Влияние ионизирующего излучения на диэлектрические характеристики монокристаллов TIInS₂ и TIGaS₂

© А.У. Шелег¹, В.Г. Гуртовой¹, В.В. Шевцова¹, С.Н. Мустафаева², Э.М. Керимова²

¹ НПЦ НАН Белоруссии по материаловедению, Минск, Белоруссия ² Институт физики НАН Азербайджана, Баку, Азербайджан E-mail: hurtavy@physics.by

(Поступила в Редакцию 30 января 2012 г.)

Исследованы зависимости диэлектрической проницаемости и электропроводности монокристаллов TlInS₂ и TlGaS₂ от температуры и дозы облучения электронным пучком. Установлено, что облучение электронами с ростом дозы приводит к значительному увеличению значений удельной электропроводности σ и уменьшению диэлектрической проницаемости ε во всей исследованной области температур (80–320 K). Показано, что на температурных зависимостях $\sigma = f(T)$ и $\varepsilon = f(T)$ в областях характерных для TlInS₂ фазовых переходов наблюдаются аномалии в виде максимумов. Облучение кристаллов TlInS₂ и TlGaS₂ электронами дозой 10¹⁵ и 10¹⁶ сm⁻² не приводит к изменению температур фазовых переходов в них. Построены дисперсионные кривые диэлектрической проницаемости ε кристалла TlGaS₂.

1. Введение

Кристаллы TlInS₂ и TlGaS₂ относятся к группе таллиевых халькогенидных соединений типа $A^{III}B^{III}C_2^{VI}$ с ярко выраженной слоистой структурой. Характерной особенностью кристаллов этого семейства является проявление ими как полупроводниковых, так и сегнетоэлектрических свойств. Поскольку кристаллическая структура соединений указанного типа является слоистой, это, как правило, приводит к образованию политипных модификаций таких кристаллов, что значительно сказывается на их физических свойствах [1,2]. Кроме того, многие представители кристаллов этого семейства обладают последовательностью фазовых переходов (ФП), обусловленной наличием в них длиннопериодических соизмеримых и несоизмеримых модулированных сверхструктур и их преобразованием с изменением температуры [3,4].

Кроме интересных физических свойств кристаллы этих соединений привлекательны с точки зрения практического применения. Это широкозонные полупроводники, которые являются перспективными материалами для изготовления на их основе фотоэлектрических преобразователей, анализаторов спектров и детекторов рентгеновского и нейтронного излучений [5].

Кристалл TlInS₂ является одним из первых соединений этого типа, в котором сначала методом ИК-спектроскопии [6], а затем методами дифракции нейтронов [3] и рентгеновских лучей [4] была обнаружена следующая последовательность ФП при уменьшении температуры: парафаза-несоразмерная фаза-соразмерная сегнетоэлектрическая фаза. Дальнейшие исследования различных физических свойств, в том числе и диэлектрических, подтвердили наличие этой последовательности в кристалле TlInS₂. В [7–10] приводятся результаты исследований диэлектрических характеристик кристаллов TIInS₂ в зависимости от температуры. Показано, что на кривых $\varepsilon = f(T)$ наблюдаются аномалии в виде максимумов в области температур ФП $T_i \approx 216$ К и $T_c = 204$ К. Следует отметить, что значения температур ФП у разных авторов не совпадают. В [11] приведены температуры ФП для кристаллов TIInS₂, TIGaS₂ и TIGaSe₂, полученные на основе измерений различных физических свойств. В некоторых случаях наблюдаются значительные различия. Такое расхождение результатов, вероятнее всего, обусловлено тем, что модулированная структура очень чувствительна к состоянию образца (структурные дефекты, примеси и т. д.), а также возможным образованием политипных модификаций исследуемых кристаллов.

Что касается кристаллов соединения TlGaS₂, то они значительно менее изучены, чем TlInS₂, а те немногие сведения, которые имеются в литературе, порой носят противоречивый характер. При исследовании теплоемкости кристалла TlGaS₂ в [12] на кривой $C_p \approx f(T)$ обнаружены аномалии при различных температурах, что свидетельствует, как полагают авторы, о наличии последовательных фазовых переходов в этом кристалле. В то же время в [13] при исследовании теплоемкости TlGaS₂ никаких аномалий не наблюдалось. Рентгенографические исследования TlGaS₂ [14] показали наличие скачка параметра элементарной ячейки при T = 121 К. В результате проведенных в [15] измерений диэлектрической проницаемости кристалла TlGaS₂ в области температур $80-300 \,\mathrm{K}$ на кривой $\varepsilon = f(T)$ никаких аномалий не обнаружено. Следует отметить, что в одной из последних работ [16], в которой приводятся результаты исследования теплоемости, в кристалле TlGaS₂ зафиксированы $\Phi\Pi$ при $T_1 = 177$ К и $T_2 = 241$ К. Из одиннадцати работ, в которых проводились исследования различных физических свойств кристаллов TlGaS₂ в зависимости от температуры, в пяти никаких аномалий обнаружено не было [11]. В шести работах авторы наблюдали фазовые переходы в этом кристалле, но их температуры настолько различаются, что трудно сделать какое-нибудь заключение. Поэтому необходимы дальнейшие исследования физических свойств кристалла TlGaS₂. Кроме того, поскольку кристаллы этого семейства являются перспективными для использования в качестве элементов в детекторах ионизирующих излучений, представляет значительный интерес исследовать влияние электронного облучения на их электропроводность и диэлектрические характеристики.

2. Методика эксперимента

Исследования диэлектрической проницаемости є и электропроводности σ проводились методом плоского конденсатора на монокристаллических пластинках толщиной ~ 0.7-1.5 mm вдоль кристаллографического направления [001] с помощью цифрового измерителя E7-20 на частотах измерительного поля $10^3 - 10^6$ Hz в температурном диапазоне 80-300 К. Исследовались как необлученные, так и облученные электронами с энергией 4 MeV и дозами 10^{15} и 10^{16} cm⁻² образцы. На них наносились омические серебряные контакты, после чего их помещали между металлическими прижимными контактами. Держатель с образцом экранировался латунным стаканом, на который через изоляционную прослойку из слюды наматывался нагреватель. Питание нагревателя осуществлялось постоянным током от стабилизированного источника. Температура контролировалась при помощи дифференциальной хромель-копелевой термопары и универсального цифрового вольтметра. Для измерений использовался метод непрерывного квазистатического нагревания со скоростью ~ 0.5 K/min. Точность измерения температуры составляла 0.1–0.2 К. Погрешность измерений диэлектрических характеристик составляла ~ 0.5%. Значения диэлектрической проницаемости и удельной электропроводности рассчитывались по формуле, соответствующей плоскопараллельному конденсатору.

3. Результаты исследований

В интервале температур 80-320 К проведены исследования электропроводности и диэлектрической проницаемости необлученных и облученных электронами с энергией 4 MeV и дозами 10^{15} и 10^{16} сm⁻² монокристаллов TlInS₂ и TlGaS₂.

На рис. 1 и 2 представлены температурные зависимости диэлектрической проницаемости ε и электропроводности σ исследованных образцов кристалла TIInS₂. Как видно из рисунков, значения ε и σ с ростом температуры увеличиваются. Это обусловлено увеличением концентрации свободных носителей зарядов (проявление полупроводниковых свойств) и ростом подвижности доменных границ (проявление сегнетоэлектрических свойств) в результате повышения температуры.

Рис. 1. Температурные зависимости диэлектрической проницаемости монокристаллов TIInS₂ на частоте 10^6 Hz для доз облучения 0 (*I*), 10^{15} (*2*) и 10^{16} cm⁻² (*3*).

Рис. 2. Температурные зависимости удельной электропроводности монокристаллов TIInS₂ на частоте 10^6 Hz для доз облучения 0 (1), 10^{15} (2) и 10^{16} cm⁻² (3).

На кривой $\varepsilon = f(T)$ для необлученных образцов TIInS₂ наблюдаются аномалии при $T_{c1} \sim 216$ К и $T_{c2} \sim 212$ К в виде максимумов, а также при $T_i \sim 232$ К в виде небольшого перегиба. Эти аномалии обусловлены последовательностью ФП в кристаллах TIInS₂, которая связана с наличием в них длиннопериодических модулированных сверхструктур и их преобразованием при изменении температуры.

Следует иметь в виду, что эти кристаллы достаточно хорошо исследованы, причем значения температур ФП парафаза–несоразмерная фаза T_i и несоразмерная фаза–соразмерная фаза T_c у разных авторов различаются, иногда значительно [11]. Причиной такого разброса значений температур ФП, так же как и расщепления ФП при T_c на два ($T_{c1} \sim 216$ К и $T_{c2} \sim 212$ K), может быть

Рис. 3. Температурные зависимости диэлектрической проницаемости монокристаллов TlGaS₂ на частоте 10^6 Hz для доз облучения 0 (*I*), 10^{15} (*2*) и 10^{16} cm⁻² (*3*).

Рис. 4. Температурные зависимости удельной электропроводности монокристаллов TlGaS₂ на частоте 10^6 Hz для доз облучения 0 (1), 10^{15} (2) и 10^{16} cm⁻² (3).

наличие нарушений кристаллической решетки (дефекты, примеси и т.д.) [7] или политипных модификаций в этом кристалле [2].

Как видно из рис. 1 и 2, при облучении кристалла $TlInS_2$ пучком электронов происходит уменьшение диэлектрической проницаемости ε и значительный рост электропроводности σ во всей исследованной области температур.

С ростом дозы облучения аномалии на кривых $\varepsilon = f(T)$ и $\sigma = f(T)$ уменьшаются по высоте и слегка размываются. Такое поведение ε под воздействием облучения электронами может быть вызвано радиационностимулированным старением образцов, связанным с активизацией процесса миграции естественных дефектов под влиянием облучения, приводящего к стабилизации

доменной структуры и снижению значений ε [17]. Причиной увеличения значений электропроводности σ образцов TlInS₂ является ионизация среды при облучении и образовании вторичных электронов [17].

На рис. 3 и 4 приведены температурные зависимости диэлектрической проницаемости ε и электропроводности σ для кристаллов TlGaS₂ (как необлученных, так и облученных электронами дозой 10^{15} и 10^{16} сm⁻²). Как и в случае кристаллов TlInS₂, для TlGaS₂ значения ε и σ с ростом температуры увеличиваются. Однако для TlGaS₂ на кривых $\varepsilon = f(T)$ в области температур ~ 170–240 К наблюдается широкий максимум.

При исследовании теплоемкости [16] и оптических свойств кристаллов TlGaS₂ [18] было установлено, что вблизи температур ~ 170 и ~ 240 К наблюдаются аномалии соответствующих физических свойств. Возможно, в области температур 170-240 К в кристалле TlGaS₂ существует несоразмерная фаза, и поэтому наблюдается такой характер температурной зависимости ε . Однако для такого утверждения необходимы детальные исследования особенностей кристаллической структуры этого кристалла в указанной области температур.

Так же как и в случае TIInS₂, облучение кристалла TIGaS₂ электронами приводит к уменьшению значений диэлектрической проницаемости ε и значительному увеличению электропроводности (рис. 3, 4). На кривых температурной зависимости $\sigma = f(T)$ в области высоких температур можно выделить два участка, которые различаются наклоном и обусловлены разными механизмами электропроводности.

Как видно из рис. 3 и 4, на кривых $\varepsilon = f(T)$ и $\sigma = f(T)$ для кристаллов TlGaS₂ в области $T \sim 170$ К наблюдается четкий излом, который, возможно, обусловлен ФП при этой температуре.

На основе закона Аррениуса $\sigma = \sigma_0 T^{-1} e^{\frac{E_a}{kT}}$ были рассчитаны обобщенные энергии активации E_a для кристаллов TlInS₂ и TlGaS₂. Обобщенная энергия активации для кристаллов TlInS₂ существенно больше, чем в случае кристаллов TlGaS₂. Энергия активации для TlInS₂ составляет 0.011 eV при T = 100 K и 0.203 eV при T = 250 K. В кристалле TlGaS₂ E_a принимает значения 0.002, 0.016, 0.075 eV для температур 160, 200, 300 K соответственно. Облучение кристаллов электронным пучком не оказывает существенного влияния на значения энергии активации.

На рис. 5 и 6 представлены зависимости диэлектрической проницаемости ε и электропроводности σ от частоты измерительного поля при температуре 300 К как для необлученных, так и для облученных электронным пучком кристаллов TlGaS₂. Видно, что наблюдается значительная дисперсия диэлектрической проницаемости ε и проводимости σ . С ростом частоты значения ε уменьшаются, а проводимость растет, что обусловлено релаксационными процессами, происходящими в высокочастотной области измерений. Обращает на себя внимание, что дисперсионные кривые диэлектрической

Рис. 5. Дисперсионная кривая диэлектрической проницаемости монокристаллов TlGaS₂ при T = 300 K для доз облучения 0 (1), 10^{15} (2) и 10^{16} cm⁻² (3).

Рис. 6. Дисперсионная кривая удельной электропроводности монокристаллов TIGaS₂ при T = 300 K для доз облучения 0 (1), 10^{15} (2) и 10^{16} cm⁻² (3).

проницаемости и проводимости для необлученных и облученных образцов кристаллов $TlGaS_2$ по своему характеру близки.

Следует отметить, что результаты, полученные в настоящей работе, согласуются с данными работ [19,20], где исследовалось влияние γ -облучения на диэлектрические характеристики этих кристаллов.

4. Заключение

Проведено исследование влияния облучения электронами на диэлектрическую проницаемость ε и электропроводность σ кристаллов TlInS₂ и TlGaS₂ в области низких температур. Показано, что под действием облучения электронным пучком значения диэлектрической проницаемости ε TlInS₂ и TlGaS₂ уменьшаются, а проводимость σ значительно растет. На кривых температурных зависимостей $\varepsilon = f(T)$ и $\sigma = f(T)$ кристалла TIInS₂ обнаружены аномалии в виде максимумов и изломов, которые связаны с наличием в кристалле длиннопериодических модулированных сверхструктур и их преобразованием с изменением температуры.

В кристаллах TlGaS₂ обнаружена значительная дисперсия диэлектрической проницаемости и электропроводности. Установлено, что при облучении электронным пучком можно значительно изменять как диэлектрические характеристики исследуемых кристаллов, так и величину их электропроводности, что важно при использовании этих кристаллов в качестве активных элементов в детекторах инонизирующих излучений.

Список литературы

- [1] О.З. Алекперов, А.И. Наджафов. Неорган. материалы **40**, *12*, 1423 (2004).
- [2] О.3. Алекперов, А.И. Наджафов. Неорган. материалы **45**, *1*, 9 (2009).
- [3] С.Б. Вахрушев, В.В. Жданова, Б.Е. Квятковский, Н.М. Окунева, К.Р. Аллахвердиев, Р.А. Алиев, Р.М. Сардарлы. Письма в ЖЭТФ **39**, *6*, 245 (1984).
- [4] А.У. Шелег, О.Б. Плющ, В.А. Алиев. ФТТ 36, 1, 245 (1994).
- [5] И.В. Алексеев. ПТЭ 3, 9 (2008).
- [6] А.А. Волков, Ю.Г. Гончаров, Г.В. Козлов, К.Р. Аллахвердиев, Р.М. Сардарлы. ФТТ 25, 3583 (1983).
- [7] Б.Р. Гаджиев, Мир-Гасан Ю. Сеидов, В.Р. Абдурахманов. ФТТ 38, 1, 3 (1996).
- [8] Р.А. Сулейманов, М.Ю. Сеидов, Ф.М. Салаев, Ф.А. Микаилов. ФТТ 35, 2, 348 (1993).
- [9] E. Senturk, L. Tumbek, F.A. Mikailov, F. Salehli. Cryst. Res. Technol. 42, 6, 626 (2007).
- [10] F.A. Mikailov. Cryst. Res. Technol. 44, 1, 82 (2009).
- [11] A.M. Panich. J. Phys.: Cond. Matter 20, 1 (2008).
- [12] Е.С. Крупников, Г.И. Абуталыбов. ФТТ 34, 9, 2964 (1992).
- [13] С.Г. Абдулаева, А.М. Абдулаев, К.К. Мамедов, Н.Г. Мамедов. ФТТ 26, 2, 618 (1984).
- [14] А.У. Мальгасов, Б.С. Кульбужев, Б.М. Хамхоев. Неорган. материалы 25, 2, 216 (1989).
- [15] Р.А. Алиев, К.Р. Аллахвердиев, А.И. Баранов, Н.Р. Иванов, Р.М. Сардалы. ФТТ 26, 5, 1271 (1984).
- [16] M. Acikgo. Turk. J. Phys. 32, 145 (2008).
- [17] Е.В. Пешиков. Радиационные эффекты в сегнетоэлектриках. Фан, Ташкент (1986). 138 с.
- [18] A. Kato, M. Nishigaki, N. Mamedov, M. Yamazaki, S. Abdullayeva, E. Kerimova, H. Uchiki, S. Iida. J. Phys. Chem. Solids 64, 1713 (2003).
- [19] С.Н. Мустафаева, М.М. Асадов, А.А. Исмайлов. ФТТ 51, 11, 2140 (2009).
- [20] А.У. Шелег, К.В. Иодковская, Н.Ф. Курилович. ФТТ 45, 1, 68 (2003).