Электрические и фотоэлектрические характеристики структур на основе слоистых полупроводников InSe и GaSe при облучении электронами с энергией 12.5 МэВ

© З.Д. Ковалюк[¶], О.А. Политанская, О.Н. Сидор, В.Т. Маслюк*

Институт проблем материаловедения им. И.Н. Францевича Национальной академии наук Украины, Черновицкое отделение, 58001 Черновцы, Украина * Институт электронной физики Национальной академии наук Украины, 88017 Ужгород, Украина

(Получена 21 ноября 2007 г. Принята к печати 24 января 2008 г.)

Исследовано влияние высокоэнергетических электронов (E = 12.5 МэВ) на электрические и фотоэлектрические параметры слоистых фотопреобразователей p–n-InSe и p-GaSe–n-InSe. Обнаруженные изменения вольт-амперных характеристик, спектров фотоотклика, напряжения холостого хода и тока короткого замыкания структур обусловлены образованием точечных дефектов. Отсутствие особых изменений характеристик исследуемых гомо- и гетеропереходов даже при максимальной дозе облучения позволяет рекомендовать их для создания радиационно стойких фотодетекторов.

PACS: 61.80.Fe, 61.82.Fk, 72.20.Jv, 72.40.+w, 73.40.Lq

1. Введение

Моноселениды индия и галлия принадлежат к широкому классу слоистых полупроводников, характеризующихся сильно выраженной структурной анизотропией. Высокая чувствительность к электромагнитному излучению видимой и ИК области спектра, возможность получения путем скола в воздушной атмосфере подложек с атомарно-гладкой поверхностью и низким числом оборванных связей в сочетании с простыми технологиями (термическое окисление, приведение в прямой оптический контакт) дают возможность создавать поверхностно-барьерные диоды, *p*-*n*-гомо- и гетеропереходы для целей фото-, опто- и квантовой электроники [1-4]. Другим интересным свойством слоистых халькогенидов является их сильная дефектность, связанная как с наличием собственных структурных и неконтролируемых дефектов, так и обусловленная специальным легированием. Данное обстоятельство является очень важным с точки зрения радиационной стойкости кристаллов А^{III}В^{VI}. Следовательно, структуры на специально легированных полупроводниках А^{III}В^{VI} не должны деградировать в результате воздействия проникающей радиации.

Изучение влияния высокоэнергетического облучения, в частности быстрыми электронами, на электрофизические свойства полупроводников остается одним из наиболее популярных на сегодняшний день направлений в радиационной физике твердого тела. Не исключением являются и яркие представители слоистых кристаллов — InSe и GaSe [5–7]. Исследования радиационных эффектов в этих материалах интересны с теоретической точки зрения и, что особенно важно, перспективны с практической точки зрения в первую очередь для прогнозирования стойкости и сроков работы фотопреобразователей в условиях воздействия ионизирующих облучений разного вида. Однако имеется сравнительно малое число работ, посвященных изучению влияния электронного облучения на свойства фотодиодов на основе моноселенидов индия и галлия [8,9]. Полученные в них результаты находят удовлетворительные объяснения, но ограничены созданием одного типа структур и исследованием их фотоэлектрических свойств. Для подробного изучения роли данного вида излучения весьма актуальным представляется комплексное исследование электрических и фотоэлектрических характеристик нескольких типов слоистых фотопреобразователей.

В настоящей работе описано поведение фоточувствительных структур p-InSe \langle Cd \rangle -n-InSe \langle Ge \rangle , p-GaSe \langle Dy \rangle -n-InSe \langle Ge \rangle при облучении электронами с энергией 12.5 МэВ.

2. Методика эксперимента

Монокристаллы слоистых полупроводников выращивались вертикальным методом Бриджмена и обладали четко выраженной слоистой структурой. В качестве полупроводника п-типа проводимости при создании структур использовался InSe, легированный германием. Количество примеси 0.3 вес% приводило к значительному изменению электрических характеристик и высоким значениям электропроводимости поперек слоев. Холловские измерения позволили определить, что при комнатной температуре концентрация основных носителей тока составляла $\sim 1 \cdot 10^{16}$ см $^{-3}$, подвижность — 800 см²/В · с. Поскольку специально не легированные кристаллы InSe имеют всегда *n*-тип проводимости, для его изменения они легировались примесью кадмия в количестве 0.1 вес%. Кинетические параметры *p*-InSe(Cd) при 300 K составляли: $p \approx 5 \cdot 10^{14} \,\mathrm{cm}^{-3}$, $\mu_p \approx 40 - 50 \,\mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}.$

[¶] E-mail: chimsp@ukrpost.ua

Тип структуры	Φ люенс, электрон · см ⁻²	k при $ V = 1 \mathrm{B}$	п	$V_{\rm oc}, { m B}$	$J_{\rm sc}$, мк $A/{\rm cm}^2$	<i>δ</i> _{1/2} , мэВ	S , $\Im B^{-1}$	<i>S</i> _{<i>I</i>} , мА/Вт	$S_V, \mathbf{B}/\mathbf{B}_T$
<i>p</i> – <i>n</i> -InSe	$0 \\ 1 \cdot 10^{13} \\ 1 \cdot 10^{15}$	200 250 180	1.6 1.6 1.8	0.51 0.54 0.57	480 495 385	585 582 617	60 76 65	43 45 38	$\begin{array}{c} 8.7 \cdot 10^{3} \\ 9.8 \cdot 10^{3} \\ 1.1 \cdot 10^{4} \end{array}$
<i>p</i> -GaSe– <i>n</i> -InSe	$0 \\ 1 \cdot 10^{13} \\ 1 \cdot 10^{15}$	30 32 35	1.8 1.8 1.9	0.58 0.6 0.59	310 325 265	327 376 387	57 81 71	65 68 56	$\begin{array}{c} 3.6 \cdot 10^{4} \\ 4.5 \cdot 10^{4} \\ 3.9 \cdot 10^{4} \end{array}$

Влияние электронного облучения на параметры структур p-InSe $\langle Cd \rangle$ -n-InSe $\langle Ge \rangle$ и p-GaSe $\langle Dy \rangle$ -n-InSe $\langle Ge \rangle$

С целью увеличения электропроводности селенида галлия проводилось легирование полупроводника диспрозием в количестве 0.1 вес%. Легирование указанной примесью не изменяло исходной дырочной проводимости GaSe. Концентрация и подвижность носителей заряда составляли при комнатной температуре $\sim 1\cdot 10^{15}\,{\rm cm}^{-3}$ и 35–50 см²/В·с соответственно.

Для создания гомопереходов из InSe и гетеропереходов GaSe-InSe использовался метод оптического

Рис. 1. Прямые ветви ВАХ гомоструктуры p-InSe $\langle Cd \rangle$ – n-InSe $\langle Ge \rangle$ (a) и гетероструктуры p-GaSe $\langle Dy \rangle$ –n-InSe $\langle Ge \rangle$ (b) в зависимости от дозы облучения. T = 293 К.

контакта полупроводников [10]. Для первого и второго типа структур в качестве фронтального полупроводника использовались тонкие (~ 10–50 мкм) пластины *p*-InSe и *p*-GaSe соответственно, в качестве базовой подложки — *n*-InSe толщиной 250–300 мкм.

Площадь фотодиодов равнялась $\sim 0.25 \, \text{см}^2$. Для контактов использовался чистый индий.

Облучение исследуемых структур проводилось на импульсном ускорителе Микротрон M30. Температура облученных образцов поддерживалась на уровне 273–300 К. Плотность потока электронов составляла $1.5 \cdot 10^{11}$ электрон см⁻² сек⁻¹, энергия 12.5 МэВ, а флюенс — от $1 \cdot 10^{13}$ до $1 \cdot 10^{15}$ электрон см⁻².

В ходе работы исследовались вольт-амперные характеристики (ВАХ) и импеданс структур на амплитудночастотном анализаторе Schlumberger SI-1255, совмещенной с потенциостатом Schlumberger SI-1286. Измерение спектров фоточувствительности проводилось с помощью монохроматора МДР-23 с разрешающей способностью 2.6 нм/мм. Спектральное распределение относительной квантовой эффективности фотопреобразования определялось отношением фототока к числу падающих фотонов. Все измерения проводились при комнатной температуре.

3. Экспериментальные результаты и их обсуждение

3.1. Вольт-амперные характеристики

Прямые ветви ВАХ структур для разных флюенсов приведены на рис. 1. Они владеют четко выраженными диодными характеристиками, о чем свидетельствуют величины коэффициента выпрямления k (см. таблицу). Не очень высокие значения этого параметра для структуры p-GaSe-n-InSe обусловлены применением в оптическом контакте низкоомного полупроводника n-InSe $\langle Ge \rangle$.

Начальный участок ВАХ гомо- и гетеропереходов (рис. 1) при малых прямых смещениях растет по известному экспоненциальному закону:

$$J = J_s \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]. \tag{1}$$

При напряжениях больше 0.2-0.3 В наблюдается отклонение ВАХ от закона (1). Это связано с наличием достаточно большого последовательного сопротивления R_s. Основной причиной, ограничивающей ток в исследуемых переходах, являлось сопротивление фронтальных полупроводников. Известно [11], что соединения InSe и GaSe обладают низкой электропроводностью перпендикулярно к слоям $\sigma \parallel C$, следствием чего является большое сопротивление квазинейтральных областей структур, созданных на их основе. При этом $\sigma \parallel C$ для селенида галлия более чем на несколько порядков меньше аналогичной величины в селениде индия, что отражается на параметрах гетероструктуры *p*-GaSe-*n*-InSe. В общем случае сопротивление квазинейтральных областей значительно усложняет анализ темновых ВАХ и препятствует идентификации механизма протекания тока через барьер. Для преодоления этих трудностей ВАХ перестраивались в координатах Ј от V – JR_s. Величина R_s находилась из измерений импеданса исследуемых структур. Учтенный спад напряжения на последовательном сопротивлении заметно видоизменял экспериментальные кривые: участок, который отвечал зависимости $J = J_0 \{ \exp[q(V - JR_s)/nkT] - 1 \},$ становился более протяженным. По нему определялся диодный коэффициент *n* из соотношения $n = \frac{q}{kT} \frac{\Delta V}{\Delta \ln L}$ (см. таблицу).

В результате электронного облучения наблюдается несущественное изменение экспоненциальной зависимости тока от напряжения и, как следствие, механизмов токопереноса через потенциальный барьер. Для исследуемых структур значения коэффициента *n* указывают на существование надбарьерного механизма прохождения тока (рис. 1). Известно, что на изменение диодного коэффициента могут влиять несколько факторов. Помимо диффузионной составляющей в реальных структурах имеют место шунтирующие токи [12]. Они приводят к росту темнового тока насыщения, не зависят от полярности приложенного напряжения и могут иметь разную полевую зависимость для различных образцов. Учет таких процессов объясняет значения $n \gg 1$ для необлученных структур p-n-InSe и p-GaSe-n-InSe. Более тщательное приведение в оптический контакт полупроводников позволяет уменьшить параметр *п*. Напротив, в специально деформированных структурах значения *n* большие и существенно растет величина шунтирующих токов. С другой стороны, высокоэнергетическое излучение создает дефекты структуры, которые увеличивают концентрацию рекомбинационных центров в области пространственного заряда *p*-*n*-перехода. Как следствие, растут рекомбинационные токи, ухудшающие диодный коэффициент ВАХ [13]. Для исследуемых структур незначительный рост *n* при максимальном флюенсе облучения доказывает, что внесенных радиационных дефектов количественно меньше, чем плотность собственных дефектов в слоистых кристаллах.

При облучении прямые токи, величина которых определяется квазинейтральными областями ис-

следуемых структур, увеличиваются для флюенса $1\cdot 10^{13}$ электрон \cdot см $^{-2}$ и уменьшаются для максимального флюенса. Это указывает на изменение величины R_s , что обычно связывают с поведением проводимости материала при облучении [13]. В отличие от полупроводников с одним типом химической связи (Si, Ge), для слоистых полупроводников характерным является, кроме собственных дефектов решетки, наличие неконтролированных примесей в межслоевом пространстве. Также при легировании кристаллов InSe и GaSe ионы примеси могут входить как в естественные слои (замещая вакансии In, Ga или же занимая междоузлия), так и в межслоевое пространство (в качестве интеркалянтов) [14]. В данном случае при концентрациях легирования (0.1-0.3 вес%) значительное число ионов примеси входит в межслоевое пространство, что снижает степень пространственной неоднородности кристаллов. В то же время образование радиационных дефектов также предпочтительно в межслоевых промежутках [15], где дефекты могут взаимодействовать с внедренной примесью [15]. Это оказывает влияние на

Рис. 2. Обратные ветви ВАХ гомоструктуры *p*-InSe $\langle Cd \rangle$ – *n*-InSe $\langle Ge \rangle$ (*a*) и гетероструктуры *p*-GaSe $\langle Dy \rangle$ –*n*-InSe $\langle Ge \rangle$ (*b*) в зависимости от дозы облучения. *T* = 293 K.

движение носителей вдоль кристаллографической оси C и в результате изменяет величину $\sigma \parallel C$.

Как показано в [5,7], облучение селенида галлия электронами с энергией 6 или 25 МэВ и потоком 10^{13} электрон см⁻² приводило к росту концентрации дырок и изменяло положение исходного акцепторного уровня на 0.13 эВ. Флюенсы $10^{14}-10^{16}$ электрон см⁻² уменьшали подвижность носителей тока и концентрацию акцепторов. Можно предположить, что аналогичные изменения будут характерны для InSe. Вышесказанным можно объяснить и динамику поведения с облучением фотоэлектрических параметров — напряжения холостого хода $V_{\rm oc}$ и тока короткого замыкания $J_{\rm sc}$ (см. таблицу).

Для обратных ветвей ВАХ (рис. 2) характерна степенная зависимость тока от напряжения $J \propto V^m$. Такое поведение ВАХ нейтральных областей свойственно токам, ограниченным пространственным зарядом [16], и наблюдалось для монокристаллов *p*-GaSe и *p*-InSe [17,18]. Для необлученных структур показатель степени *m* последовательно принимал значения от 1 до 3.

Незначительное отклонение экспериментальных точек в области смещений (|V| < 0.1 B) от закона $J \propto V^m$ обусловлено шунтирующими токами, причем влияние последних возрастает с облучением.

Также наблюдается общая тенденция незначительных изменений полевой зависимости обратных токов, связанная с изменением последовательного сопротивления подложки.

3.2. Фотоэлектрические характеристики

Спектральная зависимость квантовой эффективности фототока η гомоперехода p-n-InSe охватывает интервал энергий фотонов 1.2-2.3 эВ с максимумом для необлученной структуры при ~ 1.5 эВ (рис. 3). Наличие такого максимума является результатом конкурирующего действия объемной и поверхностной рекомбинации. Длинноволновая граница спектра характеризуется экспоненциальным возрастанием зависимости $\eta = f(h\nu)$ и обусловлена поглощением света в InSe ($E_{gInSe} \approx 1.23$ эВ при T = 300 K). Этому возрастанию можно сопоставить крутизну S (см. таблицу), определяемую из соотношения

$$S = \Delta(\ln \eta) / \Delta h \nu. \tag{2}$$

Дальнейший рост фотоотклика для энергий $hv > E_g$ связан с монотонным ростом коэффициента поглощения [19].

В области квантов света с энергией ~ 2.0 эВ наблюдается нехарактерный спад фоточувствительности, вызванный относительно глубоким залеганием p-nперехода за счет значительной толщины фронтального полупроводника. Действительно, допуская спектральный рост коэффициента поглощения, область фотогенерации носителей заряда отдаляется от p-n-перехода в направлении поверхности, что приводит к уменьшению фототока.

Рис. 3. Спектры относительной квантовой эффективности фотопреобразования гомоструктуры *p*-InSe \langle Cd \rangle –*n*-InSe \langle Ge \rangle в зависимости от дозы облучения. *T* = 293 K.

С ростом дозы электронного облучения наблюдается некоторое увеличение и последующее уменьшение квантовой эффективности в исследуемом спектральном диапазоне, что, по-видимому, обусловлено появлением вместе с излучательными также безызлучательных центров рекомбинации и увеличением роли безызлучательных переходов или процессов Оже для максимальных флюенсов. Известно [20], что высокоэнергетические электроны приводят в основном к возникновению неравновесных пар Френкеля, которые можно представить как пространственные распределения простых точечных дефектов. В кристаллах А^{III}ВVI простейшими дефектами могут быть вакансии атомов индия или галлия и атомы халькогена в междоузлиях, а сложными дефектами являются комплексы, в состав которых входят атомы селена и собственные дефекты решетки в виде нейтральных бивакансий V_{In}(V_{Ga}) и V_{Se} [6]. Последние отвечают за безызлучательные центры рекомбинации, которые, накапливаясь с ростом облучения, перераспределяют на себя значительную долю рекомбинационного потока неравновесных носителей тока. Роль центров фоточувствительности в исследуемых полупроводниках играют вакансии халькогена. Таким образом, после флюенса 1 · 10¹³ электрон · см⁻² увеличение токовой фоточувствительности ΔS_I (для $\lambda = 0.98$ мкм) составило 5%, последующее облучение максимальным флюенсом привело к падению ΔS_I на 12% от исходного значения (см. таблицу). Наблюдается положительный рост вольтовой монохроматической чувствительности ΔS_V (для $\lambda = 0.98$ мкм). Вместе с тем динамика изменения крутизны длинноволнового края спектра с облучением (см. таблицу) указывает на отсутствие заметных нарушений границы оптического контакта.

Для более тонкого изучения процессов, которые могут происходить с облучением в коротковолновой области фоточувствительности гомоперехода p-n-InSe, была ис-

Рис. 4. Спектры относительной квантовой эффективности фотопреобразования гомоструктуры *p*-InSe $\langle Cd \rangle$ – *n*-InSe $\langle Ge \rangle$ с толщиной фронтального слоя ~ 10 мкм в зависимости от дозы облучения. *T* = 293 K.

Рис. 5. Спектры относительной квантовой эффективности фотопреобразования гетероструктуры *p*-GaSe \langle Dy \rangle -*n*-InSe \langle Ge \rangle в зависимости от дозы облучения. *T* = 293 K.

следована структура с оптимальной толщиной фронтального полупроводника. Ее значение, учитывая величину коэффициента поглощения света в InSe ($\sim 10^3 \, {\rm cm}^{-1}$), составляло ~ 10 мкм. Форма спектра расширилась в коротковолновую область (рис. 4). Видно, что фототок структуры *p*-InSe $\langle Cd \rangle$ –*n*-InSe $\langle Ge \rangle$ в широкой области изменения частоты света не только не уменьшается, но и увеличивается, что обусловлено несущественным влиянием поверхностных состояний на разделение фотоносителей гомопереходом. После облучения максимальным флюенсом относительная квантовая эффективность фототока образца в высокоэнергетической области спектра снижается (рис. 4), что можно объяснить ростом скорости поверхностной рекомбинации носителей [19].

Интересным является проявление двух четких минимумов на кривой фотоотклика при энергиях фотонов 2.45 и 2.95 эВ для облученной структуры p-n-InSe (рис. 4). Наблюдаемая особенность на зависимости $\eta(hv)$ может быть связана с существованием глубоких межзонных экситонных состояний [21]. Для них экситоны характеризуются бо́льшей энергией связи ($E_{\rm ex} \approx 100$ мэВ), чем краевые экситоны Ванье-Мотта (для InSe $E_{\rm ex} \approx 14.5$ мэВ). Экситоны, обладая высокой энергией связи, не могут диссоциировать на свободные электрон и дырку и не дают вклада в фототок. Совпадение энергетических положений минимумов для облученной структуры p-n-InSe с таковыми для необлученного селенида индия [22] косвенно свидетельствует о сохранении зонного спектра слоистого полупроводника.

Спектральное распределение квантовой эффективности фототока η гетероперехода *p*-GaSe-*n*-InSe представлено на рис. 5. Как видно, полоса фоточувствительности определяется поглощением света в соответствующих полупроводниках. Экспоненциальный ход длинноволнового края спектра структур с крутизной $S = 57 \, \mathrm{sB}^{-1}$ обусловлен поглощением в InSe. С коротковолновой стороны резкий рост величины фотока при hv < 2.0 эВ связан с экситонным поглощением света в широкозонном полупроводнике GaSe. Форма спектра фоточувствительности определялась локализацией основной части объемного заряда в менее легированном материале селениде галлия. В нем происходит наиболее эффективное разделение фотоносителей, что определяет значительную амплитуду зависимости $\eta(hv)$ при < 2.0 эВ. Следует отметить, что в гетеропереходе *p*-GaSe-*n*-InSe зафиксирована тонкая структура спектра: при энергии фотонов, соответствующей экситонному поглощению в GaSe, появляется минимум (показано стрелкой на рис. 5). Слева и справа расположены максимумы, причем правый максимум с облучением сдвигается в высокоэнергетическую область. Самообращение экситонной полосы наблюдалось также авторами работы [23] в спектрах фотоэдс структуры SnO2-GaSe и связывалось с наличием большого количества дефектов у поверхности монокристалла GaSe.

Для гетероперехода *p*-GaSe-*n*-InSe рост и последующее уменьшение токовой фоточувствительности ΔS_I (при $\lambda = 0.64$ мкм) составили 5 и 14% для флюенсов $1 \cdot 10^{13}$ и $1 \cdot 10^{15}$ электрон см⁻² соответственно (см. таблицу).

Необходимо отметить интересную особенность поведения длинноволнового края квантовой эффективности фототока исследуемых структур *p*-GaSe-*n*-InSe и *p*-*n*-InSe. Для флюенса $1 \cdot 10^{13}$ электрон · см⁻² на кривых фотоотклика в области энергий фотонов *hv*, меньших, чем энергия зона-зонных переходов в InSe ($E \approx 1.24$ эВ), наблюдается значительный рост фототока, который формируется при участии экситонных переходов. Это может быть вызвано диссоциацией экситонов на радиационных дефектах, что приводит к повышению фоточувствительности структур. Увеличение интенсивности экситонного поглощения в оптических спектрах InSe, легированного редкоземельными элементами Er [24] и Dy [25], связывалось с уменьшением структурных дефектов в этих кристаллах. В данном случае можно говорить о некотором росте степени упорядоченности упаковки слоев (собственных структурных дефектов) монокристаллов селенида индия и галлия, что находится в согласии с предположениями, выдвинутыми при анализе поведения BAX.

4. Заключение

По результатам проведенных исследований можно сделать следующие выводы. Влияние высокоэнергетического (E = 12.5 эВ) электронного облучения сводится к возникновению простых точечных дефектов, образование которых предпочтительно в межслоевых промежутках. При этом для минимального флюенса наблюдается только улучшение всех электрических и фотоэлектрических параметров исследуемых гомо- и гетероструктур, для максимального — незначительные снижение тока короткого замыкания и спад фоточувствительности. Оба типа структур продемонстрировали схожую динамику изменения основных параметров.

Можно заключить, что значительных изменений ВАХ и спектров фотоотклика не установлено из-за недостаточных величин энергий и флюенсов электронного излучения для существенного преобразования собственной дефектной структуры слоистых полупроводников. Полученные результаты позволяют рекомендовать слоистые структуры p-n-InSe и p-GaSe-n-InSe для использования в качестве радиационно стойких фотопреобразователей.

Список литературы

- Z.D. Kovalyuk, V.M. Katerynchuk, A.I. Savchuk, O.M. Sydor. Mater. Sci. Eng. B, 109, 252 (2004).
- [2] В.Н. Катеринчук, М.З. Ковалюк. ФТП, 25 (5), 954 (1991).
- [3] В.Л. Бакуменко, З.Д. Ковалюк, Л.Н. Курбатов, В.Г. Тагаев, В.Ф. Чишко. ФТП, 14 (6), 1115 (1980).
- [4] А.П. Бахтинов, З.Д. Ковалюк, О.Н. Сидор, В.Н. Катеринчук, О.С. Литвин. ФТТ, 49 (8), 1497 (2007).
- [5] К.А. Аскеров. Fizika, **2** (2), 36 (1996).
- [6] Р.С. Малахов, А.З. Аббасова, Т.Б. Тагиев, Ш.П. Шекили. В сб.: Международная конференция "FIZIKA-2005" (Баку, ЕЛМ, 2005) с. 373.
- [7] Г.Б. Абдулаев, А.З. Абасова, К.А. Аскеров, Ф.А. Заитов,
 Э.Ю. Салаев, В.И. Стафеев. Неорг. матер., 19 (4), 679 (1983).
- [8] Г.Б. Абдуллаев, А.З. Абасова, А.В. Горшков, Ф.А. Заитов, В.И. Стафеев, Э.Ю. Салаев, Г.М. Шаляпина. ФТП, 14 (4), 799 (1980).
- [9] Р.Ю. Алиев, Д.И. Караев, К.А. Аскеров. Fizika, 2 (3), 32 (1996).
- [10] В.Л. Бакуменко, В.Ф. Чишко. ФТП, 11 (10), 2000 (1977).
- [11] Г.Л. Беленький, Н.А. Абдуллаев, В.Н. Зверев, В.Я. Штейншрайбер. Письма ЖЭТФ, 47 (10), 498 (1988).

- [12] В.А. Манассон, А.И. Малик, В.Б. Баранюк. Письма ЖТФ, 7 (9), 549 (1981).
- [13] В.С. Вавилов, Н.А. Ухин. Радиационные эффекты в полупроводниках и полупроводниковых приборах (М., Атомиздат, 1969).
- [14] А.Ш. Абдинов, Р.Ф. Бабаева, Р.М. Рзаев, Г.А. Гасанов. Неорг. матер., **40** (6), 660 (2004).
- [15] З.Д. Ковалюк, П.Г. Литовченко, О.А. Политанская, О.Н. Сидор, В.Н. Катеринчук, В.Ф. Ластовецкий, О.П. Литовченко, В.К. Дубовой, Л.А. Поливцев. ФТП, 41 (5), 570 (2007).
- [16] Р. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [17] Б.Г. Тагиев, В.А. Гаджиев, С.Г. Абдуллаева, Г.М. Мамедов. Изв. АН АзССР. Сер. физ.-техн. и мат. наук, 3, 58 (1973).
- [18] А.Ш. Абдинов, А.Г. Кязым-заде, Н.М. Мехтиев, М.Д. Хомутова, А.Г. Шарипов. ФТП, 10 (1), 76 (1976).
- [19] С. Зн. Физика полупроводниковых приборов (М., Мир, 1984) т. 2.
- [20] В.С. Вавилов, Н.П. Кекелидзе, Л.С. Смирнов. Действие излучений на полупроводники (М., Наука, 1988).
- [21] O.Z. Alekperov, M.O. Godjaev, M.Z. Zarbaliev, R.A. Suleimanov. Sol. St. Commun., 77, 65 (1991).
- [22] O.Z. Alekperov, A.I. Nadjafov. Fizika, 10 (1,2), 77 (2004).
- [23] А.И. Малик, В.Б. Баранюк. Ф
ТП, **14** (3), 409 (1980).
- [24] B. Abay, H.S. Güder, H. Efeoglu, Y.K. Yogurtçu. J. Phys. D: Appl. Phys., 32 (22), 2942 (1999).
- [25] B. Gürbulak. Sol. St. Commun., 109, 665 (1999).

Редактор Л.В. Беляков

Electrical and photoelectric characteristics of structures based on InSe and GaSe layered semiconductors irradiated with 12.5 MeV electrons

Z.D. Kovalyuk, O.A. Politanska, O.N. Sydor, V.T. Maslyuk*

Institute for Problems of Materials Science, Chernivtsi Department, National Academy of Sciences of Ukraine, 58001 Chernivtsi, Ukraine * Institute of Electron Physics, National Academy of Sciences of Ukraine, 88017 Uzhgorod, Ukraine

Abstract Influence of high-energy electrons (E = 12.5 MeV) on the electrical and photoelectrical parameters of p-n-InSe and p-GaSe-n-InSe layers photoconverters is investigated. There found out the changes of current-voltage characteristics, photo-response spectra, open-circuit voltage and short-circuit current of the structures are caused by the formation of point defects. The absence of essential changes of the characteristics of the homo- and heterojunctions under investigation even at the maximum dose of irradiation allows to recommend them for creation of radiation-resistant photodetectors.