14

Корреляции плотность-плотность на поверхности пленок желатина

© Д.В. Новиков¹, А.Н. Красовский²

¹ Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича, Санкт-Петербург, Россия ² Санкт Петербургский государственный университет кино и тодоридония.

² Санкт-Петербургский государственный университет кино и телевидения,

Санкт-Петербург, Россия

E-mail: dvnovikov65@mail.ru, alex-krasovski@yandex.ru

(Поступила в Редакцию 22 декабря 2011 г.)

С помощью электронной микроскопии изучены пространственные корреляции на поверхности пленок, полученных из водных растворов желатина при охлаждении от 320 до 293 К. Показано, что полную корреляционную функцию флуктуаций плотности на масштабе R > 4 nm можно представить в виде $h(R) \sim R^{-n} \exp(-R/\xi)$, причем корреляционный радиус ξ совпадает с гидродинамическим радиусом макромолекулы. Разворачивание макромолекул при превращении клубок \rightarrow спираль приводит к уменьшению плотности, фрактальной размерности физической сетки зацеплений макромолекул и изменению индекса n в предэкспоненте функции h(R) от n = 1 до 2, что обусловлено переходом от континуального к ячеистому типу беспорядка в твердом теле.

1. Введение

Согласно классическим представлениям Флори [1], статистические свойства физической сетки перекрывающихся макромолекулярных клубков (без учета исключенного объема [2]) описываются в рамках модели самосогласованного (случайного) поля, флуктуирующего на масштабе гидродинамического радиуса R_g одиночного клубка. Такая модель отображает континуальный беспорядок в пространственном распределении цепей. Как следствие, на масштабе $R < R_g$ она приводит к корреляционной функции h(R) плотность-плотность типа Орнштейна–Цернике [2,3].

Однако возникновение пространственных корреляций между узлами физической сетки макромолекул должно приводить к изменению типа топологического беспорядка и переходу к беспорядку ячеистого типа [3]. Такой беспорядок может быть описан в рамках модели Изинга [4], элементами которой являются межузельные цепи [5]. Переход от континуального к ячеистому типу беспорядка в твердом состоянии сетчатого полимера может быть вызван, в частности, кооперативным разворачиванием клубков и должен приводить к изменению функции h(R).

В настоящей работе изучены пространственные корреляции на поверхности пленок, сформированных из водных растворов образцов желатина (Gel) при охлаждении раствора от 320 до 293 К. В этих условиях происходит разворачивание полипептидных цепей в растворе Gel, находящихся при 320 К в состоянии свернутого клубка [6]. Принято считать, что основной причиной резкого кооперативного перехода свернутый клубок — спираль в растворах Gel служит превращение непротекаемого клубка в полностью проницаемый [6].

Методом ЯМР¹Н-спектроскопии высокого разрешения показано [7], что степень разворачивания макромолекул в водном растворе Gel предопределяется их конфигурационным состоянием. По кинетической жесткости цепи макромолекулы Gel предложено относить к двум конфигурационным типам: спирализующемуся и неспирализующемуся. Первый тип содержит макромолекулы, способные к спирализации на уровне цепи в целом, а второй — на уровне отдельных участков цепи, что связано с упорядоченностью аминокислотных остатков в триадах [Gly-Pro-Hyp]₈ [7].

Разворачивание макромолекул Gel в результате кооперативного перехода клубок → спираль предшествует формированию сетчатой структуры полимера в водном геле [8], причем узлами сетки зацеплений макромолекул являются аминокислотные остатки триад [Gly–Pro–Hyp] различных цепей [8].

В работе [9] при декорировании золотом поверхности пленок Gel было установлено, что конфигурация цепи оказывает существенное влияние на плотность физической сетки зацеплений макромолекул, формируемой при охлаждении раствора клубков.

В настоящей работе показано, что расстояние между узлами непрерывной физической сетки зацеплений макромолекул, а также тип беспорядка в твердом теле зависят от конфигурации и степени разворачивания цепей Gel. С этой целью методом электронной микроскопии изучены фрактальные свойства физических сеток макромолекул, получены корреляционные функции типа плотность-плотность и рассчитаны параметры ближнего и дальнего порядка в пленках Gel.

2. Методика эксперимента

В работе изучены два образца Gel, имеющие практически одинаковую средневязкостную молекулярную массу M (табл. 1). Образец № 1 относится к неспирализующемуся типу, для которого типична слабая зависимость характеристической вязкости $[\eta]$ и эффективного

Номер	$[\eta], \mathrm{cm}^3/\mathrm{g}$				θ, %	$M \cdot 10^{-4} \ (\pm 0.05)$	R_g , nm (±0.5)	$V_0 \cdot 10^6, \mathrm{cm}^3 \cdot \mathrm{mol}^{-1} \ (\pm 0.05)$	
oopusidu	293 K	299 K	308 K	333 K			293 K	293 K	
1 2	56 95	55 70	44 50	40 43	0 3	10.3 11.0	14.4 17.7	5.8 10.5	

Таблица 1. Характеристики образцов Gel

Примечание. *θ* — содержание олигопептидов; *R_g* — гидродинамический радиус макромолекулы.

гидродинамического объема V_0 макромолекулы в водном растворе от температуры. Образец № 2 относится к спирализующемуся типу с выраженной температурной зависимостью параметров [η] и V_0 .

Пленки Gel толщиной $4-6\,\mu$ m были получены на плоском стекле из водных растворов полимера с концентрацией 1.5, 3 и $6 \, g \cdot d l^{-1}$, предварительно прогретых при 320 K в течение 30 min. Пленки сушились на воздухе при 293 K в течение трех суток.

Препарирование образцов для электронной микроскопии осуществлялось по методике [9] путем предварительной активации "воздушной" поверхности пленок жидким бромом с последующим вакуумным термическим напылением золота и получением опорной угольной реплики. Содержание прочно связанной воды в пленках Gel в результате их вакуумной обработки составляло 4% [9].

Рис. 1. Электронные микрофотографии декорирующих наночастиц золота на поверхности пленок Gel, полученных из водных растворов образцов № 1 (*a*, *c*) и № 2 (*b*, *d*). Концентрация c = 1.5 (*a*, *b*) и 6g · dl⁻¹ (*c*, *d*).

Физика твердого тела, 2012, том 54, вып. 8

В основе методики [9] лежит представление о соответствии распределения декорирующих наночастиц золота на поверхности пленок (рис. 1) распределению плотности самоподобной физической сетки макромолекул (перколяционного кластера).

Для изученных образцов пленок Gel характерный масштаб флуктуаций плотности сравним по величине с наиболее вероятным расстоянием $r \approx 9$ nm между частицами золота, соответствующим положению первого пика радиальной флуктуации g(R) распределения (рис. 2). Поэтому для определения корреляционного радиуса ξ физической сетки макромолекул использовали накладываемую на электронную микрофотографию (рис. 1) квадратную решетку с расстоянием между узлами l < r [10]. При этом маркировали узлы решетки, находящиеся от частиц золота на расстоянии $\leq r_s/2$, где r_s — радиус первой координационной сферы (рис. 2). Для решеточного кластера маркированных узлов получали радиальную функцию $g_1(R)$ путем пошагового сканирования плотности распределения узлов с шагом $l \approx 3$ nm.

Полную корреляционную функцию h(R) физической сетки макромолекул получали из функции $g_1(R)$ после вычета радиальной функции $g_2(R)$ распределения плотности узлов квадратной решетки [10]. Функция h(R) связана с радиальной функцией $g_0(R)$ распределения плотности упаковки макромолекул выражением $g_0(R) = h(R) + 1$ [3,10]. Из графика функции $g_0(R)$ по условию $g_0(\xi) = 1$ определялась величина ξ .

Аналогично работе [10] доля Ω поверхности, занимаемая физической сеткой макромолекул, рассчитывалась как относительная площадь, занимаемая окружностями радиуса $r_s/2$ с центрами в декорирующих наночастицах золота.

3. Результаты и их обсуждение

Электронные микрофотографии декорирующих наночастиц золота (рис. 1) показывают, что плотность распределения частиц флуктуирует вдоль поверхности пленок Gel, причем с ростом концентрации *с* раствора полимера средняя плотность увеличивается.

Радиальные функции g(R) распределения наночастиц золота на поверхности пленок (рис. 2) свидетельствуют о том, что ближний порядок в квазирешетке частиц снижается с ростом концентрации *с* и практически не зависит от структурного типа Gel. На масштабе корреляционного радиуса ξ флуктуаций плотности физической сетки макромолекул в пленках Gel радиальные функции $g_0(R)$ подчиняются степенному закону (рис. 3), что позволяет использовать модель фрактального кластера [11], для которого $g_0(R) \cong (D/2\Omega)(R/R_0)^{D-2}$, где R_0 — радиус инерции "простой" частицы кластера, D — его фрактальная размерность [10]. С увеличением доли Ω поверхности, занимаемой кластером, т. е. плотности сетки, величина Dрастет, причем для образца № 2 такое изменение Dболее выражено по сравнению с образцом № 1 (табл. 2). Линейная интерполяция зависимостей $D(\Omega)$ для двух

Рис. 2. Функции g(R) декорирующих наночастиц золота на поверхности пленок Gel. a) — образец № 1, b) — образец № 2. Концентрация c = 1.5 (I) и 6 g · dl⁻¹ (2).

Рис. 3. Радиальные функции $g_0(R)$ распределения плотности физической сетки макромолекул на поверхности пленок Gel. *1* — образец № 1, *2* — образец № 2. Концентрация $c = 1.5 \text{ g} \cdot \text{dl}^{-1}$.

образцов Gel показывает, что при критической величине $\Omega^* \approx 0.45$ (на пороге протекания) достигаются значения $D \approx 5/3$ (образец № 1) и $D \approx 3/2$ (образец № 2). Полученные значения соответствуют свернутому (D = 5/3) и протекаемому (D = 3/2) клубкам [12].

С уменьшением концентрации *с* раствора Gel величина ξ физической сетки макромолекул в пленках увеличивается (табл. 2) и при *с* → *c*^{*} приближается к гидродинамическому радиусу макромолекулы, где c^* — критическая концентрация гелеобразования, равная $1.35 \text{ g} \cdot \text{dl}^{-1}$ для образца № 1 и ~ $1.6 \text{ g} \cdot \text{dl}^{-1}$ для образца № 2 [9].

Параметр R_0 следует рассматривать как радиус инерции участков цепи между узлами физической сетки макромолекул в твердом теле. Действительно, значение R_0 увеличивается как за счет разворачивания макромолекул при переходе от образца № 1 к образцу № 2, так и при уменьшении плотности Ω сетки в пленках Gel или концентрации *с* раствора полимера. Как и следует ожидать, для образца № 1 с ростом плотности сетки величина $2R_0$ приближается к длине статистического сегмента Куна (1.8 nm [2]) клубка полипептидной цепи (табл. 2), обладающей относительно низкой кооперативностью перехода клубок — спираль.

Поскольку выполняется условие $2R_0 < r$, важно отметить, что квазирешетка наночастиц золота не отображает ближний порядок сетчатой структуры Gel, и методика

Таблица 2. Параметры сетчатой структуры пленок Gel

Номер образца	c, $g \cdot dl^{-1}$	$\begin{array}{c} \Omega \\ (\pm 0.02) \end{array}$	ξ , nm (±10%)	<i>R</i> ₀ , nm	D при R < ξ (±0.02)	$n \\ (\pm 0.2)$
1 2	6	0.87	7	0.9	1.95	1
	3	0.79	11	1.6	1.91	1.3
	1.5	0.77	11	2.2	1.89	1.2
	6	0.72	12	1.9	1.86	2.2
	3	0.68	14	2.3	1.84	1.9
	1.5	0.56	14	4.5	1.66	1.9

Рис. 4. Линеаризация функций h(R) для пленок Gel. I — образец № 1, 2 — образец № 2. Концентрация $c = 1.5 \text{ g} \cdot \text{dl}^{-1}$.

декорирования не позволяет получить информацию о пространственных корреляциях межузельных цепей на масштабе $R < 2R_0$.

Экспериментально полученную полную корреляционную функцию h(R) распределения плотности физической сетки макромолекул в пленках Gel аппроксимировали выражением, типичным для состояний с "промежуточным" порядком в системах с кооперативными явлениями [3]: $h(R) \sim R^{-n} \exp(-R/\xi)$. Индекс *n* в предэкспоненте функции h(R) зависит от мерности решетки, а также природы сил взаимодействия [3] и может быть определен при линеаризации функции h(R) в координатах, представленных на рис. 4. В пленках Gel он изменяется от 1 до 2 (табл. 2) при переходе от образца № 1 к образцу № 2. В двумерной физической системе значение n = 1 соответствует корреляционной функции h(R) Орнштейна-Цернике для модели случайного поля или континуального беспорядка [3]. Функция h(R), отвечающая n = 1, была экспериментально получена нами ранее для флуктуаций плотности на поверхности пленок атактического полистирола [13], а также для перколяционного кластера мезофазы полимера на поверхности пленок триацетата целлюлозы [10]. Значение n = 2 отвечает точному решению Онзагера для задачи Изинга спин-спинового упорядочения в магнетиках ниже критической температуры перехода порядокбеспорядок [3]. Подобные корреляции должны иметь место и в изинговой модели полимерной сетки [5], описывающей ячеистый беспорядок в твердом теле [3].

4. Заключение

Внутримолекулярное кооперативное превращение клубок → спираль предопределяет природу беспорядка и статистические свойства физической сетки макромолекул в пленках Gel. Переход от модели Флори к модели Изинга обусловлен возникновением пространственных корреляций между участками макроцепи, ограниченными узлами сетки. Пространственные корреляции проявляются в характерных изменениях плотности сетки, функции h(R) и радиуса R_0 инерции межузельных цепей при вариации конфигурационного типа макромолекул Gel и соответственно гидродинамического объема макроцепи.

Изменение топологического беспорядка при переходе клубок — спираль в пленках Gel происходит в полном соответствии с фундаментальным положением теории Флори о взаимосвязи корреляционного радиуса ξ флуктуаций плотности в твердом состоянии сетчатого полимера и гидродинамического радиуса R_g одиночного клубка.

Список литературы

- P. Flory. Principles of polymer chemistry. Cornell University Press, N.Y. (1971). 452 p.
- [2] А.Ю. Гросберг, А.Р. Хохлов. Статистическая физика макромолекул. Наука, М. (1989). 344 с.
- [3] Дж. Займан. Модели беспорядка. Мир, М. (1982). С. 286. [J.M. Ziman. Models pf disorder. Cambridge Univ. Press, London (1979)].
- [4] E. Ising. Z. Phys. **31**, 253 (1925).
- [5] Г.М. Бартенев, С.Я. Френкель. Физика полимеров. Химия, Л. (1990). С. 312.
- [6] В.Н. Цветков, В.Э. Эскин, С.Я. Френкель. Структура макромолекул в растворах. Наука, М. (1964). 719 с.
- [7] А.Н. Красовский, В.П. Николаев, А.М. Шляков, С.С. Мнацаканов. Высокомолекуляр. соединения А 37, 273 (1995).
- [8] П.Де Женн. Идеи скейлинга в физике полимеров / Пер. с англ. Под ред. И.М. Лифшица. Мир, М. (1982). 368 с. [P. De Gennes. Scaling concepts in polymer physics. Cornel University Press, Ithaca (1979).].
- [9] Д.В. Новиков, А.Н. Красовский, А.И. Андреева, С.В. Басов. Коллоид. журн. **61**, 240 (1999).
- [10] Д.В. Новиков, А.Н. Красовский. ФТТ 54, 382 (2012).
- [11] Е. Федер. Фракталы / Пер. с англ. Ю.А. Данилова, А.М. Шукурова. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y.-London (1988). 260 p.].
- [12] В.Г. Баранов, С.Я. Френкель, Ю.В. Бресткин. ДАН СССР 290, 369 (1986).
- [13] Д.В. Новиков, А.Н. Красовский, Н.А. Осмоловская, В.И. Ефремов. ФТТ **49**, 364 (2007).