Влияние точечных дефектов на фазовые переходы в сегнетоэлектрических нанокристаллах

© В.Н. Нечаев, А.В. Висковатых

Воронежский государственный технический университет, Воронеж, Россия E-mail: kafedra@vmfmm.vorstu.ru

> Получены зависимости температуры фазового перехода сегнетоэлектрических нанокристаллов в матрице диэлектрика от концентрации в них точечных заряженных дефектов. Исследовано влияние точечных дефектов на нелинейные характеристики сегнетоэлектрических нанокристаллов в зависимости от величины и направления внешнего электрического поля при точном учете деполяризующих электрических полей и нелокальных эффектов.

Как известно [1,2], термодинамические характеристики и кинетические коэффициенты реальных сегнетоэлектрических кристаллов в значительной мере определяются точечными дефектами. В сегнетоэлектрических образцах ограниченного размера и, в особенности, в нанокристаллах в отличие от массивных образцов, где влияние точечных дефектов обусловлено неоднородным распределением поляризации, важен также учет деполяризующих полей и граничных условий на поверхности образца. Помимо этого возрастает роль нелинейных эффектов, которыми уже нельзя пренебречь, поскольку температура фазового перехода существенно отличается от температуры перехода в неограниченных кристаллах.

Пусть сегнетоэлектрический образец I, представляющий собой эллипсоид вращения с полуосями *a* и *b*, помещен в диэлектрическую матрицу II. При проведении расчетов принималось, что параметр *a* — малая полуось эллипсоида вращения — меняется в пределах от 20 до 50 Å, а отношение a/b = 5. Предполагалось также, что сегнетоэлектрик одноосный с сегнетоактивной осью, совпадающей с большой осью эллипсоида и направленной вдоль координатной оси O_z . Следовательно, вектор поляризации имеет только одну компоненту $\mathbf{P} = \{0, 0, P\}$. Полная система соотношений, описывающая поведение сегнетоэлектрика при изменении температуры, включает в себя уравнения равновесия для компоненты вектора поляризации $P(\mathbf{r})$

$$-\kappa \cdot \Delta P - \alpha P + \beta P^3 = -\frac{\partial \varphi}{\partial z}.$$

Уравнение же для электростатического потенциала $\varphi(\mathbf{r})$ в сегнетоэлектрической области имеет вид

$$\Delta(\varepsilon_1 \varphi) = 4\pi \, \frac{\partial P}{\partial z} - 4\pi \rho(\mathbf{r})$$

Для диэлектрической матрицы (область II) решается уравнение Лапласа

$$\Delta(\varepsilon_2 \varphi) = 0.$$

Граничные условия к уравнениям на границе Г области I имеют вид

$$\begin{aligned} \frac{\partial P}{\partial n} &- \frac{1}{s} P \big|_{\Gamma=0}, \\ \varphi^{(\mathrm{I})} \big|_{\Gamma} &= \varphi^{(\mathrm{II})} \big|_{\Gamma}, \\ \varepsilon_2 \frac{\partial \varphi^{(\mathrm{II})}}{\partial n} \Big|_{\Gamma} &= \left(\varepsilon_1 \frac{\partial \varphi^{(\mathrm{I})}}{\partial n} - 4\pi P \cdot \mathbf{n} \right) \Big|_{\Gamma} \end{aligned}$$

Граничные условия на внешних границах композита, имеющего форму куба с ребром *L*, таковы: $\varphi = 0$ на нижней грани, $\varphi = -E^{\text{ext}}L$ на верхней грани, $\partial \varphi / \partial n = 0$ на боковых гранях куба.

Здесь использованы следующие обозначения: α, β — коэффициенты разложения Ландау термодинамического потенциала по степеням вектора поляризации, κ — корреляционная постоянная, ε_1 и ε_2 — диэлектрическая проницаемость сегнетоэлектрика и диэлектрической матрицы соответственно, ε_1 описывает электронный вклад в диэлектрическую проницаемость, *s* — параметр, характеризующий взаимодействие сегнетоэлектрического выделения с матрицей, **n** — единичный вектор нормали к поверхности Γ , $\rho(\mathbf{r})$ — плотность электрических зарядов, $E^{\text{ехt}}$ — напряженность электрического поля. Вывод этих уравнений из вариационного принципа дан в [3].

Нелинейная система уравнений решалась численно методом конечных элементов в пакете прикладных программ ComSol Multiphysics. Первой целью являлось исследование поведения температуры фазового перехода в образце с заряженными точечными дефектами. Для этого решение приведенной системы сравнивалось с решением для такого же образца без дефектов [4]. Согласно [4], температура фазового перехода T_C , в зависимости от размеров образца, его формы, параметра s может смещаться от нескольких градусов до десятков градусов. Существует критический размер образца, при котором происходит переход от однородного распределения поляризации в плоскости, перпендикулярной сегнетоактивной оси, к неоднородному — "доменоподобному". Это неоднородное состояние обладает значительной жесткостью по отношению к внешним воздействиям и приводит, например, к снижению восприимчивости в таких

Рис. 1. Смещение температуры фазового перехода сегнетоэлектрического включения в зависимости от концентрации точечных дефектов *c* при s = 0. a = 20 (*a*) и 50 Å (*b*).

образцах. Если b/a = 5, $s \to 0$, то критический размер, при котором происходит переход к "доменоподобному" состоянию, равен $a_{\rm cr} = 25$ Å. Похожий переход из однородного в неоднородное состояние наблюдался и обсуждался в тонких ферромагнитных пленках [5]. В образцах с заряженными точечными дефектами происходит дополнительное смещение ΔT_C температуры фазового перехода. Это смещение ΔT_C , конечно, зависит от a, b, s, но не превышает нескольких градусов даже при высокой концентрации точечных дефектов c = n/N, где *п* — количество точечных заряженных дефектов, *N* количество атомов в сегнетоэлектрическом выделении (рис. 1). Зависимость $\Delta T_C(c)$ имеет нелинейный характер. Другая особенность образцов с точечными дефектами заключается в том, что вблизи Т_С дефектного образца наблюдается неоднородное вдоль сегнетоактивной оси распределение поляризации, обусловленное дефектами, которое существует в зависимости от a, b, s в температурном интервале порядка десятых долей градуса, сменяясь затем однородным распределением.

Вторая цель проводимых исследований — изучение влияния заряженных точечных дефектов на нелинейные характеристики сегнетоэлектрических нанокристаллов. Для этого исследовалась диэлектрическая проницаемость композита в зависимости от концентрации дефектов c, а также от величины и ориентации (по отношению в вектору **P**) напряженности электрического поля **E**. Результаты численного решения системы представлены

Рис. 2. Зависимость диэлектрической проницаемости композита от величины напряженности безразмерного электрического поля E/P_0 при различной концентрации *с* точечных дефектов для a = 20 Å, s = 0. c = 0 (1, 1'), $2.025 \cdot 10^{-3}$ (2, 2'), $6.755 \cdot 10^{-3}$ (3, 3'). 1-3 — поле Е направлено противоположно Р, 1'-3' — поле Е сонаправлено с Р.

Рис. 3. Зависимость диэлектрической проницаемости композита от величины напряженности безразмерного электрического поля E/P_0 при различной концентрации *с* точечных дефектов для a = 50 Å, s = 0. c = 0 (1, 1'), $1.031 \cdot 10^{-4}$ (2, 2'), $3.438 \cdot 10^{-4}$ (3, 3'). 1-3 — поле Е направлено противоположно Р, 1'-3' — поле Е сонаправлено с Р.

на рис. 2, 3. Как видно из рисунков, нелинейные свойства сегнетоэлектрического выделения при наличии дефектов начинают проявляться при более низких значениях E. Существенно более низкие значения диэлектрической проницаемости для образцов с величиной a = 50 Å объясняются наличием в них отмеченной выше неоднородной структуры.

Все расчеты выполнены с использованием параметров кристалла триглицинсульфата [6], помещенного в матрицу оксида кремния SiO₂ с диэлектрической проницаемостью $\varepsilon_2 = 4$.

Поводя итоги исследования, отметим, что влияние заряженных точечных дефектов приводит к заметным эффектам и их вклад необходимо учитывать при интерпретации экспериментальных данных по термодинамическим и кинетическим свойствам сегнетоэлектриков малых размеров.

Список литературы

- А.П. Леванюк, В.В. Осипов, А.Г. Сигов, А.А. Собянин. ЖЭТФ 76, 345 (1976).
- [2] Б.М. Даринский, В.Н. Нечаев, В.Н. Федосов. ФТТ 22, 3129 (1980).
- [3] В.Н. Нечаев, А.В. Шуба, А.В. Висковатых. Изв. РАН. Сер. физ. 74, 1273 (2010).
- [4] В.Н. Нечаев, А.В. Висковатых. Материалы VII Междунар. семинара. "Физико-математическое моделирование систем". ВГТУ, Воронеж (2011). Ч. 3. С. 15.
- [5] Н.М Саланский, М.Ш. Ерухимов. Физические свойства и применение магнитных пленок. Наука, Новосибирск (1975). 222 с.
- [6] Р. Иона, Д. Ширане. Сегнетоэлектрические кристаллы. Мир, М. (1965). 556 с.