуальное состояние. Результаты работы качественно подтверждают данные об увеличении энергии связи электронов в массиве с ростом числа слоев КТ, полученные из анализа квазистатических вольт-фарадных характеристик [10], и позволяют оценить соответствующее уменьшение скорости эмиссии электронов из КТ. Увеличение числа слоев КТ в массиве от 3 до 10 существенно увеличивает температуры, при которых скорость эмиссии электронов с наиболее мелких заполненных в равновесии состояний массива лежит в диапазоне $3 \cdot 10^4 - 3 \cdot 10^6 c^{-1}$, однако даже для массива из 10 слоев такие скорости достигаются уже при температурах 30-50 К, что связано с механизмом эмиссии, включающим этап туннелирования.

Работа выполнена с использованием оборудования регионального ЦКП "Материаловедение и диагностика в передовых технологиях" при поддержке программы фундаментальных исследований президиума РАН "Квантовые наноструктуры". А.Е. Жуков выражает благодарность "Фонду содействия отечественной науке" и гранту президента РФ (МД-3858.2007.2).

Список литературы

- M. Geller, E. Stock, C. Kapteyn, R.L. Sellin, D. Bimberg. Phys. Rev. B, 73, 205 331 (2006).
- [2] S. Schulz, A. Schramm, C. Heyn, W. Hansen. Phys. Rev. B, 74, 033 311 (2006).
- [3] S. Anand, N. Carlsson, M.-E. Pistol, L. Samuelson, W. Seifert. Appl. Phys. Lett., 67, 316 (1995).
- [4] C.M.A. Kapteyn, F. Heinrichsdorf, O. Stier, R. Heitz, M. Grudman, N.D. Zakharov, D. Bimberg, P. Werner. Phys. Rev. B, 60, 14265 (1999).
- [5] P.N. Brunkov, A.R. Kovsh, V.M. Ustinov, Yu.G. Musikhin, N.N. Ledentsov, S.G. Konnikov, A. Polimeni, A. Patane, P.C. Main, L. Eaves, C.M.A. Kapteyn. J. Electron. Mater., 28, 486 (1999).
- [6] S. Schulz, S. Schnüll, C. Heyn, W. Hansen. Phys. Rev. B, 69, 195 317 (2004).
- [7] G.S. Solomon, J.A. Trezza, A.F. Marshall, J.S. Harris, jr. Phys. Rev. Lett., 76, 952 (1996).
- [8] C. Pryor. Phys. Rev. Lett., 80, 3579 (1998).
- [9] А.Ф. Цацульников, А.Ю. Егоров, А.Е. Жуков, А.Р. Ковш, В.М. Устинов, Н.Н. Леденцов, М.А. Максимов, Б.В. Воловик, А.А. Суворова, Н.А. Берт, П.С. Копьев. ФТП, 31, 851 (1997).
- [10] А.А. Гуткин, П.Н. Брунков, С.Г. Конников. ФТП, 41, 1353 (2007).
- [11] D.L. Losee. J. Appl. Phys., 46, 2204 (1975).

Редактор Л.В. Шаронова

Emission of electrons from multilayer ensembles of vertically coupled InAs quantum dots in *n*-InAs matrix

A.A. Gutkin, P.N. Brunkov, A.Yu. Egorov⁺, A.E. Zhukov⁺, S.G. Konnikov

Ioffe Phisicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia ⁺ Saint Petersburg Physics and Technology Centre for Research and Education, Russian Academy of Sciences, 195220 St. Petersburg, Russia

Abstract The admittance spectroscopy of Schottky barrier structures was carried out to study emission of electrons from multilayer ensembles of vertically coupled InAs quantum dots to *n*-GaAs matrix (electron concentration $n \approx 2 \cdot 10^{16} \text{ cm}^{-3}$). It was found that at temperatures below 70 K the electron emission with rate in the range of $3 \cdot 10^4 - 3 \cdot 10^6 \text{ s}^{-1}$ occured by thermally activated tunneling through the intermediate virtual states. The decreasing of electron emission rate was observed as a number of layers in ensembles of quantum dots increased from 3 to 10.