Особенности интерметаллического полупроводника *n*-ZrNiSn, сильно легированного атомами редкоземельных металлов

© В.А. Ромака^{+,*¶}, D. Fruchart[≠], E.K. Hlil[≠], P.E. Гладышевский[•], D. Gignoux[≠], В.В. Ромака[•], Б.С. Кужель[•], Р.В. Крайовский^{*}

 ⁺ Институт прикладных проблем механики и математики им. Я. Пидстрыгача Национальной академии наук Украины,
 79060 Львов, Украина
 * Национальный университет "Львовская политехника",
 79013 Львов, Украина
 [≠] Институт Нееля Национального центра научных исследований,
 38042 Гренобль, Франция
 • Львовский Национальный университет им. И. Франко,

79005 Львов, Украина

(Получена 16 июня 2009 г. Принята к печати 30 июня 2009 г.)

Исследованы кристаллическая структура, распределение электронной плотности, энергетические, кинетические и магнитные характеристики интерметаллического полупроводника *n*-ZrNiSn, сильно легированного атомами редкоземельных металлов (R) в диапазонах температур 1.5-400 K, концентраций редкоземельного металла $9.5 \cdot 10^{19}-9.5 \cdot 10^{21}$ см⁻³, магнитных полей $H \le 15$ Tл. Определены области существования твердых растворов $Zr_{1-x}R_x$ NiSn, сформулированы критерии растворимости атомов редкоземельных металлов в ZrNiSn и перехода диэлектрик-металл, определена природа "априорного легирования" ZrNiSn донорами как результат перераспределения атомов Zr и Ni в кристаллографических позициях Zr. Установлена корреляция между концентрацией примеси R, амплитудой модуляции зон непрерывных энергий, а также степенью заполнения носителями тока потенциальных ям мелкомасштабных флуктуаций. Обсуждение результатов ведется в рамках модели сильно легированного и компенсированного полупроводника Шкловского-Эфроса.

1. Введение

Интерметаллические полупроводники MNiSn (M = Ti, Zr, Hf), *p*-TiCoSb и RNiSb (R — редкоземельный металл) входят в круг термоэлектрических материалов, которые интенсивно исследуются на предмет их использования в процессе преобразования тепловой энергии в электрическую, что позволяет сделать этот процесс экономически оправданным [1]. Оптимизация параметров таких полупроводников осуществляется путем их легирования донорными и (или) акцепторными примесями.

Предыдущие исследования показали, что процесс легирования зависит от множества факторов, в частности от природы примеси, особенностей кристаллической структуры полупроводника, режимов гомогенизирующего отжига (температуры, длительности, условий охлаждения) и т.д. Авторы работы [2], исследуя влияние условий отжига на структурные и кинетические характеристики ZrNiSn, предположили, что атомы Zr и Sn частично замещают друг друга, генерируя в равных количествах дефекты донорной и акцепторной природы. Однако в рамках этой "компенсационной" модели трудно объяснить, например, природу "априорного легирования" ZrNiSn "донорными примесями", что проявляется отрицательным знаком коэффициента термоэдс и постоянной Холла [3]. Исследование структуры ZrNiSn методом комбинированного рентгеновского излучения в работе [4] позволило авторам предложить модель, в которой позиции атомов Zr заняты на 90.0% атомами Zr, а позиции атомов Ni на 91.6% атомами Ni [5]; реализуется ситуация так называемой локальной аморфизации [6]. В этом случае атомы примеси могут занимать разные вакантные кристаллографические позиции, генерируя дефекты акцепторной, донорной или нейтральной природы, а также происходит деформация решетки, которая распадается при определенных концентрациях примеси $x = x_{\rm lim}$ (предел существования твердого раствора, например, Zn_{1-x}R_xNiSn). Однако модельные представления, касающиеся структуры *n*-ZrNiSn [5], сегодня являются дискуссионными.

В работе [7] предпринята попытка получить информацию о кристаллической структуре ZrNiSn из результатов расчета зонной структуры при различных комбинациях расположения атомов в узлах решетки. Авторы [7] ошибочно приняли экспериментально определенное значение энергии активации с уровня Ферми ($\varepsilon_{\rm F}$) на уровень протекания зоны проводимости [3] за ширину запрещенной зоны сильно легированного полупроводника (СЛП) ZrNiSn, что понизило ценность работы с точки зрения абсолютных вычислений. Однако эти исследования показали неупорядоченность структуры ZrNiSn и наличие существенных деформаций решетки.

Присутствие значительных концентраций дефектов в исходном полупроводнике *n*-ZrNiSn и генерация дефектов в сравнимых (и бо́льших) концентрациях при его легировании, например, атомами редкоземельных ме-

[¶] E-mail: vromaka@polynet.lviv.ua

Таблица 1. Распределение и параметры теплового колебания атомов в структуре ZrNiSn, определенные методами порошка $(a = 0.610941(3) \text{ нм}, R_{\text{Br}} = 5.04\%)$ и монокристалла $(a = 0.61023(3) \text{ нм}, R_{\text{F}} = 4.10\%)$

Атомы	ПСТ	x/a	y/b	z/c	$B_{\rm iso}, 10^{-2}{\rm Hm}^2$	$B_{\rm eq}, 10^{-2}{\rm Hm}^2$	
7 HOMBI					поликристалл	монокристалл	
*Zr	4b	0	0	0	0.23(2)	0.22(4)	
Ni	4 <i>c</i>	1/4	1/4	1/4	0.42(2)	0.23(6)	
Sn	4a	1/2	1/2	1/2	0.27(1)	0.12(2)	
Занятость позиций атомов					*Zr = 0.90(3)Zr + 0.10(3)Ni	*Zr = 0.91(5)Zr + 0.09(5)Ni	

Примечание. ПСТ — правильная система точек; B_{iso} и B_{eq} — параметры атомного замещения в изотропном приближении при использовании методов порошка и монокристалла соответственно; *Zr — кристаллографические позиции атомов Zr, занятые статистической смесью атомов Zr и Ni.

таллов, делает исследуемые объекты сильно легированными и сильно компенсированными полупроводниками (СЛСКП) [8]. В таком случае в $Zn_{1-x}R_xNiSn$ должна наблюдаться корреляция между степенью компенсации полупроводника и амплитудой модуляции зон непрерывных энергий, что является главным выводом модели СЛСКП Шкловского–Эфроса [9,10].

Предлагаемая работа в основном дает ответы на перечисленные проблемные вопросы. В процессе анализа результатов как предыдущих исследований n-ZrNiSn, в том числе при сильном легировании атомами Dy, Y и Sc [5,11,12], так и новых, представленных в этой работе, нам удалось выявить взаимосвязанные закономерности в изменении фундаментальных параметров полупроводника, детальный анализ которых будет предметом дальнейших исследований. В предлагаемой работе мы покажем, что "априорное легирование" ZrNiSn донорами вызвано перераспределением атомов Zr и Ni в кристаллографической позиции Zr. Мы сформулируем и обоснуем критерий растворимости атомов редкоземельных металлов в структуре ZrNiSn — определим предел существования полупроводникового твердого раствора $Zn_{1-x}R_xNi$, а также покажем обнаруженную взаимосвязь структурных изменений СЛСКП и перехода диэлектрик-металл (перехода Андерсона).

В статье приведены новые результаты исследований кристаллической структуры, распределения плотности электронных состояний (DOS), электрокинетические, магнитные и энергетические характеристики полупроводника *n*-ZrNiSn, нелегированного а также при легировании атомами редкоземельных металлов R. Измерялись температурные, концентрационные и полевые зависимости удельного сопротивления (ρ), коэффициента термоэдс (α), магнитной восприимчивости (χ) в интервалах температур T = 1.5-400 К, концентраций редкоземельного элемента $N_A^{\rm R} \approx 9.5 \cdot 10^{19} - 9.5 \cdot 10^{21} \, {\rm cm}^{-3}$ (x = 0.005 - 0.5), магнитных полей H < 15 Тл. Методики получения образцов, исследования структурных, электрокинетических и магнитных характеристик, расчета DOS в рамках самосогласованного метода ККR-СРА-LDА приведены в [6].

2. Исследование кристаллической структуры Zn_{1-x}R_xNiSn

Главной идеей данного исследования было максимально точно определить кристаллическую структуру нелегированного полупроводника ZrNiSn и на этой основе изучать процесс ее трансформации при замещении кристаллографических позиций Zr атомами редкоземельных металлов. Для прецизионного уточнения параметра элементарной ячейки и установления кристаллографических параметров — координат атомов, тепловых параметров, занятости кристаллографических позиций использовались массивы данных, полученные методами как порошковой дифрактометрии (дифрактомер HZG-4a, СиК_а-излучение) с шаговой регистрацией интенсивности отражений, так и дифрактометрии монокристалла (дифрактометр Enraf-Nonius CAD-4, Мо K_{α} -излучение). Все расчеты, связанные с расшифровкой и уточнением кристаллической структуры, проведены с использованием пакета программ CSD [13]. Фазовый и химический составы образцов контролировались при помощи сканирующей электронной микроскопии и микрозондового анализа (сканирующий электронный микроскоп JEOL-840A); результаты показывают, что ZrNiSn содержит 28.6(8)% Zr, 35.8(6)% Ni и 35.6(4)% Sn. Рентгеновские фазовый и структурный анализы также показали, что исследуемые образцы Zn_{1-x}R_xNiSn являются однофазными, брэгговский фактор несоответствия R_{Br} модели кристаллической структуры экспериментальным результатам исследования рентгеновских отражений не превышает 7%, а для случая, например, Zr_{0.92}Y_{0.08}NiSn $R_{\rm Br} = 2.2\%$ [11].

В табл. 1 приведены результаты уточнения кристаллической структуры ZrNiSn методами порошка и монокристалла. Одновременно уточнялись изотропные (метод порошка) и эквивалентные (метод монокристалла) параметры атомного замещения и занятость позиции 4b статистической смесью атомов Zr и Ni. Результаты этих исследований показали, что наименьшие значения фактора несоответствия модели данным дифрактометрии (*R*-фактора) получены для модели кристаллической структуры ZrNiSn, в которой позиции атомов Zr частич-

но заняты атомами Ni. Данный вывод согласуется с результатами микрозондового анализа для поликристаллических и монокристаллических образцов, полученными как для разных граней монокристалла, так и для зерен поликристаллических образцов, который показал повышенную концентрацию атомов Ni (до 2%) и недостаток атомов Zr (до 5%). Более детальное уточнение структуры ZrNiSn с фиксацией изотропных/эквивалентных параметров атомного замещения и состава статистической смеси в позиции 4b при различных соотношениях атомов Zr и Ni (с шагом 0.002) показало, что наименьшие значения *R*-фактора достигаются при соотношении $[Zr]/[Ni] \approx 0.99/0.01$. В то же время для случая модели упорядоченной структуры ZrNiSn с 100%-м заполнением атомами своих позиций *R*-фактор для методов порошка и монокристалла имеет несколько большую величину и составляет соответственно $R_{\rm Br} = 5.24\%$ и $R_{\rm F} = 4.16\%$.

Кроме того, нами осуществлен расчет модели кристаллической структуры ZrNiSn для случаев возможного частичного заполнения (до 5%) позиций атомов Zr атомами Sn. Однако, несмотря на близость атомных радиусов Zr ($r_{Zr} = 0.1602$ нм) и Sn ($r_{Sn} = 0.1623$ нм), что должно бы способствовать такому замещению, результат уточнения структуры оказался отрицательным. Очевидно, что "размерный фактор" в данном случае не является определяющим. Необходимо отметить, что именно соответствие результатов рентгеноструктурных и микрозондовых исследований ZrNiSn служило одним из обстоятельств при выборе модели его кристаллической структуры.

Другим обстоятельством было соответствие модели кристаллической структуры результатам кинетических и гальваномагнитных исследований ZrNiSn, указывающих на электронный тип его проводимости. Если учесть, что атомы Ni $(3d^84s^2)$ и Sn $(4d^{10}5s^25p^2)$ являются донорами в отношении атомов Zr $(4d^25s^2)$, то в случае частичного занятия атомами Ni или Sn позиций атомов Zr в кристалле будут генерироваться дефекты донорной природы, концентрация которых будет соответствовать концентрации занятых атомами Ni или Sn "чужих" позиций. В то же время структурные исследования показали, что вариант занятия атомами Sn позиций атомов Zr маловероятен, поэтому природа "априорного легирования" ZrNiSn "донорными примесями" состоит в перераспределении атомов Zr и Ni (~ 1%) в позиции Zr.

Рентгеноструктурные исследования также показали, что легирование *n*-ZrNiSn атомами редкоземельных металлов сопровождается упорядочением кристаллической структуры, "залечиванием" структурных дефектов [11] и 100%-м заполнением правильных систем точек атомов Zr (R) и Ni. Для всех исследованных твердых растворов Zn_{1-x}R_xNiSn значения параметра элементарной ячейки монотонно увеличиваются в определенном концентрационном диапазоне. На рис. 1, *а* в качестве примера приведены данные для Zr_{1-x}Dy_xNiSn. При концентрациях атомов Dy, соответствующих $x = x_{lim} \ge 0.40$, зависимость a(x) отклоняется от линейной, а исследуемые образцы становятся многофазными; состав твердого раствора $Zr_{0.6}Dy_{0.4}NiSn$ фиксирует предел его существования. Оказалось, что в $Zr_{1-x}R_xNiSn$ для каждого R предельные концентрации $x = x_{lim}$ являются строго индивидуальными. Кроме того, обращаем внимание на наличие двух линейных участков на зависимости a(x): $0 \le x \le 0.01$ и $x \ge 0.01$. Такая, на первый взгляд, незначительная деталь в поведении a(x) оказывается характерной для всех $Zr_{1-x}R_xNiSn$ и, по нашему мнению, это есть проявление одной из особенностей предложенной модели кристаллической структуры ZrNiSn.

Действительно, если в исходной структуре ZrNiSn позиции атомов Zr частично заняты атомами меньшего размера, Ni, то при легировании полупроводника атомами редкоземельнымх металлов на участке концентраций $0 \le x \le 0.01$ происходит вытеснение атомов меньшего размера (атомный радиус $r_{\rm Ni} = 0.124$ нм) атомами R, например, Dy (атомный радиус $r_{\rm Dy} = 0.177$ нм). При концентрациях примеси $x \ge 0.01$, когда все атомы Ni будут вытеснены с позиций атомов Zr ($r_{\rm Zr} = 0.1602$ нм), происходит замещение атомов Zr соизмеримыми по атомному радиусу r_R атомами R. В таком случае амплитуда изменения параметра элементарной ячейки $Zr_{1-x}R_x$ NiSn на участках $0 \le x \le 0.01$ и $x \ge 0.01$ будет различной; в первом случае это изменение будет более значительным, на что указывает больший угол наклона зависимости a(x), что возможно лишь при частичной занятости позиций атомов Zr атомами меньшего размера Ni в нелегированном ZrNiSn.

Расчет кристаллической структуры также показал, что во всех твердых растворах $Zr_{1-x}R_xNiSn$ межатомные расстояния Ni-Zr(R), Sn-Ni и Sn-Zr(R) являются меньшими, чем сумма атомных радиусов, что указывает на наличие ковалентной составляющей в химических связях и косвенно объясняет их полупроводниковые свойства. На рис. 1, а в качестве примера приведены результаты легирования ZrNiSn атомами Dy. Нам удалось установить, что в структуре $Zr_{1-x}R_xNiSn$ значения относительных сокращений (δ) между атомами Ni–Zr(R) и Sn-Zr(R) увеличиваются, а между атомами Sn-Ni уменьшаются, что приводит к деформациям элементарной ячейки: в направлении Zr(R)-Ni и Sn-Zr(R) действует деформация сжатия, а в направлении Sn-Ni деформация растяжения. Обращаем внимание на следующий факт. Уменьшение значений $\delta(x)$ вдоль направления Sn-Ni означает ослабление ковалентной составляющей между атомами Sn-Ni, что непременно должно было привести к увеличению делокализованных (не участвующих в образовании ковалентной связи) электронов при введении в полупроводник акцепторной примеси. Однако этот эффект компенсируется увеличением степени локализации электронов (участвующих в образовании таких связей) между атомами Sn-Zr(R) и Ni-Zr(R). Необходимо отметить, что определяющая роль в "регулировании" ковалентных (полупроводниковых) характеристик Zr_{1-x}R_xNiSn принадлежит подрешетке олова.

Рис. 1. *а* — изменение в кристаллической структуре $Zr_{1-x}Dy_xNiSn$ значений параметра элементарной ячейки a(x), относительного сокращения межатомных расстояний $\delta(x)$ Zr(Dy)-Ni (*I*), Ni-Sn (*2*), Zr(Dy)-Sn (*3*). *b* — зависимости протяженности области растворимости атомов редкоземельных металлов в *n*-ZrNiSn (*I*) и точки перехода диэлектрик-металл (*2*) от значений атомных радиусов редкоземельных примесей $r_{\rm R}$.

На рис. 1, *а* также показан результат аппроксимации (штриховая линия) относительных сокращений до значений x = 0.5. Оказалось, что точка пересечения разнонаправленных деформаций (x_{lim}) вдоль направлений Zr(R)–Ni и Sn–Ni удивительным образом совпадает с концентрацией атомов R, начиная с которой перестает работать правило Вегарта (зависимость a(x) выходит на плато); исследуемые образцы становятся многофазными, а такая концентрация атомов R носит название предела существования твердого раствора. Нам также удалось установить, что протяженность области растворимости редкоземельных металлов в структуре ZrNiSn линейно зависит от их атомных радиусов и может служить критерием растворимости (рис. 1, *b*).

При сопоставлении результатов структурных исследований $Zr_{1-x}R_xNiSn$ с электрокинетическими (см. далее) было установлено, что переход диэлектрик-металл для каждого R происходит при определенной концентрации примеси $x = x_{And}$. С другой стороны, структурные исследования показали, что при концентрации $x = x_{And}$ разница деформаций (δ^*) вдоль направлений Zr(R)–Ni и Ni–Sn равна разнице деформаций вдоль направлений Zr(R)–Sn и Ni–Sn. Оказалось, что точка равенства значений деформаций в Zr_{1-x}R_xNiSn $x = x_{And}$ линейно зависит от атомных радиусов редкоземельных металлов и может служить критерием перехода Андерсона в таких полупроводниках (рис. 1, *b*). Объяснение физической природы обнаруженной закономерности требует дополнительных исследований.

Таким образом, из изложенного выше можем заключить, что кристаллическая структура *n*-ZrNiSn является неупорядоченной, кристаллографические позиции атомов Zr на $\sim 1\%$ заняты атомами Ni, что объясняет донорную природу его дефектов. Легирование *n*-ZrNiSn атомами редкоземельных металлов упорядочивает кристаллическую структуру, атомы R занимают только кристаллографические позиции атомов Zr, генерируя дефекты акцепторной природы, что позволяет прогнозировать концентрацию и тип заряженных центров в $Zr_{1-x}R_x$ NiSn.

3. Расчет распределения электронной плотности в Zr_{1-x}R_xNiSn

Для прогнозирования поведения уровня Ферми, кинетических характеристик при легировании n-ZrNiSn примесями редкоземельных металлов осуществлен расчет распределения электронной плотности. Для начала, опираясь на новые результаты структурных исследований ZrNiSn, ставили задачу определить его электронную структуру, и на этой основе изучать процессы ее трансформации при легировании, в частности атомами R. Расчет DOS был проведен для различных вариантов (рис. 2): нелегированного ZrNiSn, в котором все кристаллографические позиции заняты в соответствии со структурным типом MgAgAs (упорядоченный вариант); с учетом результатов структурных исследований ZrNiSn, предусматривающих замещение 1% позиций атомов Zr атомами Ni и гипотетический вариант с 10% таких замещений; частичного замещения (до 5%) кристаллографических позиций атомов Zr атомами Sn. Кроме того, была рассчитана DOS для случаев 10%и 100%-го замещения позиций атомов Zr атомами R, а на рис. 2 в качестве примера приведены результаты для $Zr_{1-x}Ho_xNiSn$.

Результаты расчета DOS для упорядоченного варианта совпадают с результатами ранее проведенных исследований (см. в частности [14]) и показывает, что ZrNiSn — узкощелевой полупроводник, в котором уровень Ферми $\varepsilon_{\rm F}$ фиксирован вблизи дна зоны проводимости. Электронная плотность выше $\varepsilon_{\rm F}$ определяется главным образом *d*-состояниями Zr, валентная зона *d*-состояниями Ni, которые перекрываются с *d*-состояниями Zr и *p*-состояниями Sn, а ширина запрещенной зоны составляет $\varepsilon_g \approx 514$ мэВ. Учет замещения атомами Ni 1% позиций атомов Zr приводит к фиксации уровня Ферми вблизи зоны проводимости, а значение

Рис. 2. Распределение электронной плотности в $Zr_{1-x}Ho_xNiSn$.

ширины запрещенной зоны значительно сокращается, до $\varepsilon_g \approx 306$ мэВ. Еще большее сокращение запрещенной зоны ZrNiSn, до значений $\varepsilon_g \approx 202$ мэВ, вызывает частичное замещение (до 5%) кристаллографических позиций атомов Zr атомами Sn. Во всех трех случаях электроны являются главными носителями тока в ZrNiSn, а в эксперименте знак коэффициента термоэдс будет отрицательным. Однако вариант DOS ZrNiSn, в котором атомы Ni (~ 1%) замещают позиции атомов Zr, в отличие от упорядоченного варианта и случая частичного занятия позиций атомов Zr атомами Sn, является более вероятным, поскольку согласуется с результатами структурных исследований. При замещении 10% атомов Zr атомами Ni примесная зона практически "схлопывает" запрещенную зону.

Легирование *n*-ZrNiSn примесями редкоземельных металлов сопровождается дрейфом уровня Ферми в направлении валентной зоны, что приведет к изменению типа основных носителей $Zr_{1-x}R_xNiSn$ — от электронов до дырок. В эксперименте это приведет к смене знака коэффициента термоэдс, а также к уменьшению энергии активации с уровня Ферми на уровень протекания валентной зоны. При занятии атомами R всех позиций атомов Zr соединение RNiSn становится металлом.

Выше мы показали, что пересечение уровней Ферми и протекания валентной зоны $Zr_{1-x}R_xNiSn$ (переход

Андерсона [15]) для каждого редкоземельного металла происходит при определенной концентрации $x = x_{And}$, которая, как и протяженность области растворимости атомов R в *n*-ZrNiSn, линейно зависит от значений атомных радиусов r_R (рис. 2, b). При сопоставлении результатов расчета DOS с критерием перехода проводимости диэлектрик-металл $Zr_{1-x}R_x$ NiSn (рис. 2, b) оказалось, что в точке $x = x_{And}$ значение DOS для всех редкоземельных металлов равно ~ 1 состояние/эВ. Нам пока трудно комментировать этот результат, требующий дальнейшего изучения.

Таким образом, введение акцепторной примеси R в кристаллическую структуру *n*-ZrNiSn сопровождается перераспределением электронной плотности, монотонным дрейфом уровня Ферми от края зоны проводимости к валентной зоне с последующим вхождением в зону.

4. Электрокинетические исследования Zr_{1-x} R_x NiSn

Температурные зависимости удельного сопротивления и коэффициента термоэдс для всех исследуемых образцов $Zr_{1-x}R_x$ NiSn являются типичными для легированных и компенсированных полупроводников — электрическое сопротивление уменьшается при увеличении температуры, а на зависимостях $\ln \rho(1/T)$ и $\alpha(1/T)$ присутствуют высоко- и низкотемпературные активационные участки [8]. Исключение составляет сильно легированные образцы, в которых состоялся переход диэлектрик-металл — уровень Ферми пересек уровень протекания валентной зоны [8,9].

На рис. 3 в качестве примера приведены температурные зависимости удельного сопротивления и термоэдс для отдельных образцов *n*-ZrNiSn, сильно легированных атомами Но. Видно, что образцы $Zr_{1-x}Ho_xNiSn$, x = 0-0.08, являются типичными полупроводниками с активационными участками на зависимостях $\ln \rho(1/T)$ и $\alpha(1/T)$, а в $Zr_{1-x}Ho_xNiSn$ с $x \ge 0.15$ проводимость носит металлический характер. Из высокотемпературных участков зависимостей $\ln \rho(1/T)$ $Zr_{1-x}R_xNiSn$ вычислены значения энергии активации с уровня Ферми на уровень протекания зоны проводимости (валентной зоны) (ε_1^{ρ}), из низкотемпературных — значения энергии активации прыжковой проводимости (ε_3^{ρ}). Из аналогичных активационных участков $\alpha(1/T)$ вычислены значения участков $\alpha(1/T)$

Необходимо отметить, что особенностью СЛСКП является существенная разница в значениях энергий активации, определенных из температурных зависимостей удельного сопротивления и коэффициента термоэдс [16]. Дело в том, что в СЛСКП флуктуации значительных концентраций заряженных центров приводят к модуляции зон непрерывных энергий [9,10], а разная природа активационных процессов порождает различие в значениях энергий активации. В работе [17] на примере полупроводникового твердого раствора ZrNiSn_{1-x}In_x,

Таблица 2. Концентрационные и энергетические характеристики $Zr_{1-x}Ho_xNiSn$

x	N_A , cm ⁻³	$\varepsilon_1^{ ho},$ мэВ	$arepsilon_1^lpha,$ мэВ	$arepsilon_3^ ho,$ мэВ	$\varepsilon^{lpha}_3,$ мэВ
0	_	28.9	44.6	1.6	11.5
0.005	$9.5\cdot10^{19}$	99.4	65.4	2.6	4.5
0.01	$1.9\cdot 10^{20}$	151.4	203.6	6.8	3.1
0.02	$3.8\cdot10^{20}$	83.3	152.2	6.2	2.0
0.04	$7.6 \cdot 10^{20}$	18.0	43.5	2.5	2.6
0.06	$1.1 \cdot 10^{21}$	23.8	24.6	1.5	1.6
0.08	$1.5 \cdot 10^{21}$	10.2	9.1	0.8	1.0
0.10	$1.9\cdot10^{21}$	3.6	4.2	0.1	0.6
0.15	$2.9\cdot10^{21}$	-	3.1	—	0.4

когда удалось получить полностью компенсированный образец с x = 0.02, показано, что значения ε_1^{ρ} , как и принято считать [8], дают энергетический зазор между уровнем Ферми и уровнем протекания, а ε_1^{α} — значение амплитуды модуляции зон непрерывных энергий; значения энергий активации ε_3^{ρ} и ε_3^{α} соответственно соизмеримы со степенью заполнения мелкомасштабной флуктуации и ее амплитудой. Кроме того, в полностью компенсированном образце ZrNiSn_{0.98}In_{0.02}, в котором $\varepsilon_1^{\rho} = \varepsilon_1^{\alpha}$, а уровень Ферми располагается посредине запрещенной зоны [10], удалось определить ширину запрещенной зоны ZrNiSn_{0.98}In_{0.02}: $\varepsilon_g \approx 362$ мэВ.

Как следует из рис. 3, коэффициент термоэдс *n*-ZrNiSn имеет отрицательные значения, а электроны являются главными носителями тока. Это известный [8] и ожидаемый результат, который связан с донорной природой собственных структурных дефектов полупроводника. В таком случае уровень Ферми располагается вблизи дна зоны проводимости на расстоянии $\varepsilon_1^{\rho}|_{x=0} = 28.9$ мэВ от уровня протекания, а $\varepsilon_1^{\alpha}|_{x=0} = 44.6$ мэВ определяет амплитуду модуляции зон непрерывных энергий *n*-ZrNiSn (табл. 2).

Введение в *n*-ZrNiSn наименьших концентраций примесей редкоземельных металлов, которые, занимая позиции атомов Zr, генерируют дефекты акцепторной природы, приводит к появлению и увеличению концентрации свободных дырок в полупроводнике электронного типа проводимости. Последнее вызывает увеличение степени компенсации Zr_{1-x}R_xNiSn и, как результат, в соответсвии с моделью СЛСКП [9,10], увеличение амплитуды модуляции зон непрерывных энергий; при этом уровень Ферми начинает дрейфовать в направлении валентной зоны. Доказательством именно такого характера процессов в Zr_{1-x}R_xNiSn является увеличение значений $\varepsilon_1^{\alpha}(x)$ (амплитуды модуляции), например, в Zr_{1-x}Ho_xNiSn на участке 0 < $x \le 0.01$, а на дрейф уровня Ферми указывает увеличение значений $\varepsilon_1^{\rho}(x)$ (табл. 2).

Максимальные, но существенно отличающиеся значения энергий активации $Zr_{0.99}Ho_{0.01}NiSn \ \varepsilon_1^{\rho}|_{x=0.01} = 151.4 \text{ мэВ}$ и $\varepsilon_1^{\alpha}|_{x=0.01} = 203.4 \text{ мэВ}$, а также положительные значения $\alpha(x)$ (рис. 3,4) указывают на отсут-

Рис. 3. Температурные зависимости удельного сопротивления ρ и коэффициента термоэдс αZr_{1-x} Ho_xNiSn.

ствие полной компенсации полупроводника из-за незначительной перекомпенсации акцепторами. При этом уровень Ферми расположен вблизи середины запрещенной зоны [10]. В таком случае значения $\varepsilon_1^{\rho}(x)$ показывают отдаленность уровня Ферми от уровня протекания валентной зоны. Уменьшение значений $\varepsilon_1^{\alpha}(x)$ (амплитуды модуляции) в $Zr_{1-x}Ho_xNiSn, x > 0.01$, как и предсказывает теория СЛСКП [9,10], свидетельствует об уменьшении степени компенсации полупроводника изза увеличения концентрации свободных дырок в полупроводнике дырочного типа проводимости. Резкий спад зависимости $\varepsilon_1^{\rho}(x)$ в интервале x = 0.01 - 0.04, а также монотонное уменьшение на участке x = 0.04 - 0.15 показывают динамику движения уровня Ферми к уровню протекания валентной зоны Zr_{1-x}Ho_xNiSn. Мы понимаем, что в действительности в полупроводниковом твердом растворе одновременно происходят как минимум два взаимосвязанных процесса — дрейф уровня Ферми и сокращение ширины запрещенной зоны, которые трудно корректно разделить. Тот факт, что значения $\varepsilon_1^{\rho}(x)$ при $x \ge 0.15$ равны нулю (на зависимостях $\ln \rho(1/T)$ отсутствуют активационные участки), указывает на свершившийся переход диэлектрик-металл — уровень Ферми пересек уровень протекания валентной зоны. Из результатов табл. 2 также следует, что имеет место корреляция в поведении зависимостей $\varepsilon_1^{\alpha}(x)$ и $\varepsilon_1^{\rho}(x)$ — чем больше (меньше) степень компенсации полупроводника, тем дальше (ближе) будет располагаться уровень Ферми по отношению к уровню протекания зон непрерывных энергий [9,10].

Увеличение степени компенсации $Zr_{1-x}R_x NiSn$ (увеличение концентрации дырок в полупроводнике *n*-типа проводимости) сопровождается быстрым уменьшением значений коэффициента термоэдс с последующим изме-

нением его знака (рис. 4). Это — прямое доказательство участия в проводимости $Zr_{1-x}R_x NiSn$ в определенных концентрационном и температурном диапазонах нескольких типов носителей тока: свободных электронов, активированных с донорного уровня, и свободных дырок, генерированных введением атомов редкоземельных металлов и активированных в валентную зону. Поскольку тип носителей электрического тока находит отражение в коэффициенте термоэдс, то участие в проводимости двух типов носителей тока породит экстремум на зависимости $\alpha(1/T)$ (рис. 3), а в точке равного парциального вклада в электропроводность свободных электронов и дырок, зависящей от температуры

Рис. 4. Изменение коэффициента термоэдс α (*a*), удельного сопротивления ρ (*b*) при *T* = 80 (*1*), 200 (*2*), 300 K (*3*) и вклада компонентов в DOS (*c*) для Zr_{1-x}Ho_xNiSn.

Физика и техника полупроводников, 2010, том 44, вып. 3

и концентрации, произойдет смена знака $\alpha(T)$. В случае, например, $Zr_{1-x}Ho_xNiSn$ инверсия знака $\alpha(T)$ имеет место при температурах $T_{inv} = 205, 221, 297, 315, 380 K$ при x = 0.01, 0.02, 0.04, 0.06, 0.08 соответственно: чем больше концентрация акцепторной примеси, тем до бо́льших температур необходимо нагреть полупроводник, чтобы в зоне проводимости появилась сравнимая концентрация свободных электронов.

Факт появления в полупроводнике n-ZrNiSn свободных дырок, вклад которых увеличивается с увеличением концентрации введенных атомов редкоземельных металлов, доказывают концентрационные зависимости удельного сопротивления при разных температурах. На рис. 4 для примера приведены зависимости $\rho(x)$ для Zr_{1-x}Ho_xNiSn, из которых следует, что при $T = 80 \,\mathrm{K}$ значения $\rho(x)$ увеличиваются: $\rho = 1.3 \cdot 10^2 \,\mathrm{u}$ $1.4 \cdot 10^3$ мкОм · м при x = 0 и 0.005 соответственно. Такое поведение $\rho(x)$ является понятным и вызвано уменьшением плотности состояний на уровне Ферми при увеличении степени компенсации полупроводника электронного типа проводимости путем введения акцепторной примеси. На этом же концентрационном участке значения $\alpha(x)$ указывают еще на электронный тип проводимости, а уменьшение значений $\alpha(x)$ отражает факт уменьшения вклада электронов в проводимость $Zr_{1-x}R_x$ NiSn. Максимум на зависимости $\rho(x)$ близок к состоянию полной компенсации полупроводника концентрации электронов и дырок уравновешены, а значения $\alpha(x)$ близки к нулю. Уменьшение значений $\rho(x)$ $Zr_{1-x}R_x$ NiSn при $x \ge 0.02$ мы связываем с пересечением уровнем Ферми середины запрещенной зоны и дрейфом в направлении валентной зоны, что приведет к увеличению концентрации свободных дырок. Об этом свидетельствует также положительный знак коэффициента термоэдс. Неизменность значений $\alpha(x)$ и уменьшение значений $\rho(x)$ Zr_{1-x}R_xNiSn при $x \ge 0.12 - 0.15$ указывает на пересечение уровней Ферми и протекания валентной зоны — реализуется переход диэлектрик-металл и растет концентрация свободных дырок.

Приведенные результаты удивительным образом коррелируют с результатами динамики парциального вклада компонентов $Zr_{1-x}R_xNiSn$ в изменение плотности состояний на уровне Ферми, а на рис. 4 в качестве примера приведены такие результаты для Zr_{1-x}Ho_xNiSn. Видно, что минимум на зависимости DOS(x) соответствует состояниям максимальной компенсации полупроводника: значения сопротивления $\rho(x)$ — наибольшие, а значения коэффициента термоэдс $\alpha(x)$ близки к нулевым. Минимальными являются значения DOS практически всех компонентов $Zr_{1-x}R_xNiSn$, а наибольшие изменения имеют место для атомов Ni и Zr; атомы Ni вытесняются с ~ 1% кристаллографических позиций атомов Zr, которые они занимали, а также атомы Zr замещаются атомами Но. Понятным является наибольший вклад в DOS $Zr_{1-x}Ho_xNiSn$, $x \ge 0.04$, атомов Но, поскольку их концентрация лишь увеличивается, а $Zr_{1-x}Ho_xNiSn$ становится полупроводником дырочного типа проводимости.

Магнитные исследования Zr_{1-x}R_xNiSn

В заключение приведем результаты магнитных исследований $Zr_{1-x}R_x$ NiSn. Известно, что *n*-ZrNiSn является слабым диамагнетиком, о чем свидетельствуют отрицательные значения магнитной восприимчивости $(\chi_{x=0} = -0.07 \cdot 10^{-6} \, \text{см}^3/\Gamma)$. Легирование полупроводника малыми концентрациями редкоземельных металлов делает $Zr_{1-x}R_x$ NiSn парамагнетиком Паули [5,11,12]. Таким же остается магнитное состояние, например, $Zr_{1-x}Y_x$ NiSn в диапазоне легирования $0 < x \le 0.25$ $(\chi = 0.08 \cdot 10^{-6}, 0.34 \cdot 10^{-6}, 0.61 \cdot 10^{-6}, 0.59 \cdot 10^{-6} \text{ cm}^3/\Gamma$ для x = 0.02, 0.08, 0.12, 0.25 соответственно), поскольку иттрий не является носителем магнетизма [11,12]. Увеличение значений $\chi(x)$ в $Zr_{1-x}Y_xNiSn$ на участке $0.02 < x \le 0.12$ напрямую указывает на увеличение плотности состояний паулиевского парамагнетика, а выход зависимости $\gamma(x)$ при x > 0.12 на квазинасыщение свидетельствует о пересечении уровней Ферми и протекания валентной зоны.

В случае введения атомов R, которые обладают локальным магнитным моментом, парамагнетик Паули становится парамагнетиком Кюри-Вейсса, и из температурных зависимостей магнитной восприимчивости определены значения эффективного магнитного момента на атом редкоземельного металла: он соответствует значениям R³⁺. Такой результат, кроме прочего, свидетельствует о соответствии состава шихты и твердого раствора $Zr_{1-x}R_x$ NiSn. Во всех исследованных образцах $Zr_{1-x}R_xNiSn$, у которых атомы R являются носителями магнетизма, как и в случае легирования n-ZrNiSn атомами Fe [18], в парамагнитной области обнаружена зависимость магнитной восприимчивости от напряженности магнитного поля (*H*), а сами зависимости $\chi(H)$ ведут себя по-разному, что проявляется в виде разных углов наклона. На рис. 5 в качестве примера приведены зависимости $\chi(H)$ для $Zr_{1-x}Ho_xNiSn$.

Рис. 5. Полевые зависимости магнитной восприимчивости χ Zr_{0.9}Ho_{0.1}NiSn при разных температурах.

Поскольку классическое парамагнитное состояние вещества отражает конкуренцию между процессами магнитного взаимодействия носителей магнетизма, стремящимися магнитоупорядочить систему, и тепловыми колебаниями, которые этому препятствуют, то значения магнитной восприимчивости не зависят от напряженности внешнего магнитного поля, а зависимости $\chi(H)$ должны быть параллельными. Тот факт, что, например, в $Zr_{1-x}Ho_xNiSn$, x = 0, 1, зависимости $\chi(H)$ не расположены параллельно (рис. 5), указывает на "замороженность" магнитных моментов R в матрице *n*-ZrNiSn (как и в случае легирования атомами Fe [18]), что свойственно спиновым стеклам (spin glass). Этот экспериментальный результат является дополнительным свидетельством того, что атомы редкоземельного металла хаотически расположены в позициях атомов Zr, усугубляя тем самым состояние локальной аморфизации СЛСКП $Zr_{1-x}R_x$ NiSn.

6. Заключение

Таким образом, результаты исследований кристаллической и электронной структур, кинетических и магнитных характеристик интерметаллического полупроводника *n*-ZrNiSn, сильно легированного атомами редкоземельных металлов, свидетельствуют о предсказуемости процесса легирования, что позволяет прогнозировать и получать термоэлектрические материалы с заданными свойствами.

Работа выполнялась в рамках грантов Национальной академии наук Украины (№ 0106U000594), Министерства образования и науки Украины (№ 0109U002069, 0109U001151).

Список литературы

- [1] T.M. Tritt, M.A. Subramanian. MRS Bulletin, **31** (3), 188 (2006).
- [2] Ф.Г. Алиев, Р.В. Сколоздра. Тез. докл. V Всес. конф. по кристаллохимии интерметаллических соединений (Львов, ЛГУ, 1989) с. 10.
- [3] C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner. Phys. Rev. B, 59 (13), 8615 (1999).
- [4] V.K. Pecharsky, P.Y. Zavalij. Fundamentals of Powder Diffraction and Structural Characterization of Materials (N.Y., Springer, 2005).
- [5] В.А. Ромака, D. Fruchart, В.В. Ромака, Е.К. Hlil, Ю.В. Стаднык, Ю.К. Гореленко, Л.Г. Аксельруд. ФТП, 43 (1), 11 (2009).
- [6] В.А. Ромака, Ю.В. Стаднык, Л.Г. Аксельруд, В.В. Ромака, D. Fruchart, P. Rogl, В.Н. Давыдов, Ю.К. Гореленко. ФТП, 42 (7), 769 (2008).
- [7] P. Larson, S.D. Mahanti, M.G. Kanatzidis. Phys. Rev. B, 62 (19), 12754 (2000).
- [8] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).
- [9] Б.И. Шкловский, А.Л. Эфрос. ЖЭТФ, 61, 816 (1971).

Физика и техника полупроводников, 2010, том 44, вып. 3

- [10] Б.И. Шкловский, А.Л. Эфрос. ЖЭТФ, 62, 1156 (1972).
- [11] В.А. Ромака, Е.К. Hlil, Я.В. Сколоздра, Р. Rogl, Ю.В. Стаднык, Л.П. Ромака, А.М. Горынь. ФТП, 43 (9), 1157 (2009).
- [12] Yu. Stadnyk, V.A. Romaka, Yu.K. Gorelenko, L.P. Romaka, D. Fruchart, V.F. Chekurin. J. Alloys Comp., 400, 29 (2005).
- [13] L.G. Akselrud, Yu.N. Grin, P.Yu. Zavalii, V.K. Pecharsky, V.S. Fundamenskii. *Collected Abstr. 12th Eur. Crystallo-graphic Meeting* (M., Nauka, 1989) p. 155.
- [14] S. Ögut, K.M. Rabe. Phys. Rev. B, 51 (16), 10443 (1995).
- [15] Н. Мотт, Э. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982) [Пер. с англ.: N.F. Mott, E.D. Davis. Electron processes in non-crystalline materials (Oxford, Clarendon Press, 1979)].
- [16] H. Overhof, W. Beyer. Phil. Mag. B, 43 (3), 433 (1981).
- [17] D. Fruchart, V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, Yu.K. Gorelenko, M.G. Shelyapina, V.F. Chekurin. J. Alloys Comp., 438, 8 (2007).
- [18] В.А. Ромака, Ю.В. Стаднык, D. Fruchart, Л.П. Ромака, А.М. Горынь, Ю.К. Гореленко, Т.И. Доминюк. ФТП, 43 (3), 297 (2009).

Редактор Л.В. Шаронова

Features of *n*-ZrNiSn intermetallic semiconductor heavily doped with the rare earth metals

V.A. Romaka^{+,*}, D. Fruchart[≠], E.K. Hlil[≠], R.E. Gladyshevskii[●], D. Gignoux[≠], V.V. Romaka[●], B.S. Kuzhel[●], R.V. Krayjvskii^{*}

+ Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 79060 Lviv, Ukraine
* National University "Lvivska Politechnika", 79013 Lviv, Ukraine
≠ Institute Néel, CNRS, BP 166, 38042 Grenoble, France
• Ivan Franko Lviv National University, 79005 Lviv, Ukraine

Abstract Crystal structure, density of electron states, electron transport and magnetic characteristics of the intermetallic semiconductor n-ZrNiSn, heavy doped with the rare earth metals (R) $(\sim 9.5 \cdot 10^{19} - 9.5 \cdot 10^{21} \text{ cm}^{-3})$, were investigated in the temperature range 1.5-400 K, at magnetic fields $H \le 15$ T. It was shown that "a priori doping" with donors was caused by the redistribution of Zr and Ni atoms in Zr crystallographic positions. The range of extension of $Zr_{1-x}R_xNiSn$ solid solutions was defined. The criterion of the solubility of rare earth metals in the ZrNiSn was formulated. The connection between the impurity concentration, amplitude of the large-scale fluctuation, and also the level of occupation of the low-scale fluctuation (i.e. fine structure) potential well by the charge carriers was determined. The data analysis was carried out within the framework of the Shklovskiy-Efros model of the heavy doped and heavy compensated semiconductor.