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The effect of the hydrostatic pressure and the temperature on the electronic structure in GaN semiconductor

has been calculated using the local empirical pseudopotential method. The variation of the direct and indirect

energy gaps with the pressure up to 120 kbar and with the temperature up to 500K has been done. The calculated

fundamental energy gap at different pressures and different temperatures are calculated and compared with the

available experimental data which show excellent agreement. The effect of pressure and temperature on the refractive

index of the considered materials has also been studied.

1. Introduction

From 15 years ago, in many laboratories of Germany,

Japan, USA, Russia, Poland, China, and other countries,

intensive theoretical and experimental studies of nitrides

of Group III elements (GaN, AlN, InN) in the form

of single crystals, thin films, alloys, and heterosturctures

on their basis have been carried out [1]. AIIIBV nitride

semiconductors have attracted much attention for their

potential use in optoelectronic device applications [2–4].
The large interest originates from their promising potential

for shortwavelenght light-emitting diodes, semiconductor

lasers and optical detectors, as well as for high-temperature,

high-power, and high-frequency devices [5]. GaN is one

of the AIIIBV nitride wide-band gap semiconductors. It is

of particular interest because it has high electron mobility

as compared to other wide-band gap electronic materials.

It is also characterized by having high hardness, low

compressibility, high ionicity, and high thermal conductivity.

Such properties make it a good candidate for optoelectronic

devices operating under extreme conditions [6].
Takahiro Maruyama et al. were investigated the va-

lence band structures of both wurtzite and zinc blende

GaN by angle resolved photoemission spectroscopy [7].
V.N. Brudnyi et al. were calculated the electronic spectra

and the energy position of the local charge-neutrality level

for the wurtzite BN, AlN, GaN, and InN compounds with

use of different heuristic models [8]. L. Wenchang et al.

were studied the ground-state properties, band structures

and pressure dependence of the band gaps of zinc blende

GaN by the linear muffin-tin orbital method with the

atomic-sphere approximation [9]. Masakatsu Suzuki et al.

were calculated the electronic band structure for wurtzite-

type GaN by using a full-potential linearized augmented

plane wave (FLAPW) method [10]. The studies of the

pressure and temperature dependences of optoelectronic

properties in semiconductors can provide additional valuable

information about the electronic band structure and optical

properties. Since the essential transport mechanisms are

tightly bound to their band gaps, so the knowledge of
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this latter and its behavior under pressure and temperature
would enable us to predict the overall properties of these
materials. In the present study, we reported on the
influence of pressure and temperature on the electronic
band structures of semiconductor GaN more specifically
on the energy band gaps at Ŵ, X and L high-symmetry
points. These effects have been predicted by computing
the changes of the form factors and the lattice constant,
and consequently the electronic band structure of GaN with
changes in pressure and temperature. We also showed the
effect of pressure and temperature on the variation of the
electronic energy band Enk(P) and Enk(T ) as functions of
the wave vector k of the Brillouin zone.
The calculations in this work involved the local empirical

pseudopotential method (EPM) but ignore the non-local and
spin-orbit corrections. In the local EPM, the core electrons
are tightly bound to their nuclei and the valence electrons
are influenced only by a weak net effective potential, i. e.
the large attractive core potential energy of the ion core is
cancelled by the large positive kinetic energy of the electron
due to its rapid oscillations [11–15]. In the non-local
EPM the pseudopotential depends on the orbital angular
momentum parameter of the atomic core states, which is
ignored in the local calculations [15–17]. In spin-orbit
calculations, the degeneracy of the valance band maxima
is lifted [18–20].

2. Theory and calculations

Employing the local EPM method, the eigenvalues
Enk(P) and Enk(T ) are calculated by solving numerically
the matrix equation

~
2

2m
|k + G

′|2An,k(G
′, X) +

∑

G 6=G′

An,k(G
′, X)V l(|G−G

′|, X)

= Enk(X)An,k(G
′, X) (1)

where

V l(G−G
′, X) = W s(1G, X) cos(1G · τ )

+ iW a(1G, X) sin(1G · τ ) (2)

is the X -dependent pseudopotential and X means the
pressure P or the temperature T . W s ,a(1G, X) are the
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symmetric (W s) and anti-symmetric (W a) X -dependent

form factors that are fitted empirically to obtain the required

energy gap for the associated semiconductor. G and G
′

are the reciprocal lattice vectors, with 1G = G−G
′ and

τ = a(X)
8

(1,1,1), is the position vector of each atom in the

unit cell and a(X) is the X -dependent lattice constant.

Applying the atomic units, e = m = ~ = 1, Eq. (1) can

be rewritten as

∥

∥

∥

∥

1

2
|k + G

′|2 − Enk(X) +
∑

G6=G′

V l
p(|G−G

′|, X)

∥

∥

∥

∥

= 0. (3)

The first two terms in the above equation, Eq. (3)
constitute the diagonal elements of the matrix, while the

third term constitutes the off-diagonal elements. The k

values are chosen by considering a specimen of length

50a(X), so the number of sampling points is twice the value

of 50 by considering the whole interval of the Bz [−1, 1].
So, one obtains the incrimination 1k of k, in units of

π/a(X) [21].

To solve Eq. (3) numerically, we use our own routine

based on the MATLAB language [22], which is 65 × 65

matrix based on 65 bulk reciprocal lattice vectors, G
′s .

These values are corresponding to |1G|2 = 3, 4 and 11

for zinc-Blende type structure, which satisfy the condition

|1G|2 ≤ 11, that gives non-zero pseudopotential. The G’s

values are listed in Refs [21,23].

Arranging the calculated eigenvalues descendingly to

obtain the valence and conduction bands. Set the top of

the valence bands to zero energy and determine the energy

gaps. The best values of energy gaps can be obtained by

adjusting the form factors until the determined energy gaps

match the corresponding experimental values.

The refractive index of GaN at different pressures and

different temperatures are calculated by using the three

models found in Ref [24–26].

3. Results and discussion

3.1. Pressure dependence at room temperature

The pressure dependent energy levels, Enk(P), at different
k values are obtained by solving the secular determinant (3)
with X = P
∥

∥

∥

∥

~
2

2m
|k + G

′|2 − Enk(P) +
∑

G6=G′

V l(|G−G
′|, P)

∥

∥

∥

∥

= 0. (4)

The experimental pressure dependent energy gaps are

obtained from the empirical relation [27],

Ed,id
g (P) = Ed,id

g (0) + aP + bP2,

where a and b are the hydrostatic pressure coefficients listed

in Table 1, ′′d′′ and ′′id′′ stand for direct and indirect energy

bands.

Table 1. Values of the bulk modulus B , and its pressure

derivative B ′, the hydrostatic pressure parameters a and b; values
of the Varshni’s parametersa and the linear thermal expansion

coefficientsa for GaN zinc blende semiconductor

GaN

Hydrostatic pressure parameter a

Varshni’s parameters b

a (10−3 eV/kbar) 4.2

b (10−5 eV/kbar2) −1.8 α(10−4 K−2) 7.7

B (GPa) 200 β(K) 600

B ′ 4.4 αth(10
−6 K−1) 5.497

Note. aRef. [27];
bRef. [28].

W s ,a(1G, P) are the pressure-dependent form factors that

are fitted empirically with the experimental values to obtain

the required energy gap for the associated semiconductor

and take the form

W s ,a(1G, P) = W s ,a(1G, P = 0) + 1s ,aP, (5)

where 1s ,a are the pressure coefficient form factors.

The pressure dependence lattice constant has been esti-

mated using the relation given by Adachi [27].

a(P) = a(0)

[

1 +

(

B ′

B

)

P

]−1/3B

, (6)

where B is the bulk modulus, and B ′ is the pressure

derivative of the bulk modulus which are listed in Table 1.

a(0) and a(P) are the lattice parameters at pressures P = 0

and P 6= 0, respectively.

Table 2 shows the adjusted local symmetric and antisym-

metric pseudopotential form factors at different values of

|1G|2 for GaN, together with its lattice constant at various

pressure values from zero to 120 kbar.

It is seen that W s
11, W a

4 are more sensitive to the pressure

than the others. They are linearly increasing functions with

increasing the pressure.

The fundamental energy gaps at different pressures are

also found in table 2 which shows excellent agreement with

the experimental data [27].
In Fig. 1 we show the calculated energy band structure of

GaN at zero pressure (solid lines) and at 120 kbar pressure

(dashed lines). It is seen from Fig. 1 that the energy

differences between the calculated electronic energies at

0 kbar and 120 kbar are bout 268.7meV at the X -point,

98meV at the L-point and 244.9 meV at Ŵ-point. At zero

pressure the minimum of the conduction band is at the

high-summetry point Ŵ. Hence, GaN is a direct-gap (Ŵ−Ŵ)
semiconductor. When the pressure increasing, the first

conduction band at Ŵ and L points shift upwards, while at

the X -point the first conduction band moves slightly down

relative to the valence-band maximum. This makes the

minimum of the first conduction band is at the X -point.
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Table 2. The adjusted local symmetric form factors, lattice constant, and the fundamental energy gaps for GaN at various values of

pressure at room temperature.

Form factors (a.u.) 1s,a , 10−6 (kbar−1)
P(kbar)

0 30 60 90 120

W s
3 (P) 0.0417000 −0.2513150 −0.2513167 −0.2513155 −0.2513142 −0.2513129

W s
8 (P) 0.0041700 −0.0105325 −0.0105324 −0.0105322 −0.0105321 −0.0105319

W s
11(P) 43.7750000 0.1123650 0.1141360 0.1156130 0.1167650 0.1175880

W a
3 (P) 0.0041700 −0.0162975 −0.0162973 −0.0162972 −0.0162971 −0.0162969

W a
4 (P) 41.6667000 0.1000000 0.1012500 0.10250000 0.1037500 0.1050000

W a
11(P) 0.5667000 0.0677320 0.0677490 0.0677660 0.0677830 0.0678000

a(P) (a.u.) 8.5039000 8.4628000 8.4244000 8.3883000 8.3543000

Eg(P) in eV

Present results 3.2030000 3.3098000 3.3872000 3.4322000 3.4448000

Experimental results 3.2000000 a 3.3098000 a 3.3872000 a 3.4322000 a 3.4448000 a

Note. a Ref. [27].

Fig. 1. The energy band structure of GaN at zero pressure (solid
lines) and at 120 kbar pressure (dashed lines).

Fig. 2. The direct and indirect energy band gaps as function of

pressure for GaN.

Fig. 2 shows the direct and indirect energy band gaps

as function of pressure. The direct energy gap EŴ
g and

the indirect band gaps EL
g are increased by increasing the

pressure while the indirect band gap EX
g is decreased.

The dependencies of the direct and indirect band gaps for

zincblende GaN on pressure could be also represented by

means of quadratic regressions through the equations:

EŴ
g = 3.2 + 89.375

(

1a(P)

a(P)

)

− 47633

(

1a(P)

a(P)

)2

, (7)

Ex
g = 4.876 + 6.6447

(

1a(P)

a(P)

)

− 7141.7

(

1a(P)

a(P)

)2

, (8)

EL
g = 6.6006−17.558

(

1a(P)

a(P)

)

− 9413.1

(

1a(P)

a(P)

)2

, (9)

where 1a(P) = a(P) − a(0).
In Fig. 3 the refractive index of GaN is plotted against

the pressure using three different models. Herve and Van-

damme, Moss and Ravindra’s [24–26] relations are empirical

relationships have been established for the estimation of

refractive indices for various materials directly from their

energy gaps. The Moss relation based on an atomic model

gives values of refractive index which are larger than those

obtained by the two other models. However, the effect

of pressure on the refractive index seems to be stronger

when using the Ravindra et al. relation. For all models

Fig. 3. Refractive index as a function of pressure in GaN

calculated by: 1 — the Ravindra et al. relation [25], 2 — the

Herve and Vandamme relation [26], 3 — the Moss relation [24].
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Table 3. The adjusted local symmetric form factors, lattice constant, and the fundamental energy gaps for GaN at various values of

temperature at normal pressure.

Form factors (a.u.) 1s,a , 10−6 (K−1)
T (K)

0 100 200 300 400 500

W s
3 (T ) 0.0066670 −0.2513130 −0.2513136 −0.2513143 −0.2513150 −0.2513157 −0.2513163

W s
8 (T ) 0.0016667 −0.0105320 −0.0105322 −0.0105320 −0.0105325 −0.0105327 −0.0105328

W s
11(T ) 3.3533330 0.1133710 0.1131780 0.1128250 0.1123650 0.1118290 0.1112410

W a
3 (T ) 0.0250000 −0.0162900 −0.0162925 −0.0162950 −0.0162975 −0.0163000 −0.0163025

W a
4 (T ) 1.6666667 0.1005000 0.1003333 0.1001667 0.1000000 0.0998333 0.0996667

W a
11(T ) 0.0166670 0.0677370 0.0677353 0.0677337 0.0677320 0.0677303 0.0677286

a(T ) (a.u.) 8.4899000 8.4946000 8.4992000 8.5039000 8.5086000 8.5132000

Eg(T ) in eV

Present results 3.2800000 3.2690000 3.2415000 3.2030000 3.1568000 3.1050000

Experimental results 3.2800000 b 3.2690000 b 3.2415000 b 3.2030000 b 3.1568000 b 3.1050000 b

Note. b Ref. [28].

used, the refractive index decreases linearly with increasing

pressure up to 120 kbar. This fact leads us to believe that

the zinc-blende GaN shows that the smaller fundamental

energy band gap material has a large value of the refractive

index.

Similar to the band gap energies, we can represent as well

the pressure variaton of the refractive index for the material

of interest through the following equation

n1 = 2.4103 + 1.0918

(

1a(P)

a(P)

)

− 81.978

(

1a(P)

a(P)

)2

,

(10)

n2 = 2.1 + 3.5273

(

1a(P)

a(P)

)

− 294.16

(

1a(P)

a(P)

)2

, (11)

n3 = 2.2904 + 1.6244

(

1a(P)

a(P)

)

− 123.62

(

1a(P)

a(P)

)3

,

(12)
where n1, n2 and n3 are referred to as refractive indices

obtained from relations (10)–(12), respectively.

3.2. Temperature dependence at normal pressure

The temperature dependent eigenvalues Enk(T ) are found

by solving the secular determinant (3) with X = T

∥

∥

∥

∥

~
2

2m
|k + G

′|2 − Enk(T ) +
∑

G6=G′

V l
p|G−G

′|, T )

∥

∥

∥

∥

= 0, (13)

W s ,a(1G, T ) are the temperature-dependent form factors

that are fitted empirically with the experimental values

to obtain the required energy gaps for the associated

semiconductor. The form factors take the form

W s ,a(1G, T ) = W s ,a(1G, T = 0K) − 1s ,aT, (14)

where 1s ,a are the temperature coefficient form factors and

a(T ) is the temperature-dependent lattice constant, which

is determined from the relation [27]

a(T ) = a(300K)[1 + αth(T − 300K)],

where αth is the linear thermal expansion coefficient and its

value that corresponding to the associated semiconductor is

listed in Table 2.

The experimental temperature energy gaps are obtained

from Varshni’s [28] empirical formula as

Eg(T ) = Eg(0) −
αT 2

T + β
.

The values of α and β for GaN are also listed in Table 1.

The temperature dependent-form factor parameters for

GaN as functions of temperature at different values of

|1G|2 are listed in Table 3. It is seen from this table that

the temperature-dependent from factors are linearly varied

with temperature; they are linearly decreasing functions

with increasing temperature. This is due to the fact that,

raising temperature increases the dimension of the crystal,

as observed from the variation of the lattice constant a(T ),
which yields decreasing the potential energy seen by the

electron. Excellent agreement is seen from Table 3 when

comparing the calculated fundamental energy gap of GaN,

with the experimental data [28].
Table 3 shows that the fundamental energy gaps are

more sensitive to the temperature dependent from factor

associated with the reciprocal lattice vectors W s
11, W a

4 .

Fig. 4 shows the variation of the temperature dependent

electronic energy band structure for GaN as a function of

the propagation wave vector k and temperature T = 0K

(solid line) and 500K (dashed line). It is seen that the

temperature dependent first conduction energy band is

more affected by temperature than the other conduction

and valence bands and exhibits more enhancement at the

Ŵ-point of symmetry than any other k-point in the Brillouin

zone. The conduction bands are also more affected by

temperatures than the valence bands. The temperature
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Fig. 4. The energy band structure of GaN at 0K (solid lines) and
at 500K (dashed lines).

Fig. 5. The direct and indirect energy band gaps as function of

temperature for GaN.

Fig. 6. Refractive index as a function of pressure in GaN

calculated by: 1 — the Ravindra et al. relation [25], 2 — the

Herve and Vandamme relation [26], 3 — the Moss relation [24].

effect becomes less pronounced for higher conduction bands

and nearly most valence bands. The energy differences

between the calculated electronic energies at 0 and 500K

are about 175.1meV at Ŵ-point, 109.2 meV at the L-point,
and 292meV at the X -point.

The direct and indirect energy band gaps as function of

temperature obtained for GaN are plotted in Fig 5. We show

that the direct energy gap EŴ
g and the indirect band gaps

EL
g and EX

g are decreased by increasing the temperature.

The dependencies of the direct and indirect band gaps for

zincblende GaN on temperature could be also represented

by means of quadratic regressions through the equations:

EŴ
g = 3.28− 16.716

(

1a(T)

a(T )

)

− 17933

(

1a(T )

a(T )

)2

, (15)

Ex
g = 4.871+13.239

(

1a(T)

a(T )

)

− 8987.9

(

1a(T )

a(T )

)2

, (16)

EL
g = 6.5935 − 8.0852

(

1a(T)

a(T )

)

− 120653

(

1a(T )

a(T )

)2

,

(17)

where 1a(T ) = a(T ) − a(0) and a(T ) and a(0) are the

lattice constants at temperature T and at zero temperature,

respectively.

As can be seen from Eqs. (15)–(17), all dependencies
show a non-linear behavior. Also, we can represent the

temperature variation of the refractive index for the material

of interest through the following equation

n1 = 2.3955 − 2.2688

(

1a(T)

a(T )

)

− 3994.4

(

1a(T )

a(T )

)2

,

(18)

n2 = 2.2683 − 3.3091

(

1a(T)

a(T )

)

− 5946.1

(

1a(T )

a(T )

)2

,

(19)

n3 = 2.0504 − 7.0149

(

1a(T )

a(T )

)

− 13099

(

1a(T)

a(T )

)2

.

(20)

In Fig. 6 the refractive index is plotted against temperature

using the three different models [24–26]. For all models

used, the refractive index increases linearly with increasing

temperature up to 500K.

As expected, the direct energy gaps increases with

pressure and decreases with temperature and the effect of

pressure on the electronic structure of GaN is more than the

effect of temperature.

4. Conclusion

We have performed calculations of the temperature and

pressure dependent electronic energy band structures for

GaN in the zinc-blende structure based on local empirical

pseudopotential method, and ignoring the non-local and

the spin-orbin coupling effects. The temperature and

pressure dependence of the pseudopotential is performed by

considering the temperature and pressure dependence of the

lattice constant, and the form factors. The refractive index

of the considered material as a function of temperature

and pressure is studied. The present electronic band

structures calculations show excellent agreements with the

experimental data.
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