14

Переход беспорядок–порядок в микропористых ориентированных пленках полиэтилена

© Д.В. Новиков¹, В.К. Лаврентьев², Г.К. Ельяшевич², V. Bukošek³

¹ Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича,

Санкт-Петербург, Россия

² Институт высокомолекулярных соединений РАН,

Санкт-Петербург, Россия

³ University of Ljubljana, Faculty for Natural Sciences and Engineering,

Ljubljana, Slovenia

E-mail: dvnovikov65@mail.ru, elya@hq.macro.ru

(Поступила в Редакцию 30 января 2012 г.)

Методом растровой электронной микроскопии изучены пространственные корреляции на поверхности микропористых пленок полиэтилена, полученных экструзией расплава полимера с последующими стадиями отжига, одноосной вытяжки и термофиксации. Показано, что с ростом степени ориентации расплава в пленках происходит образование периодической суперрешетки ориентированных ламелей в результате перехода типа беспорядок. Такому переходу предшествует формирование двух взаимодополняющих перколяционных кластеров, отображающих поры и твердую фазу полимера.

Работа выполнена при поддержке РФФИ (грант № 10-03-00421-а) и проектов совместных исследований Российской академии наук и Университета г. Любляна (Словения) BI-RU/10-11-015 и BI-RU/12-13-032.

1. Введение

Кристаллизация полиэтилена (PE) при экструзии расплава полимера приводит к формированию ламеллярной структуры. В экструдированных пленках PE кристаллические ламели, связанные проходными цепями, располагаются преимущественно параллельно друг другу и перпендикулярно направлению ориентации расплава при его течении через фильеру [1]. Степень ориентационного порядка, размер ламелей, а также величина большого периода зависят от кратности λ_f фильерной вытяжки расплава и температуры отжига пленок [2]. С ростом λ_f частично разориентированные ламели полностью ориентируются [2].

Ламеллярная структура экструдированных пленок РЕ предопределяет их жесткоэластические свойства [2,3] и соответственно способность к порообразованию в процессе одноосной вытяжки образцов. Под действием одноосного растяжения ламели раздвигаются, и между ними возникают разрывы сплошности — поры. Образующиеся микропоры позволяют визуализировать ламеллярную структуру полимера с применением растровой электронной микроскопии (SEM) поверхности пленок [2]. Отметим, что микропористые пленки РЕ используются в качестве мембран для осуществления фильтрационных и сепарационных процессов [3,4].

В настоящей работе методом SEM изучена структура микропористых пленок PE при вариации параметра λ_f и фиксированных параметрах процесса получения образцов на стадиях отжига, одноосной вытяжки и термофиксации. С применением кластерной решеточной модели получены пространственные корреляционные функции для твердой фазы полимера и микропор на поверхности пленок.

Цель настоящей работы — установление закономерностей изменения ламеллярной структуры и эволюции ориентационного порядка в микропористых пленках PE в зависимости от кратности λ_f фильерной вытяжки на стадии экструзии расплава полимера.

2. Объекты и методы исследования

Для получения микропористых пленок использовался линейный РЕ низкого давления с молекулярной массой $M_w = 170\,000 \ (M_w/M_n = 4-5)$ и температурой плавления 405 К. Формирование пленок на стадии экструзии осуществлялось из расплава полимера при 473 К с применением плоскощелевой фильеры. Кристаллизация расплава происходила на воздухе. Степень ориентации расплава определялась кратностью λ_f фильерной вытяжки. Экструдированные пленки подвергались отжигу в термостате при 402 К в течение 30 min. Одноосное растяжение образцов на стадии порообразования проводилось при комнатной температуре со скоростью 400% в минуту. Степень растяжения составляла 200%. Термофиксация микропористых пленок проводилась при 383 К в течение 30 min.

Изображения поверхности пленок получали на сканирующем электронном микроскопе LEO 1550 FE SEM.

Толщина ламелей и величина большого периода в экструдированных и отожженных пленках определялись методом малоуглового рентгеновского рассеяния (SAXS) в камере "KRATKI".

Компьютерная обработка изображений SEM (рис. 1) проводилась с использованием кластерной двухфазной модели (твердая фаза и поры) на квадратной решетке.

Рис. 1. Электронные микрофотографии поверхности микропористых пленок РЕ. Кратность фильерной вытяжки $\lambda_f = 24$ (*a*), 42 (*b*), 69 (*c*).

Долю двумерного пространства, занимаемую кластерами твердой фазы (Ω_s) и кластерами пор (Ω_p), определяли как отношение числа помеченных (относящихся к одной из двух фаз) узлов решетки к общему числу узлов. Пространственное распределение кластеров фаз описывалось с помощью радиальной функции распределения g(R), которая рассчитывалась по уравнению $g(R) = 1 + (g_1(R) - g_2(R))$ [5]. Функции $g_1(R)$ и $g_2(R)$ получались при сканировании плотности распределения соответственно помеченных узлов и всех узлов решетки с шагом, равным расстоянию между узлами.

Для анализа ориентационного порядка использовались функции g(R), рассчитанные по направлению вытяжки пленок [6].

3. Результаты и их обсуждение

Электронные микрофотографии микропористых пленок РЕ (рис. 1) обнаруживают агрегаты анизометрических частиц субмикронного размера, вытянутых перпендикулярно направлению вытяжки образцов. Размер частиц, как и размер пор, зависит от кратности λ_f фильерной вытяжки исходных экструдированных пленок.

Как видно из таблицы структурных параметров пленок PE, доля Ω_s твердой фазы на поверхности микропористых пленок PE соответствует в двумерном отображении бесконечному кластеру частиц, поскольку $\Omega_s \ge \Omega^*$, где Ω^* — критическое значение на пороге протекания, равное 0.45 ± 0.03 [7]. В свою очередь пористая структура пленок трансформируется при изменении параметра λ_f , и при $\lambda_f > 29$ происходит переход от дискретных пор ($\Omega_p < \Omega^*$) к каналам ($\Omega_p > \Omega^*$). Существование критического значения λ_f , обеспечивающего протекание в мембранах PE, было обнаружено ранее в работе [4].

Радиальные функции g(R) распределения кластеров фаз в общем случае имеют вид, типичный для структурно-неоднородных систем и с ростом R немонотонно приближаются к прямой g(R) = 1 (рис. 2), достигаемой при $R = \xi$, где ξ — корреляционный радиус флуктуаций плотности [7]. Как и следовало ожидать, значения ξ для двух взаимодополняющих перколяционных кластеров совпадают (рис. 2, *с*-*е*), а с уменьшением

Структурные параметры микропористых пленок РЕ

	Твердая фаза								Поры		
λ_f	$\Omega_s \pm 0.03$	ξ, μm	d, μm	$D \\ (R < d) \\ \pm 0.02$	L, μm	D_{\parallel} $(R < l_{\parallel})$	$L_{\parallel}, \ \mu \mathrm{m} \ (R < \xi)$	$l_{\parallel},\ \mu{ m m}$	$\Omega_p \ \pm 0.03$	d, μm	$D \\ (R < d) \\ \pm 0.02$
24 29 36	0.64 0.7 0.54	0.71 0.25 0.95	0.6 0.13 0.28	1.84 1.75 1.69		1.74 1.84 1.72	 0.51	0.38 0.18 0.27 (0.27)	0.36 0.3 0.46	0.35 0.18 0.38	1.48 1.22 1.77
42	0.58	1.3	0.8	1.69	_	1.71	0.56	0.35 (0.32)	0.42	0.62	1.72
69	0.43	—	0.09	1.7	0.17	1.47	0.17	0.08 (0.08)	0.57	0.09	1.7

Примечание. Значения l_{\parallel} соответствуют первому минимуму функции g(R), в скобках приведены значения, рассчитанные по формуле $l_{\parallel} = \Omega_s L_{\parallel}$.

решеточной плотности Ω_s кластера частиц величина ξ возрастает.

Отличительную особенность имеют функции g(R) для пленки PE, полученной при $\lambda_f = 69$ (рис. 2, *e*). В этом случае наблюдается периодическая осцилляция функций около значения g(R) = 1, причем как для твердой фазы, так и для пор функции g(R) практически совпадают. Такая особенность свидетельствует о формировании однородной периодической (период $L \approx 0.17 \,\mu$ m) структуры микропористых пленок PE. Бесконечный кластер трансформируется в двумерную квазирешетку ориентированных частиц.

На начальном участке функции g(R) уменьшаются с ростом R по степенному закону (рис. 2), что позволяет говорить о фрактальной структуре [8] кластеров на некотором масштабе R < d (см. таблицу) и ввести

Рис. 2. Усредненные по направлениям функции g(R) распределения плотности кластеров фаз. 1 — твердая фаза, 2 — поры. Кратность фильерной вытяжки $\lambda_f = 24$ (*a*), 29 (*b*), 36 (*c*), 42 (*d*), 69 (*e*).

Рис. 3. Функции g(R) распределения плотности кластеров фаз по направлению вытяжки пленок. *1* — твердая фаза, *2* — поры. Кратность фильерной вытяжки $\lambda_f = 24$ (*a*), 29 (*b*), 36 (*c*), 42 (*d*), 69 (*e*).

величину фрактальной размерности D, рассчитываемую с использованием зависимости $g(R) \sim R^{D-2}$ [5,6]. Параметр d следует рассматривать как эффективный, усредненный по направлениям масштабный интервал пространственной сплошности кластеров. В частности, для дискретных пор он близок к среднему диаметру поры, а для протекаемых пор — к средней ширине канала. Отметим, что значение D непосредственно связано с характером топологической структуры кластеров на масштабе ξ . Так, при переходе от дискретных пор к каналам величина D скачком возрастает (см. таблицу).

Формирование каналов пор по шкале λ_f сопряжено с упорядочением частиц в направлении вытяжки образцов.

Рис. 4. Функции g(R) распределения плотности кластеров фаз поперек направления вытяжки пленок. *I* — твердая фаза, *2* — поры. Кратность фильерной вытяжки $\lambda_f = 69$.

Функции g(R) кластеров фаз по направлению вытяжки (рис. 3) свидетельствуют о том, что при $\lambda_f > 29$ на масштабе корреляционного радиуса ξ возникает периодичность чередования частиц (с периодом L_{\parallel}). С помощью величины L_{\parallel} можно рассчитать размер частиц l_{\parallel} в направлении вытяжки по формуле $l_{\parallel} = \Omega_s L_{\parallel}$. Рассчитанное таким образом значение l_{\parallel} согласуется с положением первого минимума функции g(R) для кластера твердой фазы (см. таблицу и рис. 3). Из сравнения данных SEM и SAXS следует, что величина L_{\parallel} существенно превосходит как толщину одиночной ламели (0.03 µm), так и большой период (0.035 µm). Таким образом, анизометрические частицы, обнаруживаемые методом SEM на поверхности пленок, представляют собой участки отвержденного полимерного материала, включающего в себя стопки ламелей. Картины поверхности отражают внутреннюю ламеллярную структуру пористых образцов, но они характеризуются более крупным масштабом структурных элементов [2,3].

Для образца мембраны, соответствующей значению $\lambda_f = 69$, периоды L_{\parallel} чередования частиц и пор в направлении вытяжки совпадают (рис. 3, *e*) и соответствуют среднему периоду *L* (см. таблицу). В этом случае можно говорить о суперрешетке ламелей, построенной из упорядоченных стопок ламелей, при этом каждая стопка включает в среднем ~ 2.5 ламели. В направлении, перпендикулярном оси вытяжки, средний размер l_{\perp} частиц (стопок ламелей) и пор совпадает (рис. 4).

Переход от бесконечного кластера частиц к суперрешетке ламелей сопровождается потерей протекания по твердой фазе в направлении вытяжки пленок. Об этом свидетельствует резкое уменьшение фрактальной размерности D_{\parallel} частиц (см. таблицу).

4. Заключение

Стадия экструзии расплава полимера предопределяет эволюцию структуры микропористых пленок PE, получаемых на последующих стадиях отжига, одноосного растяжения и термофиксации образцов. В процессе растяжения пленок ламели раздвигаются отдельными блоками (стопками), между которыми образуются поры. При увеличении параметра λ_f кратности вытяжки расплава полимера в микропористых пленках происходит переход от дискретных пор к каналам. Такой переход связан с ростом фрактальной размерности пор. При достижении некоторого критического значения λ_f на поверхности пленок формируется периодическая решетка стопок ламелей или суперрешетка ориентированных ламелей. Образование суперрешетки можно рассматривать как переход типа беспорядок–порядок, приводящий к упорядочению многоуровневой надмолекулярной структуры полимера.

Список литературы

- [1] Е.А. Карпов, В.К. Лаврентьев, Е.Ю. Розова, Г.К. Ельяшевич. Высокомолекуляр. соединения А **37**, 2035 (1995).
- [2] M. Raab, J. Scudla, A.G. Kozlov, V.K. Lavrentyev, G.K. Elyashevich. J. Appl. Polym. Sci. 80, 214 (2001).
- [3] G.K. Elyashevich, I.S. Kuryndin, E.Yu. Rosova. Polym. Adv. Technol. 13 725 (2002).
- [4] Г.К. Ельяшевич, А.Г. Козлов, Е.Ю. Розова. Высокомолекуляр. соединения А 40, 956 (1998).
- [5] Д.В. Новиков, А.Н. Красовский. ФТТ 54, 382 (2012).
- [6] Д.В. Новиков, А.Н. Красовский, Н.А. Осмоловская. ФТТ 54, 386 (2012).
- [7] Дж. Займан. Модели беспорядка. Мир, М. (1982). 529 с.
 [J.M. Ziman. Models of disorder. Cambridge Univ. Press, London (1979). 480 p.].
- [8] Е. Федер. Фракталы / Пер. с англ. Ю.А. Данилова, А.М. Шукурова. Мир, М. (1991). 254 с. [J. Feder. Fractals. Plenum Press, N.Y.–London (1988). 260 p.].