Высокоэффективные фотоэлементы на основе твердых растворов In_{0.53}Ga_{0.47}As с изовалентным легированием

© Л.Б. Карлина[¶], А.С. Власов, М.М. Кулагина, Е.П. Ракова, Н.Х. Тимошина, В.М. Андреев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 22 июня 2009 г. Принята к печати 29 июня 2009 г.)

Влияние изовалентного легирования фосфором на поверхностные и объемные свойства слоев In_{0.53}Ga_{0.47}As (далее InGaAs) оценивалось по изменению спектров фотолюминесценции и спектров пропускания. Установлено, что изовалентное легирование уменьшает скорость безызлучательной рекомбинации в объеме и на поверхности легированных слоев. Использование дополнительного изовалентного легирования позволило улучшить параметры узкозонного солнечного элемента на основе InGaAs, предназначенного для преобразования концентрированного солнечного излучения. Значение максимальной эффективности фотоэлектрического преобразования в спектральном диапазоне 900–1840 нм составило 7.4–7.35% при кратности концентрирования солнечного излучения 500–1000 для спектра AM1.5D Low AOD.

1. Введение

Развитие альтернативных источников энергии требует разработки экологически безопасных дешевых способов производства полупроводниковых приборов для этих целей. Перспективы дальнейшего повышения эффективности фотоэлектрического преобразования солнечной энергии связаны как с использованием монолитных концентраторных элементов, так и с максимально эффективным преобразованием "расщепленного" солнечного спектра отдельными фотопреобразователями с различной шириной запрещенной зоны. Приборы на основе узкозонных твердых растворов InGaAs являются перспективными для преобразования в инфракрасной области солнечного спектра.

В настоящее время солнечные элементы на основе гетероструктуры InP/InGaAs изготавливаются в основном с использованием технологии MOC-гидридной эпитаксии [1,2]. В работах [3–5] показана возможность изготовления высокоэффективных приборов с использованием метода жидкофазной эпитаксии и последующей диффузии цинка в выращенные слои для формирования p-n-перехода. Разработанный метод одновременной диффузии изовалентной примеси фосфора и цинка из локального источника в проточной системе обеспечивает хорошую воспроизводимость параметров диффузионных слоев. Это происходит благодаря сведению к минимуму числа технологических операций, влияющих на этот процесс. Высокая экономичность обеспечивается простотой используемого оборудования.

Преобразование солнечной энергии при кратности концентрирования излучения в диапазоне 100-1000 предъявляет дополнительные требования к используемым фотопреобразователям, а именно возможность работы элемента при больших плотностях тока $(1-20 \text{ A/cm}^2)$ при сохранении высокого значения фактора заполнения вольт-амперной характеристики. Этот параметр солнечного элемента определяется величиной

темнового тока фотопреобразователя и возможностью формирования низкоомных контактов. До начала процесса диффузии легирующей примеси (цинка) выращенная структура находится в реакторе в атмосфере водорода при постоянно повышающейся температуре, вплоть до установления ее заданного значения (около 600° C). При этом известно, что отжиг в водороде приводит к конкуренции процессв дефектообразования и водородной пассивации дефектов в материалах $A^{III}B^{V}$ [6]. Дополнительное изовалентное легирование исходного слоя InGaAs фосфором перед началом диффузии легирующей примеси может существенно повлиять на объемные и поверхностные свойства *n*- и *p*-слоев твердого раствора и параметры прибора.

Данная работа посвящена исследованию процесса создания высокоэффективных узкозонных элементов на основе гетероструктуры InGaAs/InP. Представлены результаты исследования влияния предварительной диффузии фосфора на свойства материала и получаемых на его основе приборов.

Изготовление фотоэлементов и методика исследований

В качестве основной конструкции солнечного элемента был выбран "инвертный" [7] элемент с широкозонным "окном" — подложкой InP (рис. 1). В отличие от традиционной конструкции инвертная структура фотоэлемента предполагает формирование диффузией сравнительно "толстой" базовой *p*-области элемента. Область *n*-InGaAs, примыкающая к буферному слою *n*-InP, является эмиттером. Солнечное излучение вводится через подложку InP. Как и в случае инвертных каскадных солнечных элементов [8], такая конструкция узкозонного элемента обладает некоторыми преимуществами по сравнению с обычной конструкцией, в которой роль эмиттера выполняет тонкий сильно легированный слой. В нашем случае контакт к эмиттеру

[¶] E-mail: karlin@mail.ioffe.ru

Рис. 1. Схематическое изображение инвертного солнечного элемента на основе InP/InGaAs. Облучение со стороны подложки InP.

изготавливается на поверхности подложки *n*-InP. Формирование толстого диффузионного слоя значительно упрощает контроль диффузионного процесса, снижает слоевое сопротивление базовой области. На подложке InP толщиной 300–400 мкм и концентрацией носителей $(0.6-1) \cdot 10^{18}$ см⁻³ методом жидкофазной эпитаксии выращивался буферный слой InP и слой твердого раствора In_{0.53}Ga_{0.47}As, толщиной 3–5 мкм с концентрацией примеси $(1-5) \cdot 10^{17}$ см⁻³.

Последующая диффузия фосфора или фосфора с цинком осуществлялась в проточной системе в атмосфере водорода. Источники состояли из капель олово-(фосфид индия) и олово-(фосфид индия)-цинк, помещенных в специальные ячейки над образцом при температуре 570-600°С. Структура последовательно перемещалась под источниками. Диффузия происходила из газовой фазы [3-5]. Следует отметить, что диффузия только цинка (без фосфора) не проводилась, так как ранее уже было показано преимущество одновременной диффузии цинка и фосфора для получения слоев InGaAs р-типа проводимости [4]. В данном случае процесс создания *p*-*n*-переходов в твердых растворах является одностадийным, не требует создания защитных масок на поверхности полупроводника для дополнительной локальной диффузии или наращивания дополнительных подконтактных сильно легированных слоев. Лицевые контакты на поверхности подложки n-InP создавались напылением композиции Au/Ge, Ni, Au с последующим вжиганием. Тыльный контакт к базовому слою *p*-InGaAs, полученному в результате диффузии, формировался последовательным напылением хрома и золота. Дополнительное вжигание не проводилось. Усиление контактов

7 Физика и техника полупроводников, 2010, том 44, вып. 2

достигалось электролитическим осаждением Au. Антиотражающее покрытие состояло из последовательно напыленных слоев ZnS/MgF₂.

Влияние фосфора на поверхностные и объемные свойства слоев InGaAs оценивалось по изменению спектров фотолюминесценции и спектров пропускания. Спектры фотолюминесценции измерялись при температурах T = 77 и 300 К в диапазоне длин волн 1300–1800 нм на спектрометре МДР-23 с разрешением не хуже 5 нм. Для возбуждения использовался лазер Nd:YAG с длиной волны излучения 532 нм и интенсивностью освещения до 200 мВт. Вид спектров фотолюминесценции (ФЛ) — положение максимума и полуширина полос, а также соотношение интенсивностей — для всех исследуемых образцов анализировался при условии одинаковой интенсивности возбуждения. Плотность мощности возбуждения при исследовании слоев InGaAs составляла ~ 100 Вт/см².

Концентрация свободных носителей заряда определялась методом комбинационного рассеяния света (КРС) путем анализа эффектов взаимодействия продольных оптических колебаний с плазмой свободных носителей [9]. Концентрация изовалентной примеси (фосфора), согласно измерениям, полученным методом вторично-ионной масс-спектроскопии в слоях InGaAs равна 10²⁰ см⁻³.

3. Экспериментальные результаты

3.1. Слои InGaAs *n*-типа

На рис. 2 представлены спектры ФЛ изопериодических твердых растворов InGaAs *n*-типа проводимости до и после диффузии фосфора. В исследованных слоях фоновая концентрация свободных электронов составляла $(3-5) \cdot 10^{17}$ см⁻³. Диффузия фосфора осуществлялась при постоянной температуре 600°C в течение 20 мин.

Из рисунка видно, что легирование фосфором приводит к увеличению интенсивности ФЛ. При этом соотношение интегральных интенсивностей при температурах 77 и 300 К, связанное с вымораживанием глубоких центров, уменьшалось. Так, до диффузии фосфора это соотношение равно 17, а после диффузии всего 3.3. Оба этих факта свидетельствуют в пользу того, что концентрация центров безызлучательной рекомбинации уменьшается в результате изовалентного легирования. Величина соотношения интенсивности при разных температурах зависела от первоначального состояния поверхности гетероэпитаксиальных слоев, но неизменно оказывалась меньшей для образцов, легированных фосфором, что свидетельствует о том, что диффузия фосфора приводит к значительному снижению скорости поверхностной рекомбинации.

Небольшое уширение полосы $\Phi Л$ при T = 300 K от 46 до 53 мэВ после диффузии фосфора связано, возможно, с ростом заселенности в валентной зоне, вызванным увеличением среднего времени жизни неравновесных носителей, так как в образцах, легированных фосфором,

Рис. 2. Спектры фотолюминесценции слоев InGaAs при температурах 77 (*a*) и 300 К (*b*): *1* — слой InGaAs, легированный фосфором, *2* — нелегированный слой.

уширение сопровождается сдвигом положения максимума в сторону бо́льших энергий и увеличением общей интенсивности.

Для контроля концентрации свободных носителей до и после диффузии фосфора были измерены спектры комбинационного рассеяния. Спектры КРС имеют вид, характерный для изопериодических твердых растворов InGaAs/InP [9]. Согласно нашим измерениям, концентрация свободных электронов в исследованных слоях составила $(2-4) \cdot 10^{17} \, \text{см}^{-3}$. Анализ спектров комбинационного рассеяния исходных и изовалентно легированных образцов показал, что образование дополнительной фазы, а именно кластеров твердого раствора InGaAs(P), в условиях нашего эксперимента не происходит. Сравнение спектров КРС до и после диффузии фосфора обнаруживает практически полную их идентичность. Это свидетельствует также о том, что концентрация свободных электронов в контрольных и изовалентно легированных образцах не меняется, т.е. диффузия фосфора не приводит к увеличению концентрации носителей, в отличие от результатов, опубликованных в работе [10]. Можно предположить, что в выбранных нами условиях эксперимента атомы фосфора встраиваются в анионную подрешетку твердого раствора, частично заменяя атомы мышьяка, уменьшая количество точечных дефектов без образования дополнительных доноров.

3.2. Слои InGaAs *p*-типа

Диффузия цинка, как и любой другой примеси, во многом определяется дефектами, существующими в материале. Для того чтобы оценить влияине изовалентного легирования на свойства легированных цинком слоев InGaAs, были рассмотрены спектры пропускания исходной n-n-структуры (рис. 3, кривая 1) и структур, в которых *р*-область твердого раствора (в нашем случае базовая область фотопреобразователя) формировалась совместной диффузией цинка и фосфора в слой без (рис. 3, кривая 2) и с дополнительным изовалентным легированием фосфором (рис. 3, кривая 3). Исходная структура *n*-InP/(буферный слой *n*-InP)/(слой *n*-InGaAs) раскалывалась на три части: одна часть оставалась в качестве контрольного образца (*n*-*n*-структура), в две другие проводилась диффузия цинка в соответствующих режимах, обеспечивающих одинаковую толщину р-слоев и концентрацию примеси на поверхности слоя InGaAs. Из результатов измерения спектров КРС величина электрически активной примеси в приповерхностном слое составила $(1-2) \cdot 10^{19}$ см⁻³. Были проведены по методу вторично-ионной масс-спектрометрии (ВИМС) измерения профиля диффузии Zn, концентрации фосфора и водорода, которые обнаружили уменьшение концентрации атомов водорода в структуре с дополнительной диффузией фосфора.

Спектры пропускания контрольной и p-n-структур были измерены при температуре 300 К. Край поглощения структуры с дополнительной диффузией фосфора (кривая 3) имеет более крутой наклон по сравнению со структурой без дополнительной диффузии фосфора

Рис. 3. Спектры пропускания исследованных структур InP/InGaAs: *I* — исходная *n*-*n*-структура InP/InGaAs; *2* — структура с *p*-слоем, полученным без дополнительного легирования фосфором; *3* — структура с *p*-слоем и дополнительным изовалентным легированием фосфором.

Физика и техника полупроводников, 2010, том 44, вып. 2

(кривая 2). На данном этапе работы сложно определить, какой именно механизм взаимодействия между атомами цинка, водорода, фосфора и присутствующими дефектами ответствен за различия в спектрах пропускания исследованных структур. Однако можно с определенностью утверждать, что дополнительный отжиг в парах фосфора приводит к более равномерному распределению атомов Zn по объему базовой области, что выражается в более крутом наклоне кривой спектра пропускания.

Также наблюдалось увеличение интенсивности фотолюминесценции для p-слоев InGaAs с дополнительным легированием фосфором по сравнению с интенсивностью ФЛ слоев без предварительного изовалентного легирования. Необходимо отметить, что соотношение интегральных интенсивностей ФЛ при 77 и 300 К для сильно легированных цинком слоев p-InGaAs с $p = (3-5) \cdot 10^{19} \, \text{см}^{-3}$, с дополнительным изовалентным легированием, находится в диапазоне 2-4. Исследования интенсивности ФЛ в зависимости от температуры, проведенные для слабо легированных цинком слоев InGaAs ($p \approx 10^{16} \text{ cm}^{-3}$), полученных методом MOCVD, дают соотношение интенсивностей ФЛ при T = 77 и 300 К, равное 8-10 [11]. Таким образом, дополнительное изовалентное легирование позволяет значительно снизить вклад безызлучательной рекомбинации даже при высоком уровне легирования слоев цинком, т.е. уменьшить количество дефектов как в объеме, так и на поверхности р-слоя.

4. Характеристики InGaAs-фотопреобразователей

4.1. Квантовая эффективность

Внешняя квантовая эффективность фотоэлементов, изготовленных на основе гетероструктур, спектры пропускания которых изображены на рис. 3, представлена на рис. 4. Как было отмечено ранее, толщины *n*- и *p*-областей структур и уровень легирования одинаковы, следовательно, можно предположить, что улучшение спектральной характеристики элемента с дополнительным изовалентным легированием связано с уменьшением дефектов в объеме материала твердого раствора. Интересно отметить, что наибольшее различие в спектрах наблюдается в длинноволновой области, что говорит об увеличении диффузионной длины неосновных носителей в *p*-слое, которое, возможно, обусловлено более равномерным распределением атомов цинка.

4.2. Фактор заполнения вольт-амперной характеристики и напряжение холостого хода

Известно, что основным параметром, влияющим на величину фактора заполнения (FF), является обратный ток насыщения (темновой ток), снижение которого ведет

Рис. 4. Внешняя квантовая эффективность (Q_{ext}) и спектры отражения (Reflectance) для солнечных элементов, спектры пропускания которых показаны на рис. 3: 1 — структура с дополнительным изовалентным легированием, 2 — без дополнительного легирования. Все структуры исследованы без антиотражающего покрытия.

Рис. 5. Фактор заполнения вольт-амперных характеристик и напряжение холостого хода в зависимости от плотности фототока для InGaAs-фотоэлементов с (кривые *1*) и без (кривые *2*) дополнительного изовалентного легирования фосфором.

к повышению значения FF [12]. Измерение и сравнение темновых безрезистивных вольт-амперных характеристик солнечных элементов проводились по методике, описанной в работе [13]. Наименьший диффузионный предэкспоненциальный множитель J_{0d} , а следовательно, и наибольшее время жизни неравновесных носителей $\tau_{pN} \approx 10^{-9}$ с в квазинейтральной *n*-области наблюдались у структуры с дополнительным изовалентным легированием. Указанные параметры примерно на порядок лучше, чем в образце без дополнительного легирования фосфором.

На рис. 5 показаны изменения FF и V_{oc} в зависимости от плотности тока для образцов, квантовая эффек-

тивность которых приведена на рис. 3. Концентрация основных носителей в n- и p-областях этих элементов одинакова. Контакты на образцах выполнены по одной и той же схеме. Как видно из рис. 5, значения FF и $V_{\rm oc}$ для солнечных элементов с дополнительным легированием выше во всем интервале значений плотности тока. Увеличение значений фактора заполнения BAX для фотоэлементов с дополнительным изовалентным легированием обусловлено также и значительно меньшими омическими потерями. В данном случае формирование низкоомного контакта Cr/Au к базовой области фотоэлемента происходит на сильно легированном слое p-InGaAs с пониженным количеством дефектов, о чем было сказано выше.

4.3. Эффективность преобразования солнечного элемента

На рис. 6 представлены значения эффективности солнечного InGaAs-элемента с дополнительным изовалентным легированием. Для данного типа элементов диапазон фоточувствительности находится в пределах 880-1840 нм за счет полного поглощения коротковолнового излучения подложкой InP. Плотность фототока равна 19.3 мA/см² в пересчете на активную поверхность, облученную неконцентрированным солнечным излучением со спектром AM1.5 Low AOD (1000 BT/м²). Толщина эмиттерной области составляла 2 мкм. На данном этапе исследований оптимизация толщины эмиттерной области элемента, а следовательно, и плотности фототока не проводилась. Значение максимальной эффективности фотоэлектрического преобразователя в спектральном диапазоне 900–1840 нм сохранялось на уровне

Рис. 6. Эффективность преобразования инвертного солнечного элемента на основе InP/InGaAs с дополнительным изовалентным легированием. (Спектр солнечного излучения AM1.5D, Low AOD.)

7.4–7.35% при кратности концентрирования солнечного излучения 500–1000.

Разработанные InGaAs-фотопреобразователи могут успешно использоваться в качестве узкозонного каскада в механически стыкованных тандемных солнечных элементах с верхним широкозонным каскадом на основе системы InGaP–GaAs [14], обеспечивая суммарный кпд более 35%.

5. Заключение

В результате исследований установлено, что дополнительное изовалентное легирование твердых растворов InGaAs фосфором существенно улучшает поверхностные и объемные свойства слоев. Базовая технология, разработанная на основе жидкофазной эпитаксии и одностадийной диффузии изовалентной и легирующей примесей, позволяет создавать высокоэффективные узкозонные солнечные элементы для преобразования концентрированного солнечного излучения в диапазоне 100–1000 солнц. Данная технология может быть успешно использована для других материалов А^{III}В^V.

Авторы выражают признательность В.Д. Румянцеву за полезные обсуждения, В.С. Калиновскому за измерение темновых характеристик InGaAs-фотопреобразователей, Б.Я. Беру и А.П. Коварскому за измерения профилей концентрации легирующей и изовалентной примесей методом вторичной ионной масс-спектроскопии.

Список литературы

- [1] D.M. Wilt, R. Wehrer, M. Palmisiano, M. Wanlass, Ch. Murray. Semicond. Sci. Technol., **18**, S209 (2003).
- [2] M. Emziane, R.J. Nicholas. Appl. Phys., 101, 054 503 (2007).
- [3] L.B. Karlina, B.J. Ber, M.M. Kalugina, A.P. Kovarsky, C. Vargas-Aburto, R.M. Uribe, D. Brinker, D. Scheiman. *Proc.* 28th IEEE PVSC (Alaska, 2000) p. 1230.
- [4] L.B. Karlina, M.M. Kulagina, M.Z. Shvarts, A.S. Vlasov, V.M. Andreev. Proc. 21st Eur. Photovoltaic Solar Energy Conf. (Dresden, 2006) p. 473.
- [5] Л.Б. Карлина, А.С. Власов, М.М. Кулагина, Н.Х. Тимошина. ФТП, 40 (3), 351 (2006).
- [6] A. Jalil, B. Theys, J. Chevallier, A.M. Huder, C. Grattepain, P. Hietz. Appl. Phys. Lett., 57 (26), 2791 (1990).
- [7] B. Karlina, M.M. Kulagina, N.Kh. Timoshina, A.S. Vlasov, V.M. Andreev. Proc. 7th World TPV Conf. Thermophotovoltaic Generation of Electricity (Madrid, Spain, 2006) p. 182.
- [8] M.A. Steiner, J.F. Geisz, R.C. Reedy, jr., S. Kurtz. Proc. 33rd IEEE Photovoltaic Specialists Conf. (San Diego, 2008) p. 143.
- [9] A.M. Mintairov, H. Temkin. Phys. Rev. B, 55 (8), 5117 (1997).
- [10] S. Hernandez, N. Blanko, I. Martil, G. Gonzalez-Diaz, R. Cusco, L. Artus. J. Appl. Phys., 93 (11), 9019 (2003).
- [11] D. Donetsky, S. Anikeev, N. Gu, M. Dashiell, H. Ehsani, F. Newman, M. Wanlass, C. Wang. Proc. 4th World Conf. on Photovoltaic Energy Conversion (Hawaii, 2006) p. 764.

Физика и техника полупроводников, 2010, том 44, вып. 2

- [12] В.М. Андреев, В.А. Грилихес, В.Д. Румянцев. Фотоэлектрическое преобразование концентрированного солнечного излучения (Л., Наука, 1989).
- [13] L.B. Karlina, V.V. Evstropov, V.S. Kalinovsky, M.M. Kulagina, N.H. Timoshina, A.V. Vlasov, V.M. Andreev. Proc. 22 Eur. Photovoltaic Solar Energy Conf. (Milan, 2007) p. 520.
- [14] P.R. Sharps, A. Cornfeld, M. Stan, A. Korostyshevsky. 33rd IEEE Photovoltaic Specialists Conf. (San Diego, 2008) p. 511.

Редактор Т.А. Полянская

The high-performance In_{0.53}Ga_{0.47}As photovoltaic cells with isovalent doping

L.B. Karlina, A.S. Vlasov, M.M. Kulagin, E.P. Rakova, N.Kh. Timoshina, V.M. Andreev

Ioffe Physicotechnical Institute, Russian Academy of Science, 194021 St. Petersburg, Russia

Abstract Isovalent doping influence on the bulk and surface properties of $In_{0.53}Ga_{0.47}As$ (further InGaAs) layers has been studied by means of photoluminescence and optical absorption spectroscopy. The non-radiative recombination rate decrease has been observed in the isovalent doped samples. Performance of an InGaAs based narrow-bang-gap PV cell designed for the concentrated sunlight conversion was improved by an additional isovalent doping. The maximum PV conversion efficience of 7.4–7.35% in the 900–1840 nm wavelength region has been registered under 500–1000 concentrated sunlight at the AM1.5D Low AOD spectrum.