Фотоэлектрическое определение последовательного сопротивления многопереходных солнечных элементов

© М.А. Минтаиров[¶], В.В. Евстропов, Н.А. Калюжный, С.А. Минтаиров, Н.Х. Тимошина, М.З. Шварц, В.М. Лантратов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 13 февраля 2012 г. Принята к печати 17 февраля 2012 г.)

Предложен и обоснован способ определения последовательного сопротивления, R_s , многопереходных солнечных элементов, использующий наличие максимума на зависимости эффективности от кратности концентрирования солнечного излучения, $\eta(X)$, или рабочего напряжения от фотогенерированного тока, $V_m(J_g)$. В работе использовано положение, состоящее в том, что в ограниченном, но практически значимом диапазоне фотогенерированных токов (вплоть до максимума η) последовательное сопротивление может быть представлено фиксированной величиной — линейной и не зависящей от J_g . Обосновано аналитически, что такое сопротивление может быть определено по формуле $R_s = (E/J_g)_{\eta=\max}$, где E = AkT/q; A, J_g — локальные значения коэффициента идеальности и фотогенерированного тока при максимальном η (или V_m). Установлено, что величина R_s , определенная этим методом, не зависит от спектрального состава падающего излучения, что экспериментально подтверждено при исследовании фотовольтаических характеристик трехпереходных солнечных элементов InGaP/GaAs/Ge. Метод пригоден как для многопереходных, так и для однопереходных фотоэлектрических преобразователей.

1. Введение

Одним из важных факторов, влияющих на эффективность фотоэлектрического преобразования (кпд, η) концентраторных многопереходных (МП) солнечных элементов (СЭ) различного типа, являются внутренние резистивные потери, объединяемые термином последовательное сопротивление. Из-за наличия этого сопротивления рост эффективности фотопреобразования при увеличении интенсивности освещения (кратности концентрирования солнечного излучения X) сменяется участком спада, формируя максимум [1–3]. Максимального значения также достигает и рабочее напряжение (напряжение в точке оптимальной нагрузки) V_m (рис. 1) [4].

Вклад в резистивные потери дает как поперечное сопротивление слоев СЭ, так и продольное (латеральное) сопротивление растекания в верхнем слое [5-7]. Существуют по крайней мере два основных подхода к анализу последовательного сопротивления: первый — моделирование многозвенной эквивалентной схемы [5] или комбинации звеньев (ячеек) [8-10], второй — представление фотоэлектрического преобразователя (ФЭП) в виде электрической цепи из последовательно соединенных элементов: генерирующей части (составленной из фотовольтаических *p*-*n*-переходов) и резистивной (сосредоточенного эквивалента резистивных потерь) [11]. Когда вклад сопротивления растекания доминирует, сосредоточенный эквивалент является нелинейным сопротивлением, зависящим от интенсивности освещения. В работе [5] разработан подход к анализу многозвенной модели, позволяющей описывать такое поведение, а также определять основные свойства распределенного последовательного сопротивления.

В данной работе используется представление о том, что в практически важных случаях (вплоть до максимума эффективности) такой нелинейный сосредоточенный эквивалент можно заменить фиксированным (линейным и не зависящим от интенсивности освещения) последовательным сопротивлением R_s [12]. В работе рассматривается способ определения такого последовательного сопротивления в МП СЭ, как в согласованных по фотогенерированному току (сбалансированных — фотогенерированные токи фотовольтаических *p*-*n*-переходов равны), так и в рассогласованных (несбалансированных — нет равенства фотогенерированных токов).

Используя наличие максимума рабочего напряжения, мы аналитически получили и распространили на максимум эффективности базовую формулу для определения последовательного сопротивления. Также представлено

Рис. 1. Вольт-амперные характеристики МП СЭ при различных кратностях концентрирования излучения. 1 — линия, соединяющая точки максимальной мощности; L — BAX, соответствующая максимальному значению рабочего напряжения V_m .

[¶] E-mail: mamint@mail.ioffe.ru

экспериментальное подтверждение полученных аналитических результатов применительно к МП СЭ на основе структуры GaInP/Ga(In)As/Ge. Как известно [1,2,13], на основе таких структур созданы наиболее эффективные на сегодняшний день преобразователя солнечного излучения.

Вольт-амперная характеристика многопереходного солнечного элемента — общий, приведенный и идеализированный вид

Как вольт-амперная характеристика (ВАХ) V(J), так и любая фотовольтаическая характеристика МП СЭ могут быть аппроксимированы набором сегментов [14]. На каждом сегменте характеристика V(J) генерирующей части формируется путем сложения напряжений на фотовольтаических p-n-переходах. Эти напряжения зависят от доминирующего механизма токопрохождения (диффузионного или рекомбинационного) в рассматриваемом сегменте. В результате характеристика V(J)сегмента (с учетом резистивных потерь, моделируемых линейным последовательно включенным сопротивлением) имеет вид

$$V = \frac{kT}{q} \sum_{i=1}^{n} \ln \left[\frac{J_{gi} - J}{J_{si}} \right]^{A_i} - JR_s$$
$$= \frac{kT}{q} \ln \left(\prod_{i=1}^{n} \left[\frac{J_{gi} - J}{J_{si}} \right]^{A_i} \right) - JR_s, \tag{1}$$

где i — номер субэлемента, J_{si} — предэкспоненты (токи "насыщения"), A_i — диодные коэффициенты (идеальности), которые равны 1 (доминирует диффузионный механизм) либо 2 (рекомбинационный), J_{gi} — фотогенерированные токи, n — число субэлементов, R_s — последовательное сопротивление; q — заряд электрона; T — температура, k — постоянная Больцмана.

Если наименьший из фотогенерированных токов обозначить J_g , т.е. $J_g = \min\{J_{g1}, J_{g2} \dots J_{gn}\}$, то (1) можно представить в виде суммы трех слагаемых:

$$V = E \ln \left(\frac{J_g - J}{J_s}\right) - JR_s + V_a.$$
(2)

В первом слагаемом E = AkT/q — вольтовый диодный коэффициент, $A = \sum_{i=1}^{n} A_i$, $J_s = \sqrt[A]{\prod_{i=1}^{n} J_{si}^{A_i}}$. Второе слагаемое — резистивное. Третье слагаемое учитывает дис-

баланс фотогенерированных токов:

$$V_a = \frac{kT}{q} \ln \left(\prod_{i=1}^n \left[\frac{\varkappa_i J_g - J}{J_g - J} \right]^{A_i} \right), \tag{3}$$

где $\varkappa_i = J_{gi}/J_g \ge 1$ — коэффициенты токового дисбаланса.

6*

Отметим, что на практике наименыший из фотогенерированных токов, $J_g = \min\{J_{g1}, J_{g2} \dots J_{gn}\}$, равен току короткого замыкания J_{sc} , так как выполняется условие $J_{sc} < V_{oc}/R_s$ (V_{oc} — напряжение холостого хода).

При полном балансе (все $\varkappa_i = 1$) напряжение V_a обращается в нуль, а характеристика V(J) (2) принимает такой же вид, как в однопереходном СЭ [5]. При увеличении дисбаланса (при возрастании \varkappa) V_a увеличивается. Таким образом, первое слагаемое формулы (2) приведено к балансному (однопереходному) виду, второе — обычное напряжение на последовательном сопротивлении, а величина третьего слагаемого (V_a) характеризует дисбаланс фотогенерированных токов.

Как было отмечено выше, последовательное сопротивление является причиной формирования максимума характеристики $\eta(X)$. По этой же причине достигается максимум рабочего напряжения V_m (рис. 1). Таким образом, эти максимумы оказываются связанными. Однако аналитическое описание максимума удобней производить, используя следующие зависимости рабочего напряжения: $V_m(J_g)$, $V_m(J_m)$, $V_m(J_g - J_m)$. При этом алгебраические и дифференциальные соотношения, необходимые в дальнейшем для изложения сущности метода, приведены в *Приложении*. Для получения этих соотношений используется следующая идеализация: полный баланс фотогенерированных токов ($V_a = 0$) и безрезистивность ($R_s = 0$). Тогда (2) принимает вид

$$V = E \ln \left(\frac{J_g - J}{J_s} \right). \tag{4}$$

Сбалансированный многопереходный солнечный элемент

3.1. Приближенный учет последовательного сопротивления

Предполагается, что в сбалансированном случае $(V_a = 0$ в уравнении (2)) при учете влияния последо-

Рис. 2. Световая (нагрузочная) характеристика V(J) и положение рабочей точки с учетом R_s (*I*) и без учета R_s (2).

вательного сопротивления на рабочую точку (V_m, J_m) выполняется условие (рис. 2)

$$J_m \approx J_{m0} \tag{5}$$

(индекс "0" здесь и далее обозначает безрезистивный случай).

Тогда для рабочей точки формула (2) приобретает вид

$$V_m = V_{m0} - J_m R_s, (6)$$

где токовая зависимость напряжения в безрезистивном случае V_{m0} дается формулами (П.3), (П.5) в зависимости от выбора токовой шкалы (J_m , ($J_g - J_m$) или $J_g(\propto X)$), а токовая зависимость резистивного слагаемого $J_m R_s$ в разных шкалах получается из соотношений (П.4) и (5).

Таким образом, из (6) следует токовая зависимость рабочего напряжения V_m в разных токовых шкалах: J_m , $(J_g - J_m)$ или $J_g(\propto X)$.

Когда первое слагаемое V_{m0} в (6) возрастает см. (П.3), (П.5), второе уменьшается, формируя максимум, обусловленный сопротивлением. Местоположение максимума V_m на разных токовых шкалах определяется из условия приравнивания нулю соответствующих им производных. Эти производные связаны между собой через dJ_g/dJ_m и $d(J_g - J_m)/dJ_m$, которые, как видно из (П.8 а), (П.8 b), (П.8 с), не равны нулю. Поэтому условия $dV_m/dJ_g = 0$ и $dV_m/d(J_g - J_m) = 0$ эквивалентны более удобному для вычислений и простому условию $dV_m/dJ_m = 0$.

Дифференцирование (6) с учетом (5) и (П.7с) дает

$$\frac{dV_m}{dJ_m} = \frac{dV_{m0}}{dJ_{m0}} - R_s = \frac{E}{J_g} - R_s,$$
(7)

откуда следует базовое соотношение, лежащее в основе фотоэлектрического метода определения последовательного сопротивления (линейного сосредоточенного эквивалента сопротивления):

$$R_s = \frac{E_L}{J_{gL}},\tag{8}$$

где J_{gL} — значение фотогенерированного тока J_g , при котором достигается максимальное значение рабочего напряжения V_m ; E_L — локальный вольтовый диодный коэффициент, соответствующий данному напряжению.

Таким образом, основной принцип определения R_s состоит в том, чтобы найти значение фотогенерированного тока, J_{gL} , при котором наблюдается максимум V_m , и соответствующее ему значение локального вольтового диодного коэффициента E_L .

3.2. Определение последовательного сопротивления

Для нахождения локального вольтового диодного коэффициента можно привлечь две характеристики — $V_{oc}(J_g)$ и $V_m(J_g - J_m)$, причем, как отмечено в Приложении, характеристика $V_{oc}(J_g)$ (П.1) интерпретируется как

Рис. 3. Взаимное расположение фотовольтаических характеристик в сбалансированном по току МП СЭ: $1 - V_{oc}(J_g)$, $2 - V_m(J_g - J_m)$, $3 - V_m(J_g)$. На безрезистивном участке характеристики $V_{oc}(J_g)$ и $V_m(J_g - J_m)$ совпадают.

безрезистивная $V_m(J_g - J_m)$ (П.3). Соответственно требуемая величина E_L равна логарифмическому наклону $\Delta V_{oc}/\Delta \ln(J_g)$ в точке максимума V_m (рис. 3, точка A). Рис. 3 иллюстрирует изложенный метод нахождения величины последовательного сопротивления на основе выражения (8) при привлечении зависимостей $V_{oc}(J_g)$, $V_m(J_g)$ и $V_m(J_g - J_m)$. Значение величины J_{gL} равно значению тока в точке L, а величина E_L определяется по наклону участка характеристик $V_{oc}(J_g)$ в области точки A.

Как видно из способа получения базовой формулы (8) и из процедуры поиска величин J_{gL} и E_L (рис. 3), предложенный метод определения последовательного сопротивления полностью справедлив для однопереходных и сбалансированных МП СЭ. При этом метод может быть обобщен на случай несбалансированных МП СЭ. Это обобщение основывается на учете свойств дисбалансной поправки V_a (3), которая равнялась нулю в сбалансированном случае.

Итак, определение последовательного сопротивления R_s включает в себя этапы: определение J_{gL} из характеристики $V_m(J_g)$, определение E_L из сопоставления характеристик $V_m(J_g - J_m)$, $V_{oc}(J_g)$ и использование базовой формулы (8).

Несбалансированный многопереходный солнечный элемент

При дисбалансе фотогенерированных токов, в отличие от сбалансированного случая (см. разд. 3), следует учитывать дисбалансное напряжение V_a (3). Так как для определения величины R_s по формуле (8) используются токовые зависимости V_m и V_{oc} , необходимо определенть соответствующие им дисбалансные поправки ($V_{a,m}$, $V_{a,oc}$).

В рабочем режиме $(J = J_m, V = V_m)$ дисбалансную поправку к рабочему напряжению $V_{a,m}$ можно аппрокси-

Рис. 4. Взаимное расположение фотовольтаических характеристик в несбалансированном МП СЭ (сплошные линии) и сбалансированном (штриховые). *I*, $I' - V_{oc}(J_g)$; 2, $2' - V_m(J_g - J_m)$; 3, $3' - V_m(J_g)$. В несбалансированном случае $V_m(J_g - J_m)$ характеристика на безрезистивном участке сдвинута вверх относительно $V_{oc}(J_g)$ в отличие от сбалансированного случая.

Рис. 5. Экспериментальные фотовольтаические характеристики $V_m(J_g)$ (1), $V_m(J_g - J_m)$ (2), $V_{oc}(J_g)$ (3) при различных спектрах освещения (A, B, C, D).

мировать константой. Действительно, экспериментально наблюдаемые нагрузочные характеристики имеют примерно одинаковую (близкую к прямоугольной) форму при балансе и дисбалансе. Поэтому разумно предположить, что связь между J_g и J_m , определяемая аппроксимацией (5) и формулой (П.4), справедлива и для несбалансированного случая. Тогда из (3), где $J = J_m \approx J_{m0}$, получим

$$V_{a,m} = (kT/q) \ln \left(\prod_{i=1}^{n} \left[(\varkappa_i - 1) V_{m0} / E + \varkappa_i \right]^{A_i} \right).$$
(9)

В этом варианте формулы (3) отсутствует явная зависимость от J_g , причем оставшаяся неявная слабая зависимость (через V_{m0}) позволяет аппроксимировать $V_{a,m}$ константой (в ограниченном токовом диапазоне).

В режиме холостого хода ($J = 0, V = V_{oc}$), как следует из (3), дисбалансная поправка к напряжению холостого хода имеет вид

$$V_{a,oc} = (kT/q) \ln\left(\prod_{i=1}^{n} [\varkappa_i]^{A_i}\right), \qquad (10)$$

т.е. строго является константой.

Отметим, что, как видно из (3), дисбалансное напряжение V_a в двух случаях обращается в нуль — при токовом балансе (все $\varkappa_i = 1$) и для темновой характеристики ($J_g = 0$), обеспечивая тем самым совпадение трех зависимостей: световой $V_{oc}(J_g)$, световой безрезистивной $V_m(J_g - J_m)$ и темновой безрезистивной V(J) (см. Приложение).

При дисбалансе этого совпадения уже нет: две световые характеристики, $V_{oc}(J_g)$, $V_m(J_g - J_m)$, сдвинуты относительно темновой, V(J), на неодинаковые величины $V_{a,m}$ и $V_{a,oc}$. Однако тот факт, что $V_{a,oc}$ — константа, а $V_{a,m}$ аппроксимируется константой в ограниченном токовом диапазоне, оставляет неизменным вывод базовой формулы (8) и ее окончательный вид. Соответственно не меняется и процедура нахождения локального вольтового диодного коэффициента (E_L) по наклону характеристики $V_{oc}(J_g)$ в точке A и величины фотогенерированного тока J_{gL} в точке L (см. рис. 4).

Выражения (9) и (10) позволяют произвести оценку величин V_{a,m} и V_{a,oc} для трехпереходного СЭ InGaP/GaInAs/Ge, в котором в Ge-субэлементе $A_3 = 1$, $\varkappa_3 \approx 1.5 - 2$ [15], токи субэлементов GaInP и GaInAs приблизительно одинаковы [16] (\varkappa_2 , $\varkappa_1 \approx 1$), причем механизм протекания тока может быть как диффузионный $(A_2, A_1 = 1)$, так и рекомбинационный $(A_2, A_1 = 2)$. Согласно оценке, $V_{a,m} \approx 0.07\,\mathrm{B}$ и $V_{a,oc} \approx 0.02\,\mathrm{B}$, а величина несовпадения характеристик $V_{oc}(J_g)$ и безрезистивной $V_m(J_g - J_m)$ составляет 0.05 В. Следовательно, величина $V_{a,m}$ составляет ~ 20% по отношению к диапазону изменения V_m , который равен $\sim 0.5 \,\mathrm{B}$ (рис. 5). В свою очередь величина $V_{a,oc}$ составляет $\sim 3\%$ по отношению к соответствующему диапазону V_{oc} (~ 0.5 В, рис. 5). Таким образом, в трехпереходных СЭ InGaP/GaInAs/Ge необходимо принимать во внимание такие дисбалансные поправки.

Рис. 6. Определение последовательного сопротивления из совокупности двух характеристик: 1 — зависимость $\eta(\propto V_{\eta})$ от X (или J_g), 2 — зависимость V_{oc} от X (или J_g). Сплошные линии — расчет, точки — эксперимент.

5. Использование эффективностной характеристики $\eta(X)$

Для определения R_s наряду с V_m можно использовать эффективностную характеристику, $\eta(X)$, которая также имеет максимум из-за наличия резистивных потерь. Для этого удобно ввести вспомогательную величину — эффективностное напряжение

$$V_{\eta} = \frac{J_m V_m}{J_g},\tag{11}$$

прямо пропорциональное эффективности $\eta = J_m V_m / P_{inc}$ = V_η / V_{conv} . Причем коэффициент пропорциональности $V_{conv} = P_{inc} / J_g = P_{inc,e} / J_{g,e}$ не зависит от интенсивности излучения, где $P_{inc,e}$ — единичная (кратность X = 1) плотность световой мощности, $J_{g,e}$ — единичная (X = 1) плотность фотогенерированного тока.

При этом эффективностное напряжение может быть выражено через рабочее напряжение. Так, в безрезистивном и сбалансированном случае, согласно (П.4), $J_{m0}/J_g = V_{m0}/(V_{m0} + E)$, откуда из (11) следует связь $V_{\eta0} = V_{m0}^2/(V_{m0} + E)$, которая упрощается до $V_{\eta0} = V_{m0} - E$ при условии малости вольтового диодного коэффициента по сравнению с рабочим напряжением, $E \ll V_{m0}$. Дисбалансная поправка (3) к эффективностному напряжению $V_{a,\eta}$ аппроксимируется константой (в ограниченном диапазоне) по аналогии с $V_{a,m}$.

Поскольку результирующий сдвиг V_{η} относительно V_m аппроксимируется константой, сущность метода, основанная на дифференцировании рабочего напряжения (см. разд. 3.1), не изменяется. Поэтому все результаты, вытекающие из наличия максимума рабочего напряжения (см. разд. 4), переносятся на эффективностное напряжение и соответственно на эффективность. Для определения последовательного сопротивления по-прежнему используется базовая формула $R_s = E_L/J_{gL}$, где J_{gL} —

фотогенерированный ток, при котором достигается максимум эффективности, E_L — соответствующий вольтовый диодный коэффициент. Отметим, что величина J_{gL} может быть определена как из $\eta(J_g)$, так и из $V_m(J_g)$.

Определение последовательного сопротивления по базовой формуле посредством $\eta(X)$ и родственных ей характеристик поясняется на рис. 6. Величина J_{gL} находится из кратности X_L (точка L имеет $X_L = 400$, $\eta = 36.2\%$ на рис. 6), при которой эффективность максимальна, $J_{gL} = X_L J_{g,e}$. Величина E_L равна наклону характеристики $V_{oc}(X)$ в точке A (рис. 6): $E_L = \Delta V_{oc} / \Delta \ln(X) |_{X=X_A}$, причем местоположение точки A на шкале кратности вычисляется как $X_A = (J_{gL} - J_{mL})/J_{g,e}$, где J_{mL} — рабочий ток, соответствующий максимальной эффективности. Можно также использовать другие шкалы: J_g вместо X и V_η вместо η (рис. 6).

Экспериментальная реализация метода

Как было показано в разд. 4, при использованных аппроксимациях $J_m \approx J_{m0}$ (5) и V_a = const вывод базовой формулы (8) одинаков для сбалансированного и не сбалансированного по фотогенерированному току МП СЭ. При этом вывод не зависит от дисбалансной поправки V_a . Следовательно, результат определения последовательного сопротивления не должен зависеть от спектрального состава падающего излучения. Это может быть практически полезно для решения задачи определения R_s при экспериментальных исследованиях МП СЭ на имитаторах различного класса.

Объектом исследования был трехпереходный СЭ InGaP/GaAs/Ge, созданный методом МОС-гидридной эпитаксии [17].

Было измерено несколько семейств характеристик V(J) при различных спектральных составах падающего излучения, и построены фотовольтаические характеристики $V_m(J_g)$, $V_m(J_g - J_m)$, $V_{oc}(J_g)$ (рис. 5).

Измерения были выполнены при комнатной температуре с использованием имитатора на основе импульсной ксеноновой лампы с корректирующими светофильтрами [18]. При этом измеряемые на практике значения токов короткого замыкания (даже при максимальной интенсивности лампы) считались равными фотогенерированным токам (J_g). Измерения проводились при четырех видах спектрах A, B, C, D. Спектр A стандартный AM1.5D, B — нефильтрованный спектр ксеноновой импульсной лампы, спектр C — получен с красным светофильтром KG-2, обогащен излучением синего диапазона длин волн (300–650 нм), спектр D получен с синим светофильтром RG-8, обогащен излучением красного диапазона длин волн (650–1000 нм).

Как и ожидалось, максимумы зависимостей $V_m(J_g)$ расположены примерно при одном значении фотогенерированного тока (см. значения J_{gL} в таблице, кривые *I* на рис. 5). Расположение максимумов характеристик $V_m(J_g - J_m)$ несколько различно (см.: J_{gA} в таблице, Результаты определения последовательного сопротивления R_s исследуемого образца при разных спектрах падающего излучения

$J_{gL},$ A/cm ²	$J_{gA},$ A/cm ²	<i>Е</i> _{<i>L</i>} , В	$R_s,$ $10^{-3} \mathrm{Om} \cdot \mathrm{cm}^2$
6.76	0.26	0.092	13.6
6.78	0.092	0.097	14.3
6.70	0.095	0.092	13.8
6.75	0.096	0.096	14.2
	$ \begin{array}{r} J_{gL}, \\ A/cm^2 \\ \hline 6.76 \\ 6.78 \\ 6.70 \\ 6.75 \\ \hline 6.75 \\ \end{array} $	$\begin{array}{c c} J_{gL}, & J_{gA}, \\ A/cm^2 & A/cm^2 \\ \hline 6.76 & 0.26 \\ 6.78 & 0.092 \\ 6.70 & 0.095 \\ 6.75 & 0.096 \\ \hline \end{array}$	$\begin{array}{c cccc} J_{gL}, & J_{gA}, & E_L, \\ A/cm^2 & A/cm^2 & B \\ \hline 6.76 & 0.26 & 0.092 \\ 6.78 & 0.092 & 0.097 \\ 6.70 & 0.095 & 0.092 \\ 6.75 & 0.096 & 0.096 \\ \hline \end{array}$

кривые 2 на рис. 5), однако соответствующие значения наклона $\Delta V_{oc}/2.3\Delta \lg(J_g) = E_L$ на характеристике $V_{oc}(J_g)$ практически одинаковы (E_L в таблице, кривые 3 на рис. 5).

Наблюдаемое расположение максимумов характеристик $V_m(J_g)$ согласуется со сделанными аппроксимациями. Некоторое различие в положении максимумов характеристик $V_m(J_g - J_m)$ не оказывает влияния на результат определения R_s (см. таблицу). Из таблицы видно, что последовательное сопротивление равно $(14.0 \pm 0.3) \cdot 10^{-3}$ Ом · см², т.е. относительная погрешность метода составляет 2%.

Из полученных результатов следует, что разработанный фотоэлектрический метод применим к МП СЭ, причем результат определения последовательного сопротивления не зависит от спектрального состава падающего излучения (могут использоваться как стандартные спектры AM0, AM1.5 и др., так и отличающиеся от стандартных).

7. Заключение

Предложен и обоснован новый способ определения последовательного сопротивления солнечных элементов, характеризующего резистивные потери в практически значимом диапазоне интенсивностей освещения, вплоть до максимума эффективности (кпд) или рабочего напряжения.

Аналитическим путем получено выражение для экспериментального определения последовательного сопротивления $R_s = E_L/J_{gL}$, где E = AkT/q, а A, J_g локальные коэффициент идеальности и фотогенерированный ток при такой интенсивности освещения, когда максимальны эффективность (кпд) или рабочее напряжение (V_m). Отметим, что на практике фотогенерированный ток равен току короткого замыкания, так как обычно выполняется условие $J_{sc} < V_{oc}/R_s$. Величина Eопределяется по локальному наклону характеристики $V_{oc}(J_g)$ в соответствующей точке, т.е. без обращения к темновой характеристике V(J).

Применяя разработанный способ, можно использовать как стандартный (AM0, AM1.5 и др.), так и нестандартный спектральный состав падающего излучения. В данной работе было определено последовательное сопротивление для трехпереходного СЭ GaInP/GaAs/Ge,

Физика и техника полупроводников, 2012, том 46, вып. 8

выращенного методом МОС-гидридной эпитаксии, при разных спектральных составах падающего излучения. Полученные при этом величины последовательного сопротивления были практически одинаковы (с относительной погрешностью ~ 2%). Показано, что предложенный метод подходит для анализа экспериментальных результатов, полученных при исследовании ВАХ МП СЭ, облучаемых светом различного спектрального состава.

Фотоэлектрический способ, использующий наличие максимумов η или V_m , пригоден также для монокристаллических однопереходных фотоэлектрических преобразователей и, вероятно, для таких СЭ, нагрузочную характеристику которых можно аппроксимировать экспонентой.

Авторы выражают благодарность проф. В.М. Андрееву за интерес и внимание к работе и проф. В.Д. Румянцеву за полезные обсуждения.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 11-08-00539-а) и Министерства образования и науки РФ (грант № 16.51.11.6053).

Приложение

1079

Основные соотношения в идеализированном (безрезистивном и сбалансированном) случае

1. Алгебраические соотношения

Идеализация характеристики V(J) МП СЭ приводит ее к однопереходному (ОП) виду (4). Поэтому все соотношения, выполняющиеся для ОП СЭ, справедливы и для идеализированного МП СЭ.

В режиме холостого хода $(J = 0, V = V_{oc})$ имеем

$$V_{oc} = E \ln \left(\frac{J_g}{J_s}\right). \tag{\Pi.1}$$

Рабочее напряжение V_m выражается через V_{oc} [5]:

$$V_{oc} = V_{m0} + E \ln\left(1 + \frac{V_{m0}}{E}\right) \tag{\Pi.2}$$

(индекс "0" обозначает безрезистивный случай).

Кроме того, из (4) следует соотношение между рабочим напряжением V_{m0} и рабочим током J_{m0} :

$$V_{m0} = E \ln \left(\frac{J_g - J_{m0}}{J_s} \right). \tag{\Pi.3}$$

Из (П.1), (П.2), (П.3) следуют соотношения между токами:

$$(J_g - J_{m0}) = \frac{J_{m0}E}{V_{m0}} = \frac{J_g E / V_{m0}}{1 + E / V_{m0}}.$$
 (II.4)

Используя (П.4) и (П.3), можно выразить V_{m0} через J_g или J_{m0} :

$$V_{m0} = E \ln \left(\frac{J_g}{J_s (1 + V_{m0}/E)} \right) = E \ln \left(\frac{J_{m0}}{J_s V_{m0}/E} \right). \quad (\Pi.5)$$

Отметим, что зависимости V_{m0} от J_g и J_{m0} , записанные в неявном виде (П.5), близки к логарифмическим, а зависимость V_{m0} от $(J_g - J_{m0})$ (П.3) — строго логарифмическая. Кроме того, при отсутствии освещения $(J_g = 0)$ темновая характеристика V(J) имеет вид

$$V = E \ln \left(\frac{-J}{J_s}\right),\tag{\Pi.6}$$

где J < 0.

Таким образом, характеристика $V_{oc}(J_g)$ (П.1) совпадает с $V_{m0}(J_g - J_{m0})$ (П.3) и темновой характеристикой V(J) (П.6). В резистивном случае ($R_s \neq 0$) последовательное сопротивление влияет на характеристики V(J)(темновую) и $V_{m0}(J_g - J_{m0})$, но не влияет на $V_{oc}(J_g)$. Это позволяет интерпретировать характеристику $V_{oc}(J_g)$ как безрезистивную $V_m(J_g - J_m)$ и темновую V(J), что использовано в разд. 3.2.

2. Дифференциальные соотношения

В разд. 3.1 использован набор производных $dV_{m0}/d(J_g - J_{m0})$, dV_{m0}/dJ_g , dV_{m0}/dJ_{m0} , связанных с положением максимума V_m . Из (П.3) с учетом (П.4) следует:

$$\frac{dV_{m0}}{d(J_g - J_{m0})} = \frac{E}{J_g - J_{m0}} = \frac{E}{J_{m0}(E/V_{m0})}$$
$$= \frac{E(1 + E/V_{m0})}{J_g(E/V_{m0})}.$$
(II.7a)

Для нахождения остальных производных перепишем сначала неявную функцию (П.5) в виде разности логарифмов, затем почленно продифференцируем и объединим члены, содержащие производную:

$$\frac{dV_{m0}}{dJ_g} = \frac{E}{J_{m0}(1+2E/V_{m0})} = \frac{E(1+E/V_{m0})}{J_g(1+2E/V_{m0})}, \quad (\Pi.7b)$$

$$\frac{dV_{m0}}{dJ_{m0}} = \frac{E}{J_{m0}(1 + E/V_{m0})} = \frac{E}{J_g}.$$
 (II.7c)

Дифференциальные соотношения между токами следуют из (П.7а), (П.7b), (П.7с):

$$\frac{dJ_{m0}}{dJ_g} = \frac{(1 + E/V_{m0})}{1 + 2E/V_{m0}},\tag{\Pi.8a}$$

$$\frac{d(J_g - J_{m0})}{dJ_g} = \frac{E/V_{m0}}{1 + 2E/V_{m0}},\tag{II.8b}$$

$$\frac{d(J_g - J_{m0})}{dJ_{m0}} = \frac{E/V_{m0}}{1 + E/V_{m0}}.$$
 (II.8c)

Эти производные отличны от нуля, что использовано в разд. 3.1.

Список литературы

- F. Dimroth, W. Guter, J. Schöne, E. Welser, M. Steiner, E. Oliva, A. Wekkeli, G. Siefer, S.P. Philipps, A.W. Bett. *Proc.* 24th PVSEC (Hamburg, Germany, 2009) p. 1038.
- [2] J. Schone, S. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, F. Dimroth, W. Guter. Appl. Phys. Lett., 94, 223 504 (2009).
- [3] C. Algora, I. Rey-Stolle, I. Garcia, B. Galiana, M. Baudrit, P. Espinet, E. Barrigon, J.R. Gonzalez. *Proc. 34th IEEE Photovoltaic Specialists Conf. (PVSC)* (Philadelphia, 2009) p. 1571.
- [4] H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, N. Karam. Energy Environ. Sci., 2, 174 (2009).
- [5] В.М. Андреев, В.А. Грилихес, В.Д. Румянцев. Фотоэлектрическое преобразование концентрированного солнечного излучения (Л., Наука, 1989) [Пер. на англ.: V.M. Andreev, V.A. Grilikhes, V.D. Rumyantsev. Photovoltaic Conversion of Concentrated Sunlight (John Wiley & Sons, Ltd., 1997)].
- [6] А.М. Васильев, А.П. Ландсман. Полупроводниковые преобразователи (М., Сов. радио, 1971).
- [7] Х.К. Арипов, В.Д. Румянцев. ФТП, 17 (2), 358 (1983)
- [8] V.M. Emelyanov, N.A. Kalyuzhnyy, M.A. Mintairov, S.A. Mintairov, M.Z. Shvarts, V.M. Lantratov. *Proc. 25th EPSEC* (Barselona, 2010).
- [9] B. Galiana, C. Algora, I. Rey-Stolle. Progr. Photovolt.: Res. Appl., 16, 331 (2008).
- [10] D.J. Aiken, M.A. Stan, S.P. Endicter, G. Girard. Proc. 15th EPSEC (Valencia, 2005) p. 337.
- [11] V.S. Kalinovsky, V.V. Evstropov, V.M. Lantratov, M.A. Mintairov. *Proc. 24th PVSEC* (Hamburg, Germany, 2009).
- [12] Н.А. Калюжный. Автореф. канд. дис. (СПб., Изд-во Политехн. ун-та, 2011).
- [13] R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam. Appl. Phys. Lett., **90**, 183 516 (2007).
- [14] V.S. Kalinovsky, V.V. Evstropov, N.A. Kalyuzhnyy, V.M. Lantrator, S.A. Mintairov, V.M. Andreev. *Proc.* 23th EPSEC (Valencia, Spain, 2008).
- [15] Н.А. Калюжный, А.С. Гудовских, В.В. Евстропов, В.М. Лантратов, С.А. Минтаиров, Н.Х. Тимошина, М.З. Шварц, В.М. Андреев. ФТП, 44 (11), 1568 (2010).
- [16] В.М. Лантратов, Н.А. Калюжный, С.А. Минтаиров, М.З. Шварц, В.М. Андреев. ФТП, 41 (6), 751 (2007).
- [17] N.A. Kalyuzhnyy, S.A. Mintairov, M.A. Mintairov, V.M. Lantratov. Proc. 24th PVSEC (Hamburg, Germany, 2009) p. 538.
- [18] V.D. Rumyantsev, V.M. Andreev, V.R. Larionov, D.A. Malevskiy, M.Z. Shvarts. Proc. 4th Int. Conf. on Solar Concentrators for the Generation of Electricity or Hydrogen (El Escorial, Spain, 2007) p. 277.

Редактор Л.В. Шаронова

Photoelectric determination of series resistance of multi-junction colar cells

M.A. Mintairov, V.V. Evstropov, N.A. Kalyuzhnyi, C.A. Mintairov, N.Kh. Timoshina, M.Z. Shvartz, V.M. Lantratov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract A procedure has been proposed for determining the series resistance of multi-junction colar cell, R_s , in which the maximum on the efficiency as a function of sunlight concentration, $\eta(X)$, or of the operating voltage-photogenerated current characteristic $V_m(J_g)$ is used. In the present work, the proposition has been used that the series resistance in a limited but practically valuable range of photogenerated currents (up to the maximum of η) may be represented by a fixed value, which is linear and independent of J_g . It has been justified analytically that such resistance may be determined by the formula $R_s = (E/J_g)_{\eta=\max}$, where E = AkT/g, A, J_g are the local values of the ideality coefficient and photogenerated current at the maximum η (or V_m). It has been established that the R_s value determined by this method does not depend on the spectral compossition of the incident radiation, as it has been borne out experimentally in investigation of the triple junction InGaP/GaAs/Ge solar cell photovoltaic characteristics. The procedure is valid for both multijunction and single-junction photoelectric converters.