12

Влияние внешних воздействий на самоорганизацию наноструктур теллуридов свинца и олова на поверхности (111) ВаF₂ в условиях, близких к термодинамическому равновесию

© А.П. Бахтинов¹, В.Н. Водопьянов¹, В.И. Иванов¹, З.Д. Ковалюк¹, О.С. Литвин²

¹ Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Черновицкое отделение,

Черновцы, Украина

² Институт физики полупроводников им. В.Е. Лашкарева НАН Украины,

Киев, Украина

E-mail: chimsp@ukrpost.ua

(Поступила в Редакцию 15 мая 2012 г.)

Методом атомно-силовой микроскопии исследована морфология наноструктур PbTe и SnTe, выращенных на подложках BaF₂ (111) из паровой фазы в вакууме в условиях, близких к термодинамическому равновесию. Исследованы равновесная форма квантовых точек PbTe и SnTe, а также статистические параметры массивов этих точек в зависимости от термодинамических условий выращивания, рассогласования параметров кристаллических решеток материалов квантовых точек и подложки, упругих свойств этих материалов. Установлено, что при деформировании подложки BaF₂ (111) внешней механической нагрузкой в результате самоорганизации дислокаций на поверхности BaF2 (111) может быть сформирован упорядоченный на наномасштабном уровне деформационный рельеф, который может использоваться для формирования наноструктур. Морфология этого рельефа зависит от величины внешней нагрузки и от температуры, при которой осуществляется деформация подложки. Показано, что деформационное воздействие на поверхность подложки, а также оптическое облучение зоны роста наноструктур влияют на зарождение островков и кинетические процессы, протекающие на поверхности подложки в процессе их роста. В условиях внешних воздействий на поверхности BaF₂ (111) при определенных термодинамических условиях могут быть выращены наноструктуры SnTe и PbTe с различной морфологией: сплошные эпитаксиальные слои толщиной менее 10 nm, однородные массивы квантовых точек с высокой латеральной плотностью (более 10¹¹ cm²), квазипериодические латеральные наноструктуры (нанопроволоки), "одиночные" и "спаренные" квантовые точки, "молекулы" квантовых точек.

1. Введение

Наноструктуры с квантовыми точками (КТ) на основе полупроводников (ПП) А^{IV}В^{VI} представляют интерес для использования в фотоэлектрических преобразователях [1,2], термогенераторах [3], светодиодных [4,5] и лазерных [6] структурах для ближней и средней ИКобласти оптического спектра. Для формирования КТ в этих структурах используются различные механизмы самоорганизации, которые имеют место при химическом синтезе покрытых органическими оболочками коллоидных нанокристаллов [7] и осаждении материала из паровой фазы в вакууме [8,9]. "Коллоидные" КТ имеют округлую (близкую к сферической) геометрическую форму. Они рассматриваются как наночастицы со сферической симметрией или как наностержни [10] КТ соединений А^{IV} В^{VI} могут быть также сформированы осаждением из паровой фазы в вакууме по механизму роста Странского-Крастанова (СК) на поверхности эпитаксиальных слоев ПП А^{IV} В^{VI}, предварительно выращенных на диэлектрических подложках BaF₂ (111) [11,12]. На подложках $BaF_2(111)$ КТ $A^{IV}B^{VI}$ растут по механизму Фолмера–Вебера (ФВ) [11,13–16]. Равновесная форма КТ PbTe, которые формируются при этом при высоких (близких к 400°C) температурах подложки, представляет собой трехгранную пирамиду [17]. Основной характеристический параметр ("аspect ratio"), который характеризует равновесную форму и определяет энергетический спектр КТ, равен отношению высоты пирамиды к ее латеральному размеру. В теоретической работе [18] показано, что равновесная форма КТ, выращенных по механизму ФВ, зависит от величины рассогласования постоянных кристаллических решеток осаждаемого материала и подложки, их упругих постоянных, а также определяется дальнодействующим упругим взаимодействием, которое осуществляется между КТ через подложку. Влияние этих факторов на равновесную форму КТ $A^{IV}B^{VI}$ и статистические параметры массивов КТ практически не исследовано.

Геометрические и статистические параметры массивов КТ РbTe, выращенных осаждением материала из паровой фазы в вакууме в квазиравновесных термодинамических условиях на подложке BaF_2 (111), определяются термодинамическими параметрами выращивания [14] и кинетическими процессами, протекающими на подложке при их росте [19]. При заданных термодинамических условиях на процессы зарождения КТ и морфологию массивов КТ можно влиять, если воздействовать различными внешними факторами на зону роста наноструктур. В качестве этих факторов могут быть использованы

электромагнитное излучение, акустические волны, заряженные частицы, электрические и магнитные поля, деформирующая подложку внешняя механическая нагрузка и др. Исследование процессов самоорганизации наноструктур при наличии внешних воздействий является актуальным направлением развития современных нанотехнологий [20].

Проведенные ранее исследования электрофизических характеристик, фотолюминесцентных свойств и структурного совершенства эпитаксиальных слоев $\Pi \Pi A^{IV} B^{VI}$ на подложках BaF₂ (111), выращенных в квазиравновесных термодинамических условиях методом фотостимулированной эпитаксии, показали, что использование светового воздействия на зону роста слоев сильно влияет на их структурные и электрические свойства, а также на квантовый выход фотолюминесценции слоев [21]. Механизм воздействия оптического излучения на рост этих слоев связан с диссоциацией осаждаемых молекул соединений А^{IV}В^{VI} при облучении газовой фазы вблизи поверхности подложки, изменением заряда на поверхности подложки и адсорбционных свойств этой поверхности, а также с взаимодействием структурных дефектов между собой в процессе роста толстых (толщиной порядка нескольких микрометров) слоев [22]. Исследования влияния оптического излучения на процессы зарождения 3D-островков соединений А^{IV}В^{VI}, эволюцию их геометрической формы и коалесценцию этих островков на ранних стадиях формирования эпитаксиального слоя не проводились.

Исследования морфологии наноструктур РbTe, выращенных термическим осаждением из паровой фазы в квазиравновесных термодинамических условиях в вакууме при деформационном воздействии на подложку ВаF₂ (111) внешней механической нагрузкой, показали, что пластическая деформация подложки приводит к возникновению на ней поверхностных дефектов. Деформации влияют на кинетические процессы, которые протекают при осаждении испаряемого материала на поверхности (111) ВаF₂, на равновесную форму КТ и статистические параметры массивов этих КТ [15]. Разработанная концепция "defect engineering" предполагает использование дефектов на поверхности подложки для формирования разных по морфологии наноструктур и когерентных "нанопьедесталов" при выращивании КТ на поверхности полупроводников по ростовому механизму СК [23]. При такой технологии используется упругое взаимодействие между осаждаемым материалом и наноразмерной областью подложки, которая содержит дислокации. Оптические микроскопические исследования поверхности деформированных кристаллов BaF₂ показали, что при высоких температурах $T > 0.5T_m$ (где $T_m \sim 1553 \, {
m K} - {
m температура}$ плавления BaF) наблюдается локализация пластической деформации в узких микрополосах сдвига, расположенных вдоль систем активного скольжения $\{001\}\langle 110\rangle$ [24]. Известно, что поверхностный деформационный рельеф, который образуется при деформировании кристалла при разных температурах и механических нагрузках, отражает процесс локализации деформации в кристалле на мезо-, микро- и наномасштабном уровне [25]. В результате проведенных ранее методом атомно-силовой микроскопии (АСМ) исследований было установлено, что упорядоченная система поверхностных дефектов может быть сформирована на наномасштабном уровне на поверхности деформированных слоев CaF₂ (111) (выращенных на поверхности Si (111) [12]), а также на поверхности (111) деформированных под действием внешней нагрузки монокристаллических подложек BaF₂ [15]. Если пластическую деформацию кристаллов осуществлять при разных температурах и нагрузках, то в результате самоорганизации дислокаций на их поверхности может быть сформирован различный по морфологии наномасштабный дислокационный рельеф [25]. Представляет интерес исследование морфологии наноструктур соединений A^{IV}B^{VI}, выращенных по механизму ФВ на деформированных подложках $BaF_2(111)$ с таким рельефом.

В настоящей работе представлены результаты проведенных АСМ-исследований морфологии наноструктур РbTe и SnTe, выращенных на монокристаллических подложках BaF₂ (111) из паровой фазы в условиях, близких к термодинамическому равновесию. Исследовано влияние термодинамических условий выращивания, рассогласования кристаллических решеток осаждаемых материалов и подложки BaF₂ (111) и их упругих свойств на равновесную форму и статистические параметры массивов КТ этих материалов. В работе представлены результаты исследований морфологии наноструктур РbTe и SnTe, выращенных на деформированных при разных температурах подложках BaF₂ (111). Исследована морфология наноструктур PbTe, выращенных на недеформированных подложках BaF₂ (111) в условиях оптического облучения зоны роста наноструктур.

2. Образцы и методика эксперимента

Для выращивания КТ РbTe и SnTe использовался метод "горячей стенки" [14]. КТ формировались осаждением материала из паровой фазы в вакууме на сколах BaF₂ (111). Рост КТ осуществлялся в квазиравновесных термодинамических условиях при молекулярном режиме протекания потока пара ($\sim 10^{12}{-}10^{13}\,mol/cm^2\cdot s).$ При отсутствии внешних воздействий на зону роста скорость роста слоев составляла $\sim 0.01 - 1 \text{ ML/s}$ (для PbTe 1 монослой (ML) = = 3.23 Å). При выращивании КТ использовались следующие температурные режимы: температура испарения материала составляла $\sim T_{\rm ev} = 623 - 700 \, {\rm K}$, температура стенки $\sim T_w = 673 - 743$ К, температура подложки $\sim T_s = 573 - 673$ К. При заданной температуре $T_{\rm ev}$ степень пересыщения пара в зоне конденсации определялась разностью температур T_{ev} и T_s , а также температурным градиентом вдоль "горячей стенки" (ΔT_w).

Метод "горячей стенки" позволяет эффективно исследовать влияние внешних воздействий на кинетические процессы, протекающие на подложке при росте наноструктур, и исключить влияние случайных факторов на результаты исследований [15]. Молекулы осаждаемого вещества, которые под действием внешних факторов могут покидать поверхность подложки, при росте в квазизамкнутом объеме остаются в зоне конденсации, где устанавливается термодинамическое равновесие. Применение этой технологии выращивания позволяет также исключить влияние остаточной атмосферы в вакуумной камере на рост наноструктур. Избыточное давление, которое создается молекулами испаряющего материала в квазизамкнутом объеме, препятствует проникновению атомов и молекул остаточной атмосферы в зону конденсации и их адсорбции на подложке. Известно, что присутствие посторонних атомов и молекул на поверхности подложки влияет на диффузию осажденных молекул и атомов и ее поверхностную энергию. Это может приводить к изменению равновесной формы КТ и даже механизма роста КТ [26].

Деформирование подложки внешней механической нагрузкой производилось по методике, описанной в [15]. Сосредоточенная загрузка прикладывалась перпендикулярно верхней поверхности подложки BaF₂ (111). Величина этой нагрузки (~ 20 MPa) превышала предел упругости для BaFe₂ при T = 573 K ($\sigma_T = 17$ MPa) [24]. Нагруженные подложки отжигались при различных температурах, выбранных из интервала $T_{ann} = 573 - 943$ K, в течение 30 min. После проведения отжига температура подложки понижалась до значения T_s, при котором проводилось осаждение материала. Материал осаждался на нижнюю, подвергнутую растяжению поверхность деформированной подложки BaF2 (111), которая располагалась на маске. В одном технологическом цикле осаждение одновременно производилось на две подложки. Одна из подложек свободно размещалась на маске, другая деформировалась сосредоточенной нагрузкой.

Оптическое облучение зоны роста в процессе формирования наноструктур проводилось через подложку по схеме, которая применялась при фотостимулированной вакуумной эпитаксии тонких слоев соединений $A^{IV}B^{VI}$ в условиях, близких к термодинамическому равновесию [21]. В качестве непрерывного источника излучения использовалась лампа с кварцевой оболочкой КГМ-500, излучающая свет в широком диапазоне длин волн. Интегральная плотность оптического излучения, сфокусированного на прозрачной для оптического излучения в диапазоне длин волн $0.15-12.5\,\mu$ m подложке BaF_2 (111), не превышала 10 W/cm².

Морфология поверхности наноструктур изучалась методом АСМ. Этот метод позволяет эффективно исследовать наноструктуры, которые выращены на непроводящих подложках [27]. Для проведения исследований использовался атомно-силовой микроскоп Nanoscope IIIa Dimension 3000SPM (Digital Instruments). АСМизмерения проводились в режиме периодического контакта (tapping mode). Радиус острия зонда микроскопа не превышал 10 nm. Измерения проводились на воздухе (*ex situ*) после выращивания образцов.

Экспериментальные результаты и их обсуждение

3.1. Морфология наноструктур РbTe и SnTe, сформированных без применения внешних воздействий на зону их роста. Энтальпии сублимации молекул PbTe и SnTe практически не различаются и составляют величину ~ 52.3 kcal/mol, а испарение этих материалов происходит без диссоциации молекул в газовой фазе [28,29]. Величина постоянной кристаллической решетки а для кубических кристаллов PbTe и SnTe при $T = 300 \,\mathrm{K}$ составляет 6.462 и 6.327 Å соответственно, а для BaF₂ — 6.2 Å. Величина параметра рассогласования по постоянной кристаллической решетки $m = \Delta a / a$ для слоев РbTe и SnTe на подложке BaF2 (111) составляет $\sim 4.2 \cdot 10^{-2}$ и $\sim 2 \cdot 10^{-2}$ соответственно. Латеральная плотность массивов КТ, выращенных на этой подложке в условиях, близких к термодинамическому равновесию, зависит от величины пересыщения газовой фазы. При постоянном значении температуры стенки T_w она увеличивается с ростом разности между значениями температуры испарения материала Tev и температуры подложки T_s. Максимальная латеральная плотность сформированных при $T_s = 573 - 613 \,\mathrm{K}$ массивов КТ РbTe составляет $\sim 5\cdot 10^{10}\,\mathrm{cm}^{-2}$ [14]. Латеральная плотность массивов КТ SnTe (рис. 1), сформированных при аналогичных термодинамических условиях, составляет $\sim (4-5) \cdot 10^{11} \, \mathrm{cm}^{-2}$. Отметим, что сформированные при $T_s < 623$ К КТ SnTe имеют округлую геомет-

Рис. 1. Трехмерное ACM-изображение KT SnTe, выращенных на поверхности подложки BaF₂ (111) при температуре подложки $T_s = 575$ K, температуре испарения материала $T_{ev} = 623$ K, температуре стенки $T_w = 740$ K. Подложка не подвергалась деформационному воздействию и оптическому облучению.

Рис. 2. Трехмерные ACM-изображения (a, b) и гистограммы распределения по размерам (c, d) KT PbTe, выращенных на поверхности подложки BaF₂ (111) при температуре подложки $T_s = 643$ K, $T_{ev} = 673$ K, $T_w = 733$ K. Время осаждения материала t = 1.5 (*a*) и 3 min (*b*–*d*). Подложки не подвергались деформационному воздействию и оптическому облучению.

рическую форму, которая характерна для "коллоидных" КТ А^{IV}В^{VI} [10]. Отсутствие кристаллической огранки КТ наблюдалось для наноструктур PbTe, которые были выращены на подложках BaF2 (111) при низких температурах ($T_s < 623 \text{ K}$) [13,14]. Свободная поверхностная энергия для PbTe (111) и SnTe (111) больше, чем для ВаF₂ (111). Поэтому рост КТ этих соединений на подложках $BaF_2(111)$ проходит по механизму ФВ [11,17]. Выращенные при более высоких температурах подложки $(T_s > 623 \, \text{K})$ КТ РbTe имеют кристаллическую огранку уже на начальных стадиях формирования (при эффективной толщине $d_{\rm eff}$ осажденного материала $\sim 0.8\,{
m ML})$ (рис. 2, *a*). Размеры этих КТ сильно различаются. Зарождение КТ при формировании массивов по механизму ФВ происходит непрерывно в процессе осаждения материала. С этим связана значительная по величине дисперсия их распределения по высоте. Она увеличивается с ростом количества осажденного на подложку материала. Об этом свидетельствуют гистограммы распределения КТ РbTe по геометрическим размерам для сформированного в течение 3 min массива ($d_{\rm eff} \sim 2.7 \, {\rm ML}$) (рис 2, *c*, *d*). Значения дисперсии латерального размера и высоты КТ при этом составляют ~ 23 и ~ 24.5% соответственно. Значение коэффициента r ("aspect ratio") для этих КТ составляет ~ 0.19. Сравнение АСМ-изображений массивов КТ РbTe, сформированных при одинаковых термодинамических условиях в течение различного времени (1.5 и 3 min) (рис. 2, a, b), показывает рост коэффициента r от ~ 0.07 до ~ 0.19 при увеличении объема КТ. Такой характер изменения равновесной формы в процессе роста КТ по механизму ФВ согласуется с результатами теоретического исследования [18], а также с результатами АСМ-исследований массивов КТ РbTe, выращенных на BaF₂ (111) методом молекулярно-пучковой эпитаксии [13]. Наблюдаемое увеличение "aspect ratio" КТ при увеличении их объема отражает противодействие энергии упругой деформации, аккумулированной в когерентных 3D-островках, смачиванию [18]. Исследование равновесной формы КТ РbТе проводилось по методике, которая применялась для КТ PbSe, выращенных по

механизму СК на поверхности РbTe [30]. При этом использовалось статистическое распределение углов наклона кристаллографических плоскостей (граней КТ) для разных точек АСМ-изображения анализируемого массива. В результате этих исследований установлено, что равновесной формой сформированных на подложках BaF₂ (111) КТ РbTe является трехгранная пирамида [16]. Основание этой пирамиды лежит в плоскости $BaF_{2}(111)$, а ее боковая поверхность образована пересечением плоскостей с минимальной поверхностной энергией {100} для РbTe. Такую равновесную форму имеют также КТ SnTe, которые сформированы при высоких температурах подложки $T_s > 623 \,\mathrm{K}$ (рис. 3). Следует отметить, что максимальная латеральная плотность для массивов ограненных КТ SnTe составляет $\sim 1.23 \cdot 10^{11} \, \mathrm{cm}^{-2}$. Для массивов ограненных КТ РbTe это значение $\sim 8 \cdot 10^{10} \, {\rm cm}^{-2}$ [14]. Выращенные на поверхности BaF₂ (111) ограненные КТ SnTe и PbTe, которые имеют одинаковый объем, различаются по величине коэффициента г. Величина этого коэффициента для КТ SnTe выше, чем для КТ РbTe.

Равновесная форма КТ формируется в результате релаксации упругих напряжений в когерентнонапряженных островках. Напряжения связаны с рассогласованием кристаллических решеток материалов КТ и подложки. Для КТ, сформированных по механизму ФВ из материалов с изотропными упругими свойствами, величина коэффициента r возрастает с увеличением параметра рассогласования *т* кристаллических решеток материалов КТ и подложки [18]. Равновесная форма КТ также зависит от упругих постоянных материалов подложки и КТ [18]. Параметр *m* для КТ SnTe, сформированных на подложках $BaF_2(111)$, меньше, чем для выращенных на этой подложке КТ РbTe. Поэтому КТ SnTe, которые имеют одинаковый объем с КТ РbTe, должны обладать меньшими значениями "aspect ratio". Однако на АСМ-изображениях это не наблюдается. Для объяснения различия в значениях коэффициента r для KT, сформированных на основе разных материалов А^{IV}В^{VI}, необходимо учитывать анизотропию упругих свойств этих материалов. Она влияет на латеральное и вертикальное упорядочение КТ в сверхрешетках, сформированных на основе этих соединений [31], а также на физические свойства тонких эпитаксиальных слоев A^{IV}B^{VI}, выращенных на подложках BaF₂ (111) [32]. Коэффициент анизотропии упругих свойств А для кубической фазы материалов A^{IV}B^{VI} практически отражает соотношение между значениями модуля Юнга Е вдоль направлений (111) и (001) [31]. В отличие от изотропных материалов (для которых A = 1) и полупроводников IV, III-V и II-VI групп (для которых A > 1) для материалов $A^{IV}B^{VI}$ коэффициент анизотропии *A* < 1. Кристаллографическое направление (111) для полупроводников A^{IV}B^{VI} является "мягким", а направление (001) — "твердым" [31]. Это значит, что при одинаковых нагрузках деформация кристаллической решетки для этих полупроводников происходит легче в направлении (111) (вдоль высо-

Рис. 3. Двумерное ACM-изображение KT SnTe, выращенных на поверхности подложки BaF_2 (111) при $T_s = 650$ K, $T_{ev} = 673$ K, $T_w = 730$ K. Подложка не подвергалась деформационному воздействию и оптическому облучению.

ты КТ), чем в направлении $\langle 001 \rangle$. Соединение SnTe (A = 0.18) обладает более выраженной анизотропией упругих свойств, чем PbTe (A = 0.27) [31]. При релаксации упругих напряжений в КТ, изготовленных из материалов $A^{IV}B^{VI}$ с высокой анизотропией упругих свойств, увеличение "aspect ratio" КТ происходит за счет их преимущественного вытягивания в высоту. Необходимо также учитывать, что в подложке BaF₂ (111) в окрестности каждой КТ существует поле напряжений. При увеличении плотности массивов КТ поля этих напряжений перекрываются. Упругое взаимодействие между КТ, которое осуществляется в плотных массивах КТ SnTe через подложку, также может приводить к увеличению их "aspect ratio" [18].

Латеральная плотность массивов КТ зависит от степени пересыщения газовой фазы в зоне их роста. Она связана с адсорбционными и диффузионными процессами, которые протекают на поверхности BaF₂ (111), и не зависит от упругих свойств материалов подложки и КТ [18]. Флюориты BaF₂ и CaF₂ относятся к так называемым суперионным проводникам — кристаллам, которые обладают высокой ионной проводимостью (~ 100 $\Omega^{-1} \cdot m^{-1}$) [33]. Она наблюдается при температурах гораздо ниже температуры плавления BaF₂ и значительно превышает проводимость обычных ионных кристаллов (~ $10^{-6} \Omega^{-1} \cdot m^{-1}$). Ионная проводимость BaF₂ связывается с подвижными дефектами в подрешетке анионов. Для этих кристаллов разупорядочение в дефектной подрешетке с ростом температуры возрастает, а подрешетка катионов остается стабильной. Монокристаллы BaF₂ состоят из слоев Ba и F, которые расположены параллельно плоскости (111) в последовательности

$$\dots -Ba-F-F-Ba-F-F-Ba-\dots$$

Поверхность BaF₂ (111) формируется в результате скола между соседними слоями атомов фтора [34]. Оборванные связи атомов F являются центрами адсорбции молекул SnTe и PbTe на этой поверхности. Формирование термодинамически устойчивых кластеров (критических зародышей) на поверхности ионного кристалла происходит при адсорбции молекул в местах локализации заряженных дефектов практически мгновенно [27]. Сформированные на этих поверхностях при низких температурах подложки КТ обычно имеют округлую (куполообразную) форму без кристаллической огранки [27]. Куполообразная геометрическая форма КТ наблюдается при самоорганизации островков в гетероэпитаксиальных системах. Например, для наноразмерных островков Ge, которые были сформированы путем самоорганизации на Si-подложке и имели объем, превышающий некоторое "критическое" значение, геометрическая форма пирамидальных островков изменялась и становилась куполообразной [35]. Этот процесс связывался с оствальдовским созреванием островков в процессе роста и объяснялся с точки зрения сохранения минимальной поверхностной энергии островков при изменении их равновесной формы. В отличие от [35] куполообразная форма КТ SnTe наблюдается уже на начальных стадиях их роста на подложке $BaF_2(111)$ (рис. 1) и не изменяется в процессе роста наноструктур.

Адсорбция молекул на поверхности ионного кристалла может сопровождаться их диссоциацией или происходить без диссоциации [36]. При низких температурах подложки T_s диссоциация молекул SnTe и PbTe на поверхности BaF₂ (111) практически не происходит [22]. Химический состав KT SnTe и PbTe, которые были сформированы на поверхности BaF₂ (111) в квазиравновесных условиях, соответствует составу испаряющего материала. Это подтверждается результатами исследований состава KT, проведенных методом EDX-спектроскопии (energy dispersive X-ray spectroscopy) [16]. Массивы куполообразных и ограненных KT SnTe сильно различаются по морфологии и статистическим характеристикам. Выращенные при низких температурах

подложки ($T_s < 623$ K) наноструктуры SnTe (рис. 1) в отличие от выращенных при более высоких температурах T_s массивов ограненных KT характеризуются высокой латеральной плотностью и однородностью. Высокая однородность массивов KT SnTe (рис. 1) может быть обеспечена при условии, если KT зарождаются на подложках BaF₂ (111) практически одновременно. Коалесценция KT в них практически не наблюдается. Отметим, что на ACM-изображениях массивов ограненных KT (рис. 3), которые имеют меньшую латеральную плотность по сравнению с массивами куполообразных KT, наблюдается коалесценция отдельных KT.

Сформированные при низких Т_s на подложках BaF₂ (111) массивы КТ SnTe и PbTe имеют морфологию, характерную для массивов металлических КТ, выращенных на поверхности окислов или полупроводников. Морфология таких структур формируется в результате самоорганизации КТ при наличии двойного электрического слоя на границе раздела между КТ и подложкой [37]. Она определяется электрическим взаимодействием между молекулярными кластерами и подложкой, которое препятствует их коалесценции, и ван-дер-ваальсовым взаимодействием между кластерами [37]. При формировании КТ SnTe и PbTe на подложке $BaF_2(111)$ при низких температурах Т_s двойной электрический слой может быть создан подвижными ионами F⁻ на поверхности этой подложки и электрическим зарядом носителей заряда, который индуцируется в адсорбированных молекулах А^{IV}В^{VI} при их контакте с заряженной поверхностью подложки [36]. Известно, что электрический потенциал на границе раздела между молекулярным кластером и подложкой сильно влияет на величину контактного угла между ними в сторону увеличения смачивания подложки [38]. Увеличение смачивания поверхности подложки способствует уменьшению эффективного барьера зародышеобразования на этой поверхности и обусловливает высокую латеральную плотность массивов КТ [18]. Можно предположить, что различие в значениях латеральной плотности для массивов КТ SnTe и PbTe связано с различным смачиванием поверхности BaF₂ (111) этими материалами, которое зависит от электрического взаимодействия между осаждаемыми молекулами и подложкой.

Вероятность диссоциации и скорость диффузии молекул соединений $A^{IV}B^{VI}$ на поверхности BaF₂ (111) возрастают с увеличением температуры подложки T_s [22]. При высоких значениях T_s (> 623 K) рост эпитаксиальных слоев происходит с участием "свободных" атомов металла и халькогена [22], образовавшихся после диссоциации молекул $A^{IV}B^{VI}$ на поверхности подложки. Он начинается с образования химических связей между металлическими атомами осаждаемого вещества и оборванными связями фтора [34]. Сформированные при высоких температурах подложки с участием "свободных" атомов металла и халькогена КТ $A^{IV}B^{VI}$ имеют форму трехгранной пирамиды [11,14–17]. При выращивании в квазизамкнутом объеме атомы халькогена, которые образуются после диссоциации падающих на подложку молекул $A^{IV}B^{VI}$, остаются в зоне роста наноструктур. В определенном интервале температур Т_s они могут присутствовать на поверхности подложки в виде тонкого слоя [26], который сильно влияет на процессы самоорганизации наноструктур (например, слой Те при росте КТ CdSe на ZnSe (001) [39]). Он влияет на соотношение между свободными энергиями поверхности подложки и растущего островка. Наличие этого слоя может инициировать переход от механизма 3D-роста наноструктур к псевдоморфному 2D-росту [26]. Такой процесс наблюдался при выращивании наноструктур PbTe на подложках BaF₂ (111) в условиях, близких к термодинамическому равновесию, в узком диапазоне значений температур подложки T_s (623 > T_s > 613 K) [16]. При более высоких значениях T_s наблюдался 3D-рост ограненных КТ РbTe, равновесная форма которых хорошо описывается теорией [18].

3.2. Морфология наноструктур PbTe и SnTe, выращенных при деформационном воздействии на подложку BaF2 (111) в процессе их формирования. Пластическая деформация кристаллов начинается с активизации объемных (дислокационных) источников [25]. Скорость движения дислокаций в объемных кристаллах флюоритов достаточно высокая. Она составляет $\sim 0.1 - 100 \,\mu m/s$ в температурном интервале 273-373 К при приложенных внешних нагрузках 1-100 МРа [40] и возрастает с ростом температуры кристалла. При деформировании кристалла BaF₂ устойчивый деформационный рельеф на его поверхности формируется в течение нескольких десятков минут [15]. Для кристаллов BaF₂ (CaF₂) плоскостями скольжения дислокаций являются кристаллографические плоскости {100}, наклоненные под углом 54.7° по отношению к поверхности (111) [12,23,40]. При пластической деформации кристалла BaF₂ на его поверхности (111) формируются прямые поверхностные ступеньки, расположенные вдоль направлений (110). В результате пересечения трех плоскостей скольжения на поверхности подложки $BaF_2(111)$ формируется террасная структура, которая имеет треугольную форму. Она наблюдалась на наномасштабном уровне при исследованиях морфологии флюоритов поверхности деформированных слоев методами локальной зондовой микроскопии [12,40].

Температурная зависимость предела упругости для кристаллов BaF_2 исследована в [24]. При T < 573 К его величина экспоненциально уменьшается с ростом температуры до величины $\sim 17-20$ МРа и практически не изменяется в интервале температур T = 573-973 К ("атермической" [24] области). В работе [24] методами оптической микроскопии исследована высокотемпературная локализация пластической деформации, которая проявляется на микроскопическом уровне при деформации кристаллов BaF_2 при T > 773 К. В настоящей работе исследована морфология наноструктур, выращенных на подложках BaF_2 (111), которые были деформированы при разных значениях температуры T_{ann} из

"атермической" [24] области. В этом диапазоне температур деформационный рельеф на поверхности кристалла формируется при пластическом течении деформации на наномасштабном уровне и может быть обнаружен при помощи методов ACM и сканирующей туннельной микроскопии [15,25].

Морфология наноструктур SnTe и PbTe, выращенных на деформированных подложках, сильно зависит от температуры T_{ann}, при которой деформировалась подложка, и от температуры T_s, при которой формировались КТ. Сравнение АСМ-изображений наноструктур SnTe, выращенных в одном технологическом цикле на недеформированной (рис. 4, а) и деформированной (рис. 4, b) подложках BaF₂ (111) при низкой температуре $T_{ann} = T_s = 575 \, \text{K}$, показывает, что деформирование подложки при низкой температуре приводит к коалесценции островков SnTe и образованию сплошного слоя при толщине покрытия менее 5 nm. На рис. 4, b видны отдельные островки, высота которых не превышает 2 nm, на фоне поверхности сплошного слоя SnTe. Шероховатость этого слоя на участках между отдельными островками характеризуется средним квадратичным отклонением $\sim 0.09\,\text{nm}.$ Известно, что возникающие на поверхности деформированной подложки напряжения влияют на адсорбцию атомов и молекул из паровой фазы, их поверхностную диффузию и вероятность образования критических зародышей [41]. При используемой в настоящей работе схеме деформирования нижняя поверхность подложки BaF_2 (111), на которую осаждается материал, растягивается. При этом уменьшается параметр рассогласования т материалов КТ и подложки, а также увеличивается скорость поверхностной диффузии адсорбированных молекул и атомов [41], что способствует коалесценции островков. При растяжении поверхности подложки ионы фтора смещаются относительно друг друга и относительно ионов бария. Изменение конфигурации двойного электрического слоя на границе раздела между КТ и подложкой при деформировании подложки может влиять на величину энергетического барьера, который препятствует коалесценции кластеров осаждаемого материала [37]. С этим может быть связана коалесценция островков SnTe на ранних стадиях роста наноструктур (рис. 4, b). Отметим, что коалесценция островков РbTe на недеформированных подложках $BaF_{2}(111)$ наблюдается при толщине слоя d > 100 nm, а на подложке BaF₂ (111)/EuTe она происходит при толщине слоя PbTe d > 30 nm [11].

Возможность выращивания тонких (d порядка нескольких нанометров) слоев соединений $A^{IV}B^{VI}$ с высоким качеством поверхности на поверхностях BaF₂(111) и CaF₂(111) представляет интерес для формирования эпитаксиальных барьерных туннельных структур на Si(111) с целью их применения в спинтронных и оптоэлектронных устройствах. В таких структурах туннелирование электронов через тонкие слои флюоритов происходит с сохранением поперечной компоненты

Рис. 4. Двумерные АСМ-изображения КТ SnTe, выращенных на поверхности подложки $BaF_2(111)$ при $T_s = 575$ K, $T_{ev} = 623$ K, $T_w = 740$ K. a — подложка не подвергалась деформационному воздействию, b — подложка деформировалась внешней нагрузкой при $T_{ann} = 575$ K.

импульса [42]. Режим 2D-роста является предпочтительным для выращивания тонких слоев (нанометровой толщины) ферромагнитных полупроводников $A^{IV}B^{VI}$ (Ge_{1-x}Mn_xTe [43], Ge_{1-x}Cr_xTe [44]) на поверхности BaF₂ (111). При таком механизме роста уменьшается магнитное разупорядочение в слоях и повышается их кристаллическое совершенство, что приводит к возрастанию их спонтанной намагниченности и к увеличению для них значения температуры Кюри T_c [43,44].

Массивы КТ РbTe, выращенные на деформированных при более высокой температуре ($T_{ann} = T_s = 675 \text{ K}$) подложках, характеризуются высокой латеральной плотностью ($\sim 1.1 \cdot 10^{11} \text{ cm}^{-2}$) и однородностью (рис. 5). Эти КТ имеют высоту $\sim 3.5 \text{ nm}$ (среднее квадратичное отклонение $\sim 7\%$) и кристаллографической огранку. Массивы КТ PbTe с кристаллографической огранкой, выращенные при аналогичных термодинамических условиях на недеформированных подложках, характеризу-

ются меньшей латеральной плотностью. Эти КТ имеют высоту ~15 nm и обладают большой дисперсией размеров (> 20%) [14,15]. Высокой однородностью по геометрическим размерам (дисперсия < 2%) характеризуются массивы КТ PbSe, которые были сформированы по механизму СК с участием дефектов на поверхности "квазиподложки" PbTe (111)/CaF2 (111)/Si (111) [12]. Высокая однородность этих массивов, как и массивов КТ РbТе (рис. 5), связана с зарождением КТ вблизи ступенек в местах выхода плоскостей скольжения на поверхности (111) флюоритов и с особенностями протекания диффузионных процессов на деформированной поверхности подложек [12,15]. Результаты АСМ-исследований массивов КТ РbTe, выращенных при $T_{ann} = T_s = 675 \,\mathrm{K}$ на деформированных подложках ВаF₂ (111) и подвергнутых после этого термическому отжигу (созреванию по Оствальду), свидетельствуют об анизотропном характере поверхностной диффузии на

Рис. 5. Трехмерное АСМ-изображение (*a*) и гистограмма распределения по высоте (*b*) КТ РbTe, выращенных на деформированной при $T_{ann} = 675$ К поверхности подложки BaF₂ (111) при $T_s = 675$ К, $T_{ev} = 685$ К, $T_w = 733$ К.

деформированной поверхности [15]. Она имеет максимальное значение для направления (110) на поверхности (111) Ва F_2 , вдоль которого расположены поверхностные ступеньки. Высота этих ступенек сравнима с размерами нескольких атомов. Сформированные после отжига КТ имеют в направлении (110) удлиненную форму и латеральные размеры ~ 70-100 nm. Расстояние между ступеньками, вдоль которых сформировались КТ, составляет $\sim 250{-}300\,{\rm \AA}$ [15]. Эти наноструктуры имеют морфологию, подобную морфологии КТ InGaAs (нанопроволокам), выращенным вдоль квазипериодических ступенек на вицинальных поверхностях (111)В GaAs [45]. Система квазипериодических ступенек, вдоль которых растут островки, формируется на поверхности (111) BaF₂ в результате самоорганизации дислокаций и локализации скольжения при пластической деформации этого кристалла. При заданной величине деформирующей нагрузки расстояние между ступеньками зависит от температуры, при которой деформируется кристалл [46].

При больших степенях пластической деформации в условиях множественного движения дислокаций в под-

Физика твердого тела, 2013, том 55, вып. 1

ложке на поверхности кристалла может сформироваться сложный деформационный рельеф, который имеет упорядоченный характер [25]. На рис. 6, а, в приведены АСМ-изображения массивов КТ SnTe, которые были выращены при $T_s = 580 \,\mathrm{K}$ на предварительно деформированной при высокой температуре T_{ann} = 943 К подложке $BaF_{2}(111)$. АСМ-изображение массива КТ SnTe, сформированного при $T_s \approx 580 \,\mathrm{K}$ на недеформированной подложке, имеет вид, приведенный на рис. 1. Видно, что морфология этих наноструктур различная. На рис. 6, а наблюдаются скопления КТ, расположенные на отдельных участках поверхности деформированной подложки. Максимальная плотность КТ наблюдается внутри этих участков с латеральными размерами до 300 nm. Они имеют форму, близкую к треугольнику (рис. 6, b), которая характерна для "террасных" деформационных структур на поверхности кристаллов BaF₂ и CaF₂ [12,40]. Скопления КТ упорядоченно распределены на поверхности BaF₂ (111). КТ имеют высоту до 10 nm и куполообразную форму. Коалесценция отдельных КТ в скоплениях практически не наблюдается (рис. 6, b). Коалесценция КТ имеет место на АСМ-изображении массива КТ SnTe, который был выращен при высокой температуре подложки ($T_s > 623 \, \text{K}$) на деформированной при $T_{\text{ann}} = 943 \text{ K}$ подложке $\text{BaF}_2(111)$ (рис. 6, *c*). На этом АСМ-изображении наблюдаются отдельные фрагменты сплошного слоя SnTe с толщиной до 20 nm и латеральными размерами менее 250 nm.

Массивы КТ SnTe (рис. 6, a, b) имеют морфологию, характерную для наноструктур, состоящих из скоплений ("молекул") отдельных КТ [47]. "Молекулы" полупроводниковых КТ представляют интерес в связи с перспективой их применения в фотоэлектрических устройствах и квантовых информационных технологиях. Электронная структура таких молекул зависит от геометрической формы и размеров КТ, а также от количества КТ в "молекуле" [48]. Известно, что латерально связанные "молекулы" КТ могут быть выращены методом "капельной эпитаксии" [49] и по ростовому механизму СК с использованием "инженерии поверхностных дефектов" [23] или анизотропных полей упругих напряжений на поверхностях полупроводниковых сверхрешеток [47]. Из рис. 6, а, b видно, что такие наноструктуры могут быть выращены по механизму ФВ на поверхности подложки BaF₂ (111), на которой присутствует упорядоченный наноразмерный деформационный рельеф. При этом плотные массивы КТ растут на отдельных наноразмерных недеформированных участках поверхности подложки, сформировавшихся в результате самоорганизации дислокаций при их множественном движении в монокристаллической подложке при высоких температурах [25,46].

3.3. Морфология наноструктур PbTe, выращенных при оптическом облучении зоны роста KT. При облучении зоны формирования KT через подложку $BaF_2(111)$ фотоны воздействуют как на газовую фазу PbTe, так и на растущую в процессе

Рис. 6. АСМ-изображения КТ SnTe, выращенных на деформированной при температуре $T_{ann} = 943$ К поверхности подложки BaF₂ (111). Выращивание производилось при $T_{ev} = 685$ К, $T_w = 740$ К и $T_s = 580$ (*a*, *b*) и 640 К (*c*).

эпитаксии кристаллическую фазу этого соединения. Они также влияют на поверхность подложки. Воздействие светового излучения на газовую фазу заключается в диссоциации молекул PbTe ($E_{diss} = 2.7 \, \text{eV}$) и Te₂ $(E_{\rm diss} = 2.8 \, {\rm eV})$ под действием излучения с длиной волны менее 0.45 µm [21,22]. При этом также изменяется электрический заряд на поверхности подложки, который влияет на электрическое взаимодействие между осаждаемым материалом и подложкой. Свет сильно влияет на фазовые равновесия [50]. Это проявляется в явлениях конденсации и коалесценции, а также в процессах зародышеобразования при осаждении материала из газовой фазы в условиях оптического облучения [51]. Исследования свидетельствуют о существенной роли возбужденной электронной подсистемы в термодинамике фазовых переходов в твердом теле или при межмолекулярном взаимодействии в газовой фазе [50]. С механизмом электронных возбуждений (генерацией неравновесных

носителей тока) связывается также воздействие света на кристаллизацию при эпитаксии полупроводниковых слоев [22]. Фотоиндуцированные электронные возбуждения влияют на скорость протекания фазовых переходов в процессе формирования наноразмерных образований из большого количества зародышей твердой фазы на поверхности подложки [51]. Воздействие света на паровую фазу используется в нанотехнологиях для формирования элементов наноструктур с определенной кристаллической структурой. Например, оптическое облучение зоны роста при выращивании многослойного графена при определенных условиях приводит к росту углеродных нанокристаллов со структурой алмаза в результате агломерации маленьких кластеров [51].

Морфология наноструктур PbTe, выращенных на поверхности подложек $BaF_2(111)$ при оптическом облучении зоны роста, зависит от интенсивности падающего на поверхность молекулярного потока. Наноструктуры,

Рис. 7. АСМ-изображения КТ РbTe, выращенных на недеформированных подложках $BaF_2(111)$ при оптическом облучении зоны роста. Температура подложки $T_s = 580$ K. Время осаждения материала t = 30 s (a), $3 \min(b)$, $1 \min(c)$. Температура испарения материала $T_{ev} = 623$ (a, b) и 673 K (c). Температура стенки $T_w = 740$ K.

сформированные в течение 30 s при низкой температуре подложки (T_s = 580 K) и низкой интенсивности молекулярного потока (которая обеспечивается при $T_{\rm ev} = 623$ K), состоят из одиночных КТ. Они имеют пирамидальную форму, высоту менее 4 nm и латеральный размер $\sim 23 \,\mathrm{nm}$ (рис. 7, *a*). При увеличении времени осаждения до 3 min латеральная плотность массивов КТ РbTe возрастает и составляет $\sim 10^9 \, {\rm cm}^{-2}$ (рис. 7, *b*). На этом рисунке наблюдаются как "одиночные" с высотой $\sim 3-15\,{\rm nm}$ ограненные КТ, так и "спаренные" КТ. Выращенные при аналогичных термодинамических режимах без оптического облучения зоны роста КТ РbTe имеют куполообразную форму, их массивы характеризуются высокой латеральной плотностью ($\sim 5 \cdot 10^{10} \, \mathrm{cm}^{-2}$ [14]). На рис. 7, с показано АСМ-изображение наноструктуры, которая была выращена на недеформированной подложке BaF₂ (111) при оптическом облучении зоны роста в течение 1 min при большом потоке падающих на подложку молекул PbTe $(T_{ev} = 673 \text{ K})$ (в условиях

высокого пересыщения газовой фазы). На этом рисунке наблюдается большое количество ограненных КТ. На отдельных участках поверхности подложки наблюдается их коалесценция.

При низких значениях T_s вероятность диссоциации молекул PbTe при их соударении с подложкой низкая [22]. Скорость поверхностной диффузии адсорбированных атомов и молекул при этом также низкая. Наблюдаемый при этих условиях рост отдельных КТ с кристаллографической огранкой (рис. 7) свидетельствует о диссоциации молекул PbTe в газовой фазе при поглощении света. КТ PbTe растут как за счет атомов, которые поступают в них непосредственно из пара, так и за счет адсорбированных на поверхности подложки атомов, которые перемещаются к границам островков посредством диффузии. В условиях ограниченного поступления материала из пара на подложку (при малых интенсивностях молекулярного потока) изменение геометрической формы КТ, уменьшение латеральной

Рис. 7 (продолжение).

плотности массивов этих КТ, а также формирование "спаренных" КТ могут происходить в результате процесса оствальдовского созревания, когда мелкие КТ поглощаются более крупными [19,35,52]. Этот эффект обычно проявляется в процессе формирования плотных массивов КТ или при их отжиге при высоких температурах в течение длительного времени. Например, латеральная плотность массивов КТ PbSe на поверхности слоя PbTe при их отжиге при 623 К в течение часа изменялась от $\sim 7.2 \cdot 10^{10}$ до $\sim 4.3 \cdot 10^9$ сm $^{-2}$ [52]. "Одиночные" и "спаренные" КТ РbTe с кристаллографической огранкой при оптическом облучении зоны роста (рис. 7) растут очень быстро (при осаждении в течение менее 3 min). Это свидетельствует о сильном влиянии света на процессы зародышеобразования, поверхностную диффузию атомов и коалесценцию КТ РbTe на поверхности BaF₂(111). Соединения A^{IV} B^{VI} — узкозонные полупроводники (ширина запрещенной зоны для PbTe $E_g \sim 0.32 \,\mathrm{eV}$ при $T = 300 \, \text{K}$). Они характеризуются высокой концентрацией носителей, связанной с дефектами в подрешетках металла и халькогена [29]. С этим связано сильное поглощение оптического излучения в кристаллах PbTe при энергиях фотонов $h\omega > E_g$. На подложке ВаF₂ (111) при низкой температуре $T_s = 530 \, \text{K}$ формируется большое число зародышей, из которых формируются КТ. Они сильно поглощают свет, которым облучается зона роста. Энергия, которая при этом выделяется в КТ в виде тепла, передается подложке. Кристаллы BaF2 характеризуются невысоким коэффициентом теплопроводности $(\sim 11.72 \, \text{W} \cdot \text{m}^{-1} \cdot \text{K}^{-1})$. Различие в значениях коэффициентов термического расширения для BaF2 и соединений $A^{IV}B^{VI}$ увеличивается с ростом температуры [32]. Энергия, которая выделяется на границе раздела между КТ и подложкой, приводит к нагреву и деформации подложки в области этой границы, а также к коалесценции КТ (рис. 7, c). Эта наноструктура имеет морфологию, характерную для выращенных на деформированных подложках BaF₂ наноструктур (рис. 6, *c*). Интерес к технологиям выращивания "одиночных" и "спаренных" в латеральной плоскости КТ связан с возможностью их использования в квантовых информационных технологиях [53] и оптоэлектронике [49]. Известно, что они могут быть сформированы путем самоорганизации на поверхности полупроводников методом "капельной эпитаксии" [49] или по механизму СК при наличии на этой поверхности тонкого слоя халькогена [39]. В настоящей работе показано, что такие наноструктуры могут быть также сформированы по механизму ФВ на подложках ВаF₂ (111) при оптическом облучении зоны роста.

4. Заключение

В работе исследована морфология наноструктур SnTe и PbTe, которые были выращены на поверхности $BaF_2(111)$ в квазиравновесных термодинамических условиях без применения внешних воздействий на зону роста KT, а также при деформационном воздействии на подложку и оптическом облучении зоны роста KT. Установлено, что равновесная форма KT и статистические параметры массивов KT зависят от термодинамических условий выращивания. Они обусловлены величной рассогласования параметров кристаллических решеток материалов KT и подложки, а также упругими свойствами этих материалов. Морфология наноструктур

SnTe и PbTe, выращенных при низких температурах подложки и при малой интенсивности потока падающих на подложку молекул (когда диссоциация молекул на поверхности подложки незначительная), определяется электрическим взаимодействием, которое имеет место между этими молекулами и поверхностью подложки BaF_{2} (111). На поверхности подложки BaF_{2} (111), деформированной при разных температурах и механических нагрузках, в результате самоорганизации дислокаций формируется различный по морфологии наноразмерный деформационный рельеф. При определенных термодинамических условиях на деформированных поверхностях $BaF_2(111)$ по механизму ΦB могут быть выращены наноструктуры с разной морфологией. При помощи этой технологии можно выращивать сплошные слои SnTe с толщиной менее 10 nm, плотные однородные массивы КТ SnTe и PbTe с кристаллографической огранкой, квазипериодические латеральные наноструктуры (нанопроволоки) и "молекулы" КТ. Воздействие светового потока на зону роста КТ РbTe приводит к поглощению света молекулами газовой фазы и наноразмерной кристаллической фазой, которая формируется на поверхности BaF₂ (111). Оптическое облучение зоны роста КТ приводит к диссоциации падающих на подложку молекул и влияет на поверхностную диффузию адсорбированных атомов, на зародышеобразование и коалесценцию КТ. При определенных термодинамических режимах на поверхности подложки BaF₂ (111) в условиях оптического воздействия на зону роста по механизму ФВ могут быть выращены "одиночные" и "спаренные" КТ РbTe.

Список литературы

- D.M.N.M. Dissanayake, R.A. Hatton, T. Lutz, C.E. Giusca, R.J. Curry, S.R.P. Silva. Appl. Phys. Lett. **91**, 133 506 (2007).
- [2] K. Szendrei, W. Gomulya, M. Yarema, W. Heiss, M.A. Loi. Appl. Phys. Lett. 97, 203 501 (2010).
- [3] X.H. Yang, X.Y. Qin. Appl. Phys. Lett. 97, 192 101 (2010).
- [4] K. Koike, T. Itakura, T. Hotei, M. Yano. Appl. Phys. Lett. 91, 181 911 (2007).
- [5] A. Kigel, M. Brumer, G.I. Maikov, A. Sashchiuk, E. Lifshitz. Small 5, 1675 (2009).
- [6] G. Springholz, T. Schwarzl, W. Heiss, G. Bauer, M. Aigle, H. Pascher, I. Vavra. Appl. Phys. Lett. 79, 1225 (2001).
- [7] C.B. Murray, C.R. Kagan, M.G. Bawendi. Science 270, 1335 (1995).
- [8] G. Springholz, V. Holy, M. Pinczolits, G. Bauer. Science 282, 734 (1998).
- [9] Н.Н. Леденцов, В.М. Устинов, В.А. Щукин, П.С. Копьев, Ж.И. Алферов, Д. Бимберг. ФТП **31**, 385 (1998).
- [10] J.G. Tischler, T.A. Kennedy, E.R. Glaser, Al.L. Efros, E.E. Foos, J.E. Boercker, T.J. Zega, R.M. Stroud, S.C. Erwin. Phys. Rev. B 82, 245303 (2010).
- [11] A.Y. Ueta, G. Springholz, G. Bauer. J. Cryst. Growth 175/176, 1022 (1997).
- [12] K. Alhalabi, D. Zimin, G. Kostorz, H. Zogg. Phys. Rev. Lett. 90, 026104 (2003).

- [13] S.O. Ferreira, B.R.A. Neves, R. Magalhaes-Paniago, A. Malachias, P.H.O. Rappl, A.Y. Ueta, E. Abramof, M.S. Andrade. J. Crystal Growth. 231, 121 (2001).
- [14] В.Н. Водопьянов, А.П. Бахтинов, Е.И. Слынько, Г.В. Лашкарев, В.М. Радченко, П.М. Литвин, О.С. Литвин. Письма в ЖТФ 31, 16 88 (2005).
- [15] В.Н. Водопьянов, А.П. Бахтинов, Е.И. Слынько. Письма в ЖТФ 32, 4, 62 (2006).
- [16] T.I. Sheremeta, I.V. Prokopenko, P.M. Lytvyn, O.S. Lytvyn, V.N. Vodop'yanov, A.P. Bakhtinov, E.I. Slyn'ko. Functional Materials. 14, 86 (2007).
- [17] H. Clemens, E.J. Fantner, W. Ruhs, G. Bauer. J. Crystal Growth. 66, 251 (1984).
- [18] P. Müller, R. Kern. J. Crystal Growth. 193, 257 (1998).
- [19] A. Rastelli, M. Stoffel, J. Tersoff, G.S. Kar, O.G. Schmidt. Phys. Rev. Lett. 95, 026 103 (2005).
- [20] J.Y. Li, Q.G. Du, S. Ducharme. J. Appl. Phys. 104, 094 302 (2008).
- [21] Г.А. Калюжная, К.В. Киселева. В кн.: Стехиометрия в кристаллических соединениях и ее влияние на их физические свойства. Тр. ФИАН 177, 5 (1987).
- [22] Г.М. Гуро, Г.А. Калюжная, Т.С. Мамедов, Л.А. Шелепин. ЖЭТФ 77, 2366 (1979).
- [23] N.N. Ledentsov, D. Bimberg. J. Cryst. Growth 255, 68 (2003).
- [24] Н.П. Скворцова. ФТТ **48**, 70 (2006).
- [25] Г.А. Малыгин. ФТТ 49, 1392 (2007).
- [26] R. Kern, P. Müller. J. Cryst. Growth. 146, 193 (1995).
- [27] J.M. Mativetsky, S. Fostner, S.A. Burke, P. Grutter. Phys. Rev. B 80, 045 430 (2009).
- [28] H. Holloway, I.N. Walpole. Prog. Cryst. Growth Charact. 2, 49 (1979).
- [29] В.П. Зломанов, А.В. Новоселова. *Р*-*Т*-*х*-диаграммы состояния систем металл-халькоген. Наука, М. (1987). 280 с.
- [30] M. Pinczolits, G. Springholz, G. Bauer. J. Cryst. Growth 201/202, 1126 (1999).
- [31] V. Holy, G. Springholz, M. Pinczolits, G. Bauer. Phys. Rev. Lett. 83, 356 (1999).
- [32] В.Н. Водопьянов, А.П. Бахтинов, Е.И. Слынько, М.В. Радченко, В.И. Сичковский, Г.В. Лашкарев, W. Dobrowolski, R. Yakiela. ФТТ 48, 1266 (2006).
- [33] K. Schmalzl. Phys. Rev. B 75, 014 306 (2007).
- [34] D.K. Hohnke, H. Holloway, M.D. Hulley. Thin Solid Films 38, 49 (1976).
- [35] F.M. Ross, J. Tersoff, R.M. Tromp. Phys. Rev. Lett. 80, 984 (1998).
- [36] Ф.Ф. Волькенштейн. Электронные процессы на поверхности полупроводников при хемосорбции. Наука, М. (1987). 431 с.
- [37] D. Salac, W. Lu. Appl. Phys. Lett. 89, 073105 (2006).
- [38] F. Mugele, J.-C. Baret. J. Phys.: Cond. Matter 17, R705 (2005).
- [39] S. Mahapatra, K. Brunner, C. Bougerol. Appl. Phys. Lett. 91, 153 110 (2007).
- [40] S. Blunier, H. Zogg, C. Maissen, A.N. Tiwari, R.M. Overney, H. Haefke, P.A. Buffat, G. Kostorz. Phys. Rev. Lett. 68, 3599 (1992).
- [41] H. Brune, K. Bromann, H. Roder, K. Kern, J. Jacobsen, P. Stoltse, K. Jacobsen, J. Norskov. Phys. Rev. B 52, R14 380 (1995).
- [42] М.И. Векслер, Ю.Ю. Илларионов, С.М. Сутурин, В.В. Федоров, Н.С. Соколов. ФТТ 52, 2205 (2010).
- [43] Y. Fukuma, M. Arifuku, H. Asada, T. Koyanagi, J. Appl. Phys. 97, 073 910 (2005).

- [44] Y. Fukuma, H. Asada, N. Moritake, T. Irisa, T. Koyanagi. Appl. Phys. Lett. 91, 092 501 (2007).
- [45] Y. Akiyama, H. Sakaki. Appl. Phys. Lett. 89, 183108 (2006).
- [46] Г.А. Малыгин. ФТТ 37, 3 (1995).
- [47] T. van Lippen, R. Notzel, G.J. Hamhuis, J.H. Wolter. J. Appl. Phys. 97, 044 301 (2005).
- [48] S.-S. Li, J.-B. Xia. Appl. Phys. Lett. 91, 092119 (2007).
- [49] M. Yamagiva, T. Mano, T. Kuroda, T. Tateno, K. Sakoda, G. Kido, N. Koguchi, F. Minami. Appl. Phys. Lett. 88, 113 115 (2006).
- [50] В.М. Фридкин. Сегнетоэлектрики-полупроводники. Наука, М. (1976). 408 с.
- [51] K.H. Bennemann. J. Phys.: Cond. Matter 23, 073 202 (2011).
- [52] A. Raab, G. Springholz. Appl. Phys. Lett. 77, 2991 (2000).
- [53] A. Imamoglu, D.D. Awshalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small. Phys. Rev. Lett. 83, 4204 (1999).