03;07;12

К вопросу об инициировании горения водородно-воздушных смесей лазерным излучением

© А.М. Старик, П.С. Кулешов, Н.С. Титова

Центральный институт авиационного моторостроения им. П.И. Баранова, 111116 Москва, Россия e-mail: star@ciam.ru

(Поступило в Редакцию 17 марта 2008 г.)

Проанализированы кинетические механизмы, ответственные за интенсификацию цепных реакций в водородно-воздушной смеси при фотодиссоциации молекул O₂ лазерным излучением с длиной волны $\lambda_I = 193.3$ nm и при возбуждении в электронное состояние $b^1 \Sigma_g^+$ излучением с $\lambda_I = 762.346$ nm. Проведен сравнительный анализ эффективности обоих методов инициирования горения. На основе численного моделирования показано, что метод, основанный на лазерно-индуцированном возбуждении молекул O₂ в состояние $b^1 \Sigma_g^+$, позволяет при том же количестве подведенной к смеси энергии сильнее понизить температуру воспламенения, чем фотодиссоциация молекул O₂ лазерным излучением УФ-диапазона. Однако оба этих фотохимических метода намного эффективное простого нагрева среды лазерным излучением или другим источником тепла.

PACS: 47.70.Pq, 31.10.+z, 42.62.-b

Введение

Использование лазерного излучения для инициирования цепных реакций в горючих смесях — весьма перспективный метод управления процессами воспламенения и горения [1-4]. Селективность лазерного излучения позволяет избирательно воздействовать на те молекулы, которые либо непосредственно участвуют в реакциях инициирования и продолжения цепи, либо в результате фотодиссоциации производят активные атомы и радикалы — носители цепного механизма. В первом случае положительный эффект достигается за счет возбуждения колебательных или электронных состояний реагирующих молекул. Такие молекулы реагируют в десятки или даже в сотни раз быстрее, чем невозбужденные. При этом для возбуждения необходимо использовать излучение инфракрасного либо видимого диапазонов [4-6]. Во втором случае эффект ускорения цепных процессов обусловлен исключением стадии инициирования цепи в химических реакциях, которую заменяет фотодиссоциация молекул (обычно используется излучение ультрафиолетового (УФ) диапазона). Скорость фотодиссоциации определяется интенсивностью воздействующего излучения и может быть существенно выше, чем скорость обычных химических реакций [3]. Поэтому есть надежда на то, что данный метод может быть весьма эффективен для воспламенения горючей смеси даже при низких температурах (вплоть до комнатной).

Оба указанных метода имеют как преимущества, так и недостатки. В первом случае необходимо с достаточно большой скоростью возбуждать метастабильные состояния реагирующих молекул, для которых время релаксации больше, чем характерное время протекания химических реакций с образованием активных радикалов, что не всегда является простой задачей. Во втором — при низких температурах (T = 300-600 K)

происходит интенсивная рекомбинация атомов — продуктов фотодиссоциации, и они не успевают вступать в реакцию продолжения либо разветвления цепи.

Вплоть до настоящего времени нет единого мнения о преимуществе того или иного метода инициирования горения лазерным излучением, хотя считается, что как метод, основанный на фотодиссоциации реагирующих молекул, так и метод, связанный с возбуждением метастабильных состояний реагентов, существенно эффективнее локального нагрева среды лазерным излучением [3,4]. Поэтому представляет интерес для одного и того же типа возбужденных и фотодиссоциирующих молекул и при одних и тех же параметрах смеси провести сравнение энергетической эффективности двух указанных методов. Такое сравнение для смеи H₂/воздух и проводится в данной работе.

Постановка задачи и кинетическая модель

Анализ проведем на примере инициирования горения в неподвижной смеси H₂/воздух путем фотодиссоциации молекул O₂ ультрафиолетовым излучением с длиной волны $\lambda_I = 193.3$ nm (оно генерируется эксимерным ArF-лазером) и путем возбуждения молекулярного кислорода из основного состояния O₂($X^3\Sigma_g^-, V', J', K'$) в электронное O₂($b^1\Sigma_g^+, V'', J'', K''$) с колебательными квантовыми числами V' = V'' = 0 и вращательными квантовыми числами J' = 9, J'' = 8 и K' = K'' = 8в центре спектральной линии излучением с длиной волны 762.346 nm (оно генерируется диодным лазером или лазером на красителях). Поглощение излучения УФ-диапазона с $\lambda_I = 193.3$ nm осуществляется в полосе Schumann-Runge на переходе

$$(X^3\Sigma_g^-, V', J', K') \rightarrow (B^3\Sigma_u^-, V'', J'', K'')$$

Рис. 1. Схема нижних электронных уровней молекулы O_2 и электронно-колебательные переходы, соответствующие длинам волн воздействующего излучения с $\lambda_I = 193.3$ и 762.346 nm.

с колебательными квантовыми числами V' = 0, V'' = 4и вращательными квантовыми числами J' = 17, J'' = 16(ближайшая по частоте линия имеет вращательные квантовые числа K' = 17, K'' = 17) [7].

На рис. 1 представлена схема электронных термов молекулы O_2 , и показаны соответствующие этим длинам волн переходы. Скорость фотодиссоциации $W_{\rm ph}$ и скорость индуцированных переходов W_I определяются соотношением $W_{\rm ph(I)} = \sigma_I I / h v_I$, где σ_I — сечение поглощения на частоте воздействующего излучения, v_I — его частота, h — постоянная Планка, I — интенсивность воздействующего излучения.

Пусть на однородную смесь H_2 /воздух действует импульс лазерного излучения с длительностью $\tau_p = 100 \, \mu s$ и с длиной волны λ_I , которая равна либо 193.3, либо 762.346 nm. Будем рассматривать процессы в центре лазерного пучка с гауссовым распределением интенсивности по радиусу

$$I(r,t) = I_0(t) \exp\left(-\frac{r^2}{R_a^2}\right).$$

Здесь R_a — характерный радиус пучка, а $I_0(t) = I_0$ при $0 < t \le \tau_p$ и $I_0(t) = 0$ при $t > \tau_p$. Для достаточно узких пучков ($R_a = 1-3$ cm) и для представляющих практический интерес диапазонов изменения давления $P_0 = 1-100$ kPa и температуры $T_0 = 300-1000$ K (здесь и далее индекс нуль относится к параметрам невозмущенной среды) всегда можно удовлетворить условиям $\tau_a < \tau_p \sim \tau_I \sim \tau_{\rm ph} < \tau_D \le \tau_\lambda$, где τ_a — время распространения акустических колебаний поперек луча, τ_D — характерное время диффузии (оно определяется диффузией самых легких частиц — носителей цепного механизма — атомов H), $\tau_{\rm ph}(I) = W_{\rm ph}^{-1}$ — характерное время фотодиссоциации (индуцированных переходов) и τ_λ — характерное время теплопроводности. Для пучка с $R_a = 3$ ст при рассматриваемых параметрах среды $\tau_a \approx 10^{-5}$, $\tau_D \sim 0.1-0.5$ и $\tau_\lambda \sim 0.2-1$ s. Более того, в этом случае также выполняется условие $R_a \ll L_v$, где $L_v = (\sigma_I N_{O_2(X^3 \Sigma_g^-)})^{-1}$ — характерная длина поглощения $(N_{O_2(X^3 \Sigma_g^-)})^{-1}$ — плотность молекул O₂ в основном электронном состоянии), и можно пользоваться приближением тонкого оптического слоя.

Систему уравнений, описывающих изменение параметров и состава смеси в центральной части зоны воздействия излучения, можно при этом представить в следующем виде:

$$\frac{dN_i}{dt} = G_i + q_{I,i},\tag{1}$$

$$\rho \, \frac{dH}{dt} = \sigma_I N_{\mathcal{O}_2(X^3 \Sigma_g^-)} I_0, \tag{2}$$

$$H = \sum_{i=1}^{M} \frac{h_{0i}}{\mu} \gamma_{i} + \int_{0}^{1} C_{V,T} dT,$$

$$C_{V,T} = \frac{R}{\mu} \left(\frac{5}{2} + \sum_{i=1}^{S} C_{R,i} \gamma_{i} + \sum_{i=1}^{S} C_{V,i} \gamma_{i} \right),$$

$$C_{V,i} = \sum_{j=1}^{L} \left(\frac{\theta_{i,j}}{T} \right)^{2} \frac{\exp(\theta_{i,j}/T)}{[\exp(\theta_{i,j}/T) - 1]^{2}},$$

$$P = \frac{\rho RT}{\mu}, \quad \gamma_{i} = \frac{N_{i}}{N}, \quad N = \sum_{i=1}^{M} N_{i}, \quad \mu = \sum_{i=1}^{M} \mu_{i} \gamma_{i},$$

$$G_{i} = \sum_{q=1}^{M} S_{i,q}, \quad S_{i,q} = (\alpha_{i,q}^{-} - \alpha_{i,q}^{+})[R_{q}^{+} - R_{q}^{-}],$$

$$R_{q}^{+(-)} = k_{+(-)q} \prod_{j=1}^{n_{q}^{+(-)}} N_{j}^{\alpha_{i,q}^{+(-)}}.$$

Здесь ρ , P и T — плотность, давление и температура газа; *R* — универсальная газовая постоянная; h_{0i} — энтальпия образования *i*-го компонента смеси при T = 298 K; μ_i — его молярная масса; N_i — концентрация молекул (атомов) і-го сорта (электронновозбужденные атомы и молекулы рассматриваются как отдельные химические компоненты); М — число атомарных и молекулярных компонентов смеси, а S только молекулярных; $C_{R,i} = 1$ — для компонентов из линейных и $C_{R,i} = 1.5$ — для компонентов из нелинейных молекул; $\theta_{i,j}$ — характеристическая температура *j*-й моды *i*-го компонента $(j = 1, ..., L); M_{1,i}$ — число реакций, приводящих к образованию (уничтожению) і-го компонента; $\alpha_{i,q}^+$ и $\alpha_{i,q}^-$ — стехиометрические коэф-фициенты *q*-й реакции; $n_q^{+(-)}$ — число компонентов, участвующих в прямой (+) (обратной (-)) реакции; $k_{+(-)q}$ — константы скорости этих реакций. В случае фотодиссоциации $q_{I,i} = l_{{\rm ph},i} W_{{\rm ph}} N_{{\rm O}_2(X^3\Sigma_g^-)}, \ l_{{\rm ph},i} = -1$ для $i={
m O}_2(X^3\Sigma_g^-),\, l_{{
m ph},i}=1$ для $i={
m O}({}^3P)$ и ${
m O}({}^1D)$ и $l_{{
m ph},i}=0$

для всех остальных *i*. В случае возбуждения молекул O_2 излучением с $\lambda_I = 762.346$ nm

$$q_{I,i} = l_{I,i} W_I \left(\frac{g_n}{g_m} N_m - N_n \right),$$

где g_m и g_n — кратности вырождения нижнего и верхнего состояний поглощающего перехода, N_m и N_n — плотности молекул О₂ в этих состояниях, $l_{I,i} = -1, 1$ для $i = O_2(X^3\Sigma_g^-)$, $O_2(b^1\Sigma_g^+)$, соответственно, и $l_{I,i} = 0$ для всех остальных i.

Поскольку даже при умеренных давлениях $P_0 = 10$ kPa в спектральном диапазоне, соответствующем полосам Schumann-Runge, происходит перекрытие спектральных линий, то при вычислении сечения поглощения σ_I на длине волны воздействующего излучения $\lambda_I = 193.3$ nm учитывался вклад не только ближайшей линии

$$(X^{3}\Sigma_{g}^{-}, V' = 0, J' = 17, K' = 17) \rightarrow$$

 $\rightarrow (B^{3}\Sigma_{u}^{-}, V'' = 4, J'' = 16, K'' = 17),$

но и других линий из данного спектрального диапазона (всего рассматривалось 100 линий). Для этого использовались соотношения, приведенные в [7]. При этом сечение на заданной частоте v_I определяется по формуле

$$\sigma_I = \sigma_c(\nu_I) + \sum_k \sigma_k(\nu_I).$$
(3)

Здесь $\sigma_c(v_I)$ — сечение поглощения на частоте v_I в континууме Schumann-Runge, а $\sigma_k(v_I)$ — сечение на частоте v_I для *k*-й линии поглощения. Величина $\sigma_k(v_I)$ связана с сечением в центре линии $\sigma_k(v_k)$ соотношением [7]:

$$\frac{\sigma_k(\nu_I)}{\sigma_k(\nu_k)} = \left(1 - \frac{b_c}{b_\nu}\right) \exp\left[-2.772\left(\frac{\nu_I - \nu_k}{b_\nu}\right)^2\right] \\ + \frac{b_c/b_\nu}{1 + 4\left(\frac{\nu_I - \nu_k}{b_\nu}\right)^2} + 0.016\left(1 - \frac{b_c}{b_\nu}\right)\left(\frac{b_c}{b_\nu}\right) \\ \times \left[\exp\left\{-0.4\left(\frac{\nu_I - \nu_k}{b_\nu}\right)^{2.25}\right\} - \frac{10}{10 + \left(\frac{\nu_I - \nu_k}{b_\nu}\right)^{2.25}}\right].$$

Сечение в центре k-й линии определяется через интегральное сечение поглощения S_k

$$\sigma_k(v_k) = \frac{S_k}{\frac{b_v}{c} \left[1.065 + 0.447 \left(\frac{b_c}{b_v}\right) + 0.058 \left(\frac{b_c}{b_v}\right)^2 \right]}$$

Здесь

$$b_
u = rac{b_c}{2} + \left[rac{b_c^2}{4} + b_D^2
ight]^{1/2}$$

— фойгтовская ширина линии, b_c — ширина линии, обусловленная ударным уширением, b_D — доплеровская ширина линии на полувысоте, c — скорость света, v_k — частота центра k-й спектральной линии.

При рассматриваемых параметрах $\sigma_c(v_I) \ll \sum_k \sigma_k(v_I)$ и вкладом континуума можно пренебречь. Значения b_c, b_D, b_v для всех рассматриваемых линий переходов вычислялись по известным формулам в зависимости от температуры и давления. Интегральные сечения поглощения линий S_k определялись через силы осцилляторов, значения которых даны в [7].

При воздействии излучения с $\lambda_I = 762.346$ nm поглощение происходит в *P*-ветви связанно-связанного перехода

$$(X^{3}\Sigma_{g}^{-}, V' = 0, J' = 9, K' = 8) \rightarrow$$

 $\rightarrow (b^{1}\Sigma_{g}^{+}, V'' = 0, J'' = 8, K'' = 8).$

Для полосы

$$(X^3\Sigma_g^-,V'=0) \rightarrow (b^1\Sigma_g^+,V''=0)$$

расстояние между соседними спектральными линиями составляет $1-5 \text{ cm}^{-1}$. При $P_0 = 10 \text{ kPa}$ и $T_0 = 500 \text{ K}$ ширина спектральной линии рассматриваемого перехода составляет $\sim 0.1 \text{ cm}^{-1}$, т.е. перекрытия спектральных линий не происходит. Только при более высоком давлении этот эффект может давать вклад в сечение поглощения излучения с $\lambda_I = 762.346 \text{ nm}$. При $P_0 > 10 \text{ kPa}$ при расчете сечения поглощения рассматривался вклад только линий полосы

$$(X^{3}\Sigma_{g}^{-}, V'=0) \rightarrow (b^{1}\Sigma_{g}^{+}, V''=0)$$

с различными J', K' и J'', K'', причем считалось, что для всех линий коэффициент Эйнштейна одинаков $A_{nm} = 8.5 \cdot 10^{-2} \text{ s}^{-1}$. Сечение поглощения $\sigma_k(v_I)$ *k*-й линии на частоте v_I определялись в этом случае по соотношению

$$\sigma_k(\nu_I) = \sqrt{\frac{\ln 2}{\pi}} \frac{A_{nm}\lambda_k^2}{4\pi b_D} H(a, x),$$
$$x = \frac{2(\nu_I - \nu_k)\sqrt{\ln 2}}{b_D}, \quad a = \frac{b_c\sqrt{\ln 2}}{b_D},$$

где H(a, x) — функция Фойгта. Величина σ_I определялась при этом как сумма вкладов спектральных линий данной полосы на частоте v_I . Столкновительные ширины линий b_c в полосе

$$(X^{3}\Sigma_{\rho}^{-}, V'=0) \rightarrow (b^{1}\Sigma_{\rho}^{+}, V''=0)$$

были измерены в [8,9]. Коэффициенты ударного уширения b_c^M для $M = O_2$ и N_2 были взяты в соответствии с рекомендациями [9], одинаковыми для всех линий полосы

$$(X^{3}\Sigma_{g}^{-}, V'=0) \rightarrow (b^{1}\Sigma_{g}^{+}, V''=0).$$

Для $M = H_2$ значение b_c^M пересчитывалось через газокинетические сечения столкновения O_2-O_2 и O_2-H_2 . Величина b_c при этом вычислялась по соотношению $b_c = \sum_M b_c^M P_M$, где P_M — парциальное давление M-го компонента.

Таблица 1. Сечение поглощения излучения с $\lambda_I = 193.3$ и 762.346 nm σ_{λ} (10^{-22} cm²) при различных значениях *P* и *T* для стехиометрической смеси H₂/воздух

Т,К	300		500		700		900	
P, kPa	$\sigma_{\lambda=193.3 \text{ nm}}$	$\sigma_{\lambda=762.346 \text{ nm}}$	$\sigma_{\lambda=193.3 \text{ nm}}$	$\sigma_{\lambda=762.346 \text{ nm}}$	$\sigma_{\lambda=193.3 \text{ nm}}$	$\sigma_{\lambda=762.346~\mathrm{nm}}$	$\sigma_{\lambda=193.3 \text{ nm}}$	$\sigma_{\lambda=762.346\mathrm{nm}}$
1	2.67	211.43	2.90	164.92	2.57	139.80	2.23	123.50
10	8.85	186.85	8.45	151.89	7.23	131.47	6.30	117.60
100	55.29	153.83	69.44	120.61	111.11	104.23	148.86	94.13

Таблица 2. Список реакций, включенных в модель

N₂	Реакция	N₂	Реакция
1	$\mathrm{O}_2(X^3\Sigma_p^-)+M=2\mathrm{O}+M$	41	$O_3 + HO_2 = OH + 2O_2(X^3\Sigma_p^-)$
2	$O_2(a^1\Delta_g) + M = O + O + M$	42	$\mathrm{O}_3 + \mathrm{O}_2(a^1\Delta_g) = 2\mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_3$
3	$\mathrm{O}_2(b^1\Sigma^+_g)+M=\mathrm{O}+\mathrm{O}+M$	43	$O_3 + O_2(b^1\Sigma_g^+) = 2O_2(X^3\Sigma_g^-) + O_2(b^1\Sigma_g^+) + O_2(b^1\Sigma_g^+)$
4	$H_2 + M = 2H + M$	44	$O_2(a^1\Delta_g) + M = O_2(X^3\Sigma_g^-) + M$
5	OH + M = O + H + M	45	$\mathrm{O}_2(b^1\Sigma_g^+)+M=\mathrm{O}_2(a^1\Delta_g)+M$
6	$H_2O + M = OH + H + M$	46	$2\mathrm{O}_2(a^1\check{\Delta}_g) = \mathrm{O}_2(b^1\Sigma_g^+) + \mathrm{O}_2(X^3\Sigma_g^-)$
7	$\mathrm{H} + \mathrm{O}_2(X^3\Sigma_g^-) + M = \mathrm{HO}_2 + M$	47	$N_2 + M = 2N + M$
8	$H_2O_2 + M = 2OH + M$	48	NO + M = N + O + M
9	$O_3 + M = O_2(X^3\Sigma_g^-) + O + M$	49	$NO_2 + M = NO + O + M$
10	$H_2 + O_2(X^3\Sigma_g^-) = 2OH$	50	$O + N_2 = N + NO$
11	$\mathrm{H}_{2} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = 2\mathrm{OH}$	51	$O + NO = N + O_2(X^3\Sigma_g^-)$
12	$\mathrm{H}_2 + \mathrm{O}_2(b^1\Sigma_g^+) = 2\mathrm{OH}$	52	$\mathbf{O} + \mathbf{NO} = \mathbf{N} + \mathbf{O}_2(a^1 \Delta_g)$
13	$H_2 + O_2(X^3\Sigma_g^-) = H + HO_2$	53	$\mathrm{O}+\mathrm{NO}=\mathrm{N}+\mathrm{O}_2(b^1\Sigma_g^+)$
14	$\mathrm{H}_{2} + \mathrm{O}_{2}(a^{1}\Delta_{g}) = \mathrm{H} + \mathrm{HO}_{2}$	54	$O_2(X^3\Sigma_g^-) + NO = O + NO_2$
15	$\mathrm{H}_2 + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{H} + \mathrm{HO}_2$	55	$O_2(a^1\Delta_g) + NO = O + NO_2$
16	$O_2(X^3\Sigma_g^-) + H = OH + O$	56	$\mathrm{O}_2(b^1\Sigma_g^+) + \mathrm{NO} = \mathrm{O} + \mathrm{NO}_2$
17	$\mathrm{H} + \mathrm{O}_2(a^1\Delta_g) = \mathrm{OH} + \mathrm{O}$	57	$NO_2 + N = 2NO$
18	$\mathrm{H} + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{OH} + \mathrm{O}$	58	$2\mathrm{NO}_2 = 2\mathrm{NO} + \mathrm{O}_2(X^3\Sigma_g^-)$
19	$H_2 + O = OH + H$	59	$O_3 + NO = NO_2 + O_2(X^3\Sigma_g^-)$
20	$\mathrm{H_2O} + \mathrm{H} = \mathrm{OH} + \mathrm{H_2}$	60	$OH + NO_2 = NO + HO_2$
21	$\mathrm{H_2O} + \mathrm{O} = \mathrm{H} + \mathrm{HO_2}$	61	$OH + NO = H + NO_2$
22	$H_2O + O = 2OH$	62	H + NO = N + OH
23	$\mathrm{H}_2\mathrm{O} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{OH} + \mathrm{HO}_2$	63	$N + HO_2 = NO + OH$
24	$\mathrm{H_2O} + \mathrm{OH} = \mathrm{H_2} + \mathrm{HO_2}$	64	$O(^1D) + M = O + M$
25	$2OH = H + HO_2$	65	$\mathrm{O}(^1D) + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{O} + \mathrm{O}_2(a^1\Delta_g)$
26	$\mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{O} + \mathrm{HO}_2$	66	$\mathrm{O}(^1D) + \mathrm{O}_2(X^3\Sigma_g^-) = \mathrm{O} + \mathrm{O}_2(b^1\Sigma_g^+)$
27	$\mathrm{OH} + \mathrm{O}_2(a^1\Delta_g) = \mathrm{O} + \mathrm{HO}_2$	67	$\mathrm{O}_2 + \mathrm{O}(^1D) = 2\mathrm{O}_2(X^3\Sigma_g^-)$
28	$\mathrm{OH} + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{O} + \mathrm{HO}_2$	68	$\mathrm{O}_3 + \mathrm{O}(^1D) = \mathrm{O}_2(a^1\Delta_g) + \mathrm{O}_2(X^3\Sigma_g^-)$
29	$\mathrm{H} + \mathrm{H}_2\mathrm{O}_2 = \mathrm{H}_2 + \mathrm{H}\mathrm{O}_2$	69	$\mathrm{O}_3 + \mathrm{O}(^1D) = \mathrm{O}_2(b^1\Sigma_g^+) + \mathrm{O}_2(X^3\Sigma_g^-)$
30	$\mathrm{H} + \mathrm{H}_2\mathrm{O}_2 = \mathrm{H}_2\mathrm{O} + \mathrm{O}\mathrm{H}$	70	$\mathrm{O}_3 + \mathrm{O}(^1D) = \mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O} + \mathrm{O}$
31	$\mathrm{HO}_2 + \mathrm{H}_2\mathrm{O} = \mathrm{H}_2\mathrm{O}_2 + \mathrm{OH}$	71	$\mathrm{O}(^1D) + \mathrm{O}_2(a^1\Delta_{\!\scriptscriptstyle \mathcal{S}}) = \mathrm{O}_2(b^1\Sigma_{\!\scriptscriptstyle \mathcal{S}}^+) + \mathrm{O}$
32	$\mathrm{OH} + \mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}$	72	$\mathrm{O}(^1D) + \mathrm{H}_2 = \mathrm{OH} + \mathrm{H}$
33	$\mathrm{H_2O} + \mathrm{O_2}(X^3\Sigma_g^-) = \mathrm{H_2O_2} + \mathrm{O}$	73	$\mathrm{O}(^{1}D) + \mathrm{H}_{2}\mathrm{O} = 2\mathrm{OH}$
34	$2\mathrm{HO}_2 = \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2(X^3\Sigma_g^-)$	74	$\mathrm{O}(^1D) + \mathrm{H_2O} = \mathrm{H_2} + \mathrm{O_2}(X^3\Sigma_g^-)$
35	$\mathrm{O}_3 + \mathrm{H} = \mathrm{OH} + \mathrm{O}_2(X^3\Sigma_g^-)$	75	$\mathrm{O}(^{1}D) + \mathrm{HO}_{2} = \mathrm{OH} + \mathrm{O}_{2}(X^{3}\Sigma_{g}^{-})$
36	$\mathrm{O}_3 + \mathrm{O} = 2\mathrm{O}_2(X^3\Sigma_g^-)$	76	$\mathrm{O}(^{1}D) + \mathrm{HO}_{2} = \mathrm{OH} + \mathrm{O}_{2}(a^{1}\Delta_{g})$
37	$\mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(a^1\Delta_g) = \mathrm{O}_3 + \mathrm{O}$	77	$\mathrm{O}(^1D) + \mathrm{HO}_2 = \mathrm{OH} + \mathrm{O}_2(b^1\Sigma^+_g)$
38	$\mathrm{O}_2(X^3\Sigma_g^-) + \mathrm{O}_2(b^1\Sigma_g^+) = \mathrm{O}_3 + \mathrm{O}$	78	$\mathrm{O}(^1D) + \mathrm{NO}_2 = \mathrm{NO} + \mathrm{O}_2(X^3\Sigma_g^-)$
39	$\mathrm{O}_3 + \mathrm{OH} = \mathrm{HO}_2 + \mathrm{O}_2(X^3\Sigma_g^-)$		
40	$O_3 + H_2 = OH + HO_2$		

При вычислении σ_I для излучения с $\lambda_I = 193.3$ nm значения b_c^M были взяты такими же, как и для полосы

$$(X^{3}\Sigma_{g}^{-}, V'=0) \rightarrow (b^{1}\Sigma_{g}^{+}, V''=0).$$

Полагалось, что коэффициенты ударного уширения зависят от температуры как $b_c \sim T^{-1/2}$. Следует отметить, что использование таких значений b_c^M позволило получить достаточно хорошее совпадение расчетных значений σ_I с измеренными в [10], как на частоте лазерного излучения $v_I = 51733.05742$ сm⁻¹ ($\lambda_I = 193.3$ nm), так и на ближайших к ней частотах $v_k = 51735.01$ и 51739.64 сm⁻¹, соответствующих центрам линий P17 и R19 перехода ($X^3 \Sigma_g^-, V' = 0$) $\rightarrow (B^3 \Sigma_u^-, V'' = 4)$. Расхождение между расчетными и измеренными значениями сечений не превышает 20%. В табл. 1 даны расчетные значения сечения поглощения излучения с $\lambda_I = 193.3$ и 762.346 nm в стехиометрической смеси H₂/воздух при различных значениях давления и температуры газа.

Поскольку в результате фотодиссоциации в смеси H₂/O₂/N₂ появляются атомы O(¹D), а при возбуждении молекул O_2 излучением с $\lambda_I = 762.346$ nm — молекулы $O_2(b^1\Sigma_{q}^+)$ и $O_2(a^1\Delta_{g})$, то реакционный механизм должен содержать химические реакции с участием этих компонентов, а также процессы электронноэлектронного (Е-Е) обмена и процессы тушения электронно-возбужденных состояний (Е-Т). Такая кинетическая модель была разработана ранее для анализа динамики воспламенения водородно-кислородных смесей в [4]. Однако не все реакции, приведенные в [4], важны для описания процессов воспламенения и горения в смеси Н₂/O₂ (воздух). На основе анализа чувствительности кинетической модели [4] были выбраны реакции, оказывающие определяющую роль на величину задержки воспламенения и на изменение концентраций основных компонентов. Редуцированная таким образом модель была дополнена процессами образования молекул NO и NO2 в том числе и в реакциях с возбужденными атомами ${
m O}({}^1D)$ и молекулами ${
m O}_2(a{}^1\Delta_g)$ и ${
m O}_2(b{}^1\Sigma_g^+)$. Эта модель позволяет анализировать процессы воспламенения смеси H₂/O₂/N₂ как при фотодиссоциации молекул О₂, так и при их возбуждении в состояние $b^1 \Sigma_{o}^+$.

В табл. 2 дан список всех процессов (в том числе и процессов E-E и E-T обмена), включенных в модель. Константы скоростей для этих процессов и термодинамические свойства отдельных веществ были взяты такими же, как и в [4,11].

Сравнение с экспериментальными данными

Естественно, что любая модель, содержащая новые процессы по сравнению с традиционными реакционными механизмами, должна описывать известные экспериментальные данные по временам задержки воспламенения в смеси H₂/O₂ (воздух) и, кроме того, правильно предсказывать эволюцию и равновесные значения

мольных долей как невозбужденных, так и электронновозбужденных компонентов.

Отметим здесь, что модель, принятая в настоящей работе, основана на более ранних публикациях [12-14]. Особенностями разработанных в этих работах реакционных механизмов являются: во-первых, включение в модель важной для инициирования цепи реакции $H_2 + O_2 = 2OH [15]$ и, во-вторых, включение реакций с участием молекул О3. Последние играют заметную роль в низкотемпературной области воспламенения смеси H₂/O₂ (воздух). Как оказалось, особую роль играет реакция $O_3 + OH = HO_2 + O_2$ (реакция № 39). Здесь и далее нумерация реакций соответствует нумерации из табл. 2. В ранних работах [13,14] температурная зависимость константы скорости обратного процесса № 39 задавалась аналитической формулой. Вычисления показали, что использование этой формулы не позволяет правильно описать экспериментальные данные по задержкам воспламенения в смеси H₂/O₂ (воздух) при низкой температуре. Поэтому она вычислялась по константе скорости прямой реакции через константу равновесия. Как будет показано ниже, расчеты периода индукции с использованием такой константы скорости для этой реакции дают существенно лучшее соответствие экспериментальным данным в низкотемпературной области ($T_0 < 950 \,\mathrm{K}$).

Данная модель позволяет с хорошей точностью описать результаты экспериментов по задержкам воспламенения, полученные в ударных трубах за отраженной от торца ударной волной, как в смеси $H_2/O_2/Ar$, так и в смеси $H_2/Boздух$ в широком диапазоне давлений, температур и составов смеси.

На рис. 2 показано сравнение времен задержки воспламенения τ_{in} , измеренных в [16–19] для стехиометрической смеси H₂/воздух при $P_0 = 1$ atm, а также

Рис. 2. Изменение периода индукции τ_{in} для стехиометрической смеси H₂/воздух в зависимости от начальной температуры T_0 при $P_0 = 1$ atm: символы — экспериментальные данные [16–19]; сплошная, штриховая и пунктирная кривые — расчеты по моделям данной работы, GRI-Mech 3.0 [20] и модели [14] соответственно.

Журнал технической физики, 2009, том 79, вып. 3

рассчитанных по модели данной работы и по модели [14] с константой скорости обратной реакции № 39, определенной по аналитической формуле. Здесь же для сравнения представлены расчетные значения τ_{in} , полученные с использованием известной модели GRI-Mech 3.0 [20]. Как видно из рис. 2, в низкотемпературной области $T_0 < 950$ К существует достаточно большой разброс экспериментальных данных. Так, результаты измерений [16,18], которые достаточно хорошо согласуются друг с другом в диапазоне $T_0 = 950-1000$ К, при $T_0 = 930$ К отличаются более чем в 20 раз от данных работы [17]. Отметим, что и результаты более поздней работы [19], полученные для более высоких температур ($T_0 = 950-1550$ К) за отраженной ударной

ям [16,18]. Видно, что модель настоящей работы вполне удовлетворительно описывает данные [16,18,19]. Модель GRI-Mech 3.0, напротив, в низкотемпературной области хорошо соответствует данным [17]. В высокотемпературной области ($T_0 \ge 1000$ K) обе модели дают близкие результаты. Использование для данного реакционного механизма константы скорости обратной реакционного механизма константы скорости обратной реакции № 39 в аналитической форме [13,14] приводит к существенному занижению величины τ_{in} при $T_0 < 900$ K. Модель данной работы и модель GRI-Mech 3.0 позволяют получить хорошее соответствие с экспериментом [21] и для бедной смеси H₂/воздух с эквивалентным соотношением $\phi = 0.1$ в диапазоне $T_0 = 920-1200$ K, что иллюстрирует рис. 3.

волной, при T₀ = 950 К лучше соответствуют измерени-

Предствленная в данной работе модель с участием возбужденых молекул $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ и атомов $O(^1D)$ позволяет также получить в состоянии термодинамического равновесия продуктов сгорания больцмановское распределение молекул O_2 и атомов O по

Рис. 3. Изменение периода индукции $\tau_{\rm in}$ для смеси H₂/воздух с $\phi = 0.1$ в зависимости от начальной температуры T_0 при $P_0 = 0.45$ atm: символы — экспериментальные данные [21]; сплошная, штриховая и пунктирная кривые — расчеты по моделям данной работы, GRI-Mech 3.0 [20] и модели [14] соответственно.

Рис. 4. Изменение мольных долей отдельных компонентов γ_i , и температуры *T* во времени при воспламенении стехиометрической смеси H₂/воздух в замкнутом объеме ($\rho = \text{const}$) с $T_0 = 900 \text{ K}$ и $P_0 = 1 \text{ atm.}$

электронным состояниям при соответствующей конечной температуре, что также свидетельствует о непротиворечивости модели.

На рис. 4 показано изменение температуры газа и мольных долей всех компонентов смеси во времени при воспламенении стехиометрической смеси H₂/воздух с $T_0 = 900 \,\mathrm{K}, P_0 = 1 \,\mathrm{atm}$ при условии $\rho = \mathrm{const},$ которое реализуется за отраженной от торца ударной волной. Видно, что даже в отсутствие внешнего воздействия, приводящего к образованию в исходной смеси H₂/воздух сверхравновесных концентраций возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ или атомов $O(^1D)$, эти компоненты появляются за счет химических реакций и процессов Е-Е обмена. Естественно, что в этом случае концентрация молекул $\mathrm{O}_2(b^1\Sigma_q^+)$ в смеси много меньше, чем концентрация молекулярного кислорода в состоянии $a^{1}\Delta_{g}$ и, тем более, в основном электронном состоянии $X^3 \Sigma_g^-$. Возбужденный атомарный кислород $O(^{1}D)$ образуется в заметных количествах только при $t > \tau_{in}$ ($\tau_{in} = 5.4 \cdot 10^{-4} \, s$), когда происходит заметный рост температуры газа. Отметим, что при правильном определении термодинамических свойств возбужденных и невозбужденных компонентов реакционный механизм, в котором возбужденные молекулы и атомы рассматриваются как отдельные компоненты, должен давать те же значения τ_{in} и конечной температуры продуктов сгорания, что и обычные модели, в которых такого разделения не сделано. Модель данной работы такому критерию удовлетворяет, хотя реакции инициирования и продолжения цепи с участием возбужденных молекул O_2 протекают значительно быстрее (ранее на это указывалось в экспериментальных работах [22,23]).

Используемый в данной работе реакционный механизм позволяет также с хорошей точностью описать профили компонентов H₂, O₂, H₂O и температуры газа при реакции H₂ и O₂ в проточном реакторе, экспериментально измеренные в [24]. Это хорошо видно из

Рис. 5. Изменение мольных долей компонентов H_2 , O_2 , H_2O и температуры в проточном реакторе при протекании реакции в смеси H_2/O_2 с $T_0 = 880$ K, $P_0 = 30$ kPa: символы — эксперимент [24], кривые — расчет с использованием модели данной работы.

рис. 5, где представлено сравнение расчетных и экспериментальных данных для смеси H_2/O_2 с $T_0 = 880$ K и $P_0 = 0.3$ atm.

Результаты численного анализа

Как известно, воспламенение смеси H_2/O_2 (воздух) происходит благодаря протеканию цепных реакций [15,25]. Основными реакциями инициирования цепи при невысоких начальных температурах ($T_0 < 2000$ K) являются реакции № 10 и 13 (табл. 2):

$$H_2 + O_2 = 2OH, \quad H_2 + O_2 = H + HO_2.$$

Важной реакцией, приводящей к образованию активных атомов H, является реакция продолжения цепи № 20

$$\mathbf{OH} + \mathbf{H}_2 = \mathbf{H}_2\mathbf{O} + \mathbf{H}.$$

Далее процесс развивается через разветвление цепи (реакции № 16 и 19)

$$\begin{split} H + O_2 &= OH + O,\\ O + H_2 &= OH + H. \end{split}$$

Обрыв цепи происходит в основном вследствие протекания реакции рекомбинации № 7

$$\mathbf{H} + \mathbf{O}_2 + M = \mathbf{H}\mathbf{O}_2 + M.$$

Фотодиссоциация молекул O_2 излучением с $\lambda_I = 193.3$ nm приводит к образованию электронно-возбужденных атомов кислорода

$$\mathrm{O}_2(X^3\Sigma_g^-) + h\nu_I \to \mathrm{O}_2(B^3\Sigma_u^-) \to \mathrm{O}(^3P) + \mathrm{O}(^1D).$$

Константа скорости реакции разветвления цепи с участием атома $O(^{1}D)$ (реакция N_{0} 72) намного больше

константы скорости реакции с участием атома $O({}^{3}P)$ (реакция \mathbb{N} 19) [26]. Несмотря на очень высокую скорость тушения состояния $O({}^{1}D)$ в реакции \mathbb{N} 64 (константа скорости при $M = O_2 \sim 10^{-11} \text{ cm}^3/\text{s}$ [27]) часть атомов $O({}^{1}D)$ все же вступает в реакцию с H_2 и, таким образом, интенсифицирует цепной процесс. Кроме того, тушение $O({}^{1}D)$ приводит к образованию хоть и менее реакционноспособных, но все же химически очень активных атомов О в основном электронном состоянии, что позволяет исключить стадию инициирования цепи (реакции \mathbb{N} 10, 13, 20) и тем самым ускорить протекание цепных процессов.

В случае возбуждения молекул O₂ в состояние $b^1\Sigma_g^+$ излучением с $\lambda_I = 762.346$ nm происходит ускорение как реакций инициирования цепи, так и реакций разветвления цепи вследствие появления в смеси высоко реакционноспособных молекул O₂ $(a^1\Delta_g)$ и O₂ $(b^1\Sigma_g^+)$ (реакции No 11, 12, 14, 15, 17, 18). Следует указать, что вследствие быстрого тушения O₂ $(b^1\Sigma_g^+)$ (реакция No 45) основную роль в интенсификации цепного процесса играют реакции с участием O₂ $(a^1\Delta_g)$ [4]. Отметим, что, вообще говоря, в результате этого процесса молекулы O₂ $(a^1\Delta_g)$ образуются колебательно-возбужденными, т.е. в реальности это процесс электронно-колебательного обмена: O₂ $(b^1\Sigma_g^+, V = 0) + M = O_2(a^1\Delta_g, V = 1...5) + M$ [28].

Наличие колебательно-возбужденных молекул $O_2(a^1\Delta_g, V)$ должно привести к дополнительному ускорению реакций инициирования и разветвления цепи № 11, 14 и 17. Однако учет этих процессов требует создания новой термически неравновесной модели химической кинетики, которая предполагает отсутствие термодинамического равновесия между колебательными степенями свободы молекул (в том числе и электронновозбужденных) и вращательно-поступательным резервуаром. Для создания такой модели необходима информация о константах скоростей процессов электронноколебательного и колебательно-поступательного обмена с участием молекул $O_2(a^1\Delta_g, V)$ и $O_2(b^1\Sigma_g^+, V)$. Однако в настоящее время такие данные в необходимом объеме еще не получены. Поэтому на данном этапе исследований используется термически равновесная модель, которая предполагает наличие термодинамического равновесия между поступательными, вращательными и колебательными степенями свободы всех молекул в смеси. Очевидно, что такая модель будет занижать значения констант скоростей цепных реакций с участием возбужденных молекул $O_2(a^1\Delta_g, V)$ и поэтому результаты, полученные с использованием этой модели, по определению влияния возбуждения молекул O₂ в состояние $b^{1}\Sigma_{p}^{+}$ излучением с $\lambda_{I} = 762.346$ nm на интенсификацию воспламенения можно рассматривать как оценку снизу.

Поскольку процессы, приводящие к ускорению цепных реакций в этих двух случаях, даже при таком тривиальном рассмотрении отличаются, то и результаты воздействия излучения с $\lambda_I = 193.3$ и 762.346 nm на реагирующую смесь H₂/воздух должны быть различными даже при одинаковом количестве энергии лазерного излучения, поглощенной одной молекулой O₂, $E_s = \sigma_I I_0 \tau_p$.

Рис. 6. Зависимость τ_{in} от начальной температуры T_0 стехиометрической смеси H₂/воздух ($P_0 = 10$ kPa) для различных значений $E_s = 0.01$; 0.03; 0.06; 0.12 eV/(molecule O₂) (кривые I - 4 соответственно), в случае воздействия излучения с $\lambda_I = 193.3$ и 762.346 nm при $\tau_p = 10^{-4}$ s (сплошные и пунктирные кривые соответственно). Штрихпунктир отвечает зависимости $\tau_{in}(T_0)$ при $E_s = 0$, а штриховая кривая — зависимости $\tau_{in}(T_0)$ при $E_s = 0.12$ eV/(molecule O₂), когда вся поглощенная энергия идет на нагрев газа.

Из представленных на рис. 6 зависимостей $\tau_{in}(T_0)$ видно, что как метод фотодиссоциации молекул O2, так и метод, основанный на возбуждении электронных состояний молекулярного кислорода лазерным излучением, позволяют при небольших значениях E_s существенно уменьшить период индукции и температуру воспламенения T_{ign} . Даже при $E_s = 0.01 \text{ eV}/(\text{molecule O}_2)$ это уменьшение в случае фотодиссоциации молекул O2 составляет 120 К, а при возбуждении в состояние $b^1 \Sigma_{\rho}^+$ — 140 К. Видно также, что для каждого значения E_s существует некоторое граничное значение температуры Ть, которое определяется как точка пересечения зависимостей $\tau_{in}(T_0)$, полученных при воздействии излучения с $\lambda_I = 193.3$ и 762.346 nm. При $T_0 > T_b$ сокращение периода индукции при фотодиссоциации молекул О2 излучением с $\lambda_I = 193.3 \, \mathrm{nm}$ больше (\sim в 2 раза), чем при возбуждении O_2 в состояние $b^1 \Sigma_g^+$, а при $T_0 < T_b$, наоборот, величина τ_{in} становится в десятки и даже сотни раз меньше, чем в случае фотодиссоциации молекул О2. Меньше в этом случае и температура воспламенения. Так, например, при $E_s = 0.06 \, \text{eV}/(\text{molecule O}_2)$ уменьшение T_{ign} в случае возбуждения О₂ по сравнению с фотодиссоциацией составляет 40 К.

Таким образом, проведенные расчеты показывают, что при невысоких начальных температурах газа и небольших значениях подведенной энергии $(E_s \leq 0.1 \text{ eV}/(\text{molecule O}_2))$ метод, основанный на возбуждении электронных состояний молекул O₂, более эффективен, чем фотодиссоциационный метод инициирования горения. В самом деле, чтобы при $P_0 = 10 \text{ kPa}$ уменьшить температуру воспламенения стехиометрической смеси H₂/воздух на 140 К при возбуждении O₂ в состояние $b^1\Sigma_g^+$ необходимо подвести энергию $E_s = 0.01 \text{ eV}/(\text{molecule O}_2)$, а при фотодиссоциации уже $E_s \sim 0.02 \text{ eV}/(\text{molecule O}_2)$. Однако оба эти метода намного эффективнее, чем простой нагрев газа (в том числе и лазерным излучением). Это видно из рис. 6, где приведена зависимость $\tau_{\text{in}}(T_0)$ для наибольшего из рассматриваемых значений E_s ($E_s = 0.12 \text{ eV}/(\text{molecule O}_2)$), когда вся энергия, подведенная к газу, идет на возбуждение поступательных степеней свободы молекул. Даже при $E_s = 0.01 \text{ eV}/(\text{molecule O}_2)$ возбуждение молекул О₂ в состояние $b^1\Sigma_g^+$ или их фотодиссоциация УФ излучением позволяет получить большее сокращение периода индукции и уменьшение T_{ign} , чем нагрев среды с существенно большим значением подведенной к газу энергии ($E_s = 0.12 \text{ eV}/(\text{molecule O}_2)$).

Отметим здесь, что для обеспечения таких значений E_s при относительно небольших сечениях поглощения ($\sigma_I \sim 10^{-22} - 10^{-20}$ cm²) как на длине волны $\lambda_I = 193.3$ nm, так и на длине волны $\lambda_I = 762.346$ nm требуется достаточно большая интенсивность лазерного излучения. Так, например, при $P_0 = 10$ kPa, $T_0 = 500$ K и $E_s = 0.03$ eV/(molecule O₂) при $\tau_p = 10^{-4}$ s необходимо иметь $I_0 \approx 60$ kW/cm² на длине волны $\lambda_I = 762.346$ nm. Учитывая, что длина поглощения L_v при заданных P_0 и T_0 составляет соответственно $\sim 6 \cdot 10^3$ и $\sim 3 \cdot 10^2$ cm, то такую величину I_0 можно получить в небольшой области (~ 1 cm) путем многократного сканирования достаточно узким пучком радиуса 0.1 cm с существенно меньшим значением интенсивности ($I_0 \sim 10$ W/cm²).

Для объяснения физических причин отмеченных закономерностей рассмотрим более подробно процессы, приводящие к воспламенению смеси Н2/воздух как при фотодиссоциации молекул О2, так и при их возбуждении. На рис. 7 представлены изменения мольных долей компонентов смеси и температуры при $T_0 \sim T_{
m ign}$ для двух рассматриваемых методов инициирования горения. Видно, что при воздействии излучения с $\lambda_I = 193.3 \text{ nm}$ в результате фотодиссоциации молекулярного кислорода на интервале $[0, \tau_p]$ ($\tau_p < \tau_{in}$) формируются атомы O(³*P*) и $O(^{1}D)$, причем вследствие быстрого тушения $O(^{1}D)$ (реакция № 64) концентрация атомов O(³P) значительно больше, чем $O(^{1}D)$. В результате E-E обмена (реакции № 65 и 66) в смеси очень быстро появляются возбужденные молекулы $O_2(b^1\Sigma_q^+)$ и $O_2(a^1\Delta_q)$. Концентрация активных атомов Н и радикалов ОН носителей цепного механизма — растет вплоть до момента времени $t = \tau_p$ за счет протекания реакций № 19, 20 и 72. Однако при $t > \tau_p$ концентрация атомов О резко уменьшается вследствие протекания реакции разветвления цепи № 19, что приводит к замедлению цепного процесса и к прекращению роста концентрации атомов Н и радикалов ОН. Заметим, что атомы Н участвуют в двух конкурирующих процессах: в реакции разветвления цепи № 16 (эта реакция является лимитирующим процессом в цепном механизме воспламенения смеси Н₂/О₂ (воздух)) и в реакции обрыва цепи № 7.

Рис. 7. Изменение мольных долей отдельных компонентов γ_i и температуры *T* во времени в стехиометрической смеси H₂/воздух ($P_0 = 10$ kPa) при $T_0 \sim T_{ign}$ при воздействии излучения $E_s = 0.03$ eV/(molecule O₂) с $\lambda_I = 193.3$ (*a*) и 762.346 nm (*b*).

При $T_0 > T_{ign}$ скорость реакции № 16 выше, чем скорость реакции № 7. При $T_0 < T_{ign}$ ситуация изменяется на противоположную. Однако поскольку реакция № 7 является экзотермической ($\Delta E \sim 200 \text{ kJ/mol}$), то температура газа даже в случае отсутствия воспламенения несколько возрастает. Тем не менее малое количество свободных атомов и радикалов в смеси не позволяет развиваться цепному процессу.

В случае воздействия излучения с $\lambda_I = 762.346$ nm прежде всего возникают возбужденные молекулы $O_2(b^1\Sigma_g^+)$, которые в результате тушения (реакция No 45) и процесса E-E обмена (реакция No 46) переходят в состояние $O_2(a^1\Delta_g)$. Это приводит к тому, что при $t = \tau_p$ значение $\gamma_{O_2(a^1\Delta_g)}$ почти в 40 раз больше $\gamma_{O_2(b^1\Sigma_g^+)}$. Присутствие в смеси возбужденных молекул O_2 приводит к протеканию реакций инициирования цепи No 12 и 15.

Атомы Н образуются также в результате реакции H₂ с OH (процесс № 20). Активные атомы Н и радикалы OH в этом случае формируются значительно раньше, чем атомы O, но и те и другие — значительно позже, чем при фотодиссоциации молекул O₂. С ростом концентрации возбужденных молекул O₂($a^{1}\Delta_{g}$) усиливается роль реакции H + O₂($a^{1}\Delta_{g}$) = OH + O (процесс № 17). Далее, как и в случае воздействия излучения с λ_{I} = 193.3 nm, ато-

мы О взаимодействуют с молекулами H₂ во второй реакции разветвления цепи № 19, которая в данном случае является лимитирующей для развития цепного процесса. В отличие от случая фотодиссоциации молекул O₂, атомы $O({}^{1}D)$ образуются только при воспламенении смеси при достаточно высокой температуре. Так как скорость реакции № 17 с участием молекул $O_2(a{}^{1}\Delta_g)$ больше, чем скорость реакции № 16 с участием молекул O₂ в основном электронном состоянии, то предел воспламенения смеси H₂/O₂ (воздух) при возбуждении молекул O₂ смещается в область более низких температур по сравнению со случаем фотодиссоциации молекул O₂.

Рис. 8 иллюстрирует последовательность образования активных атомов и радикалов при воздействии излучения с $\lambda_I = 193.3$ и 762.346 nm на стехиометрическую смесь H₂/воздух.

Итак, показано, что, хотя при фотодиссоциации молекул O₂ сразу образуются активные атомы O — носители цепного процесса, а при возбуждении молекул O₂ в состояние $b^1\Sigma_g^+$ активные атомы и радикалы образуются при протекании целого комплекса химических реакций с участием возбужденных молекул O₂($b^1\Sigma_g^+$) и O₂($a^1\Delta_g$) (т.е. на это необходимо дополнительное время), тем не менее существует область температур T_0 , при которых возбуждение молекул O₂ позволяет в значительно большей степени уменьшать период индукции и сильнее понизить температуру воспламенения, чем их фотодиссоциация.

Рассмотрим теперь, как влияет давление смеси на сокращение периода индукции в случае фотодиссоциации молекул О₂ лазерным излучением и при их возбуждении в состояние $b^1 \Sigma_g^+$. Зависимость τ_{in} от начального давления смеси H₂/воздух для этих двух методов инициирова-

Рис. 8. Схема цепного механизма воспламенения смеси H_2 /воздух при фотодиссоциации молекул O_2 лазерным излучением с $\lambda_I = 193.3$ nm (*a*) и при возбуждении молекул O_2 лазерным излучением с $\lambda_I = 762.346$ nm (*b*).

Рис. 9. Зависимость периода индукции, τ_{in} , от начального давления, P_0 , стехиометрической смеси H₂/воздух ($T_0 = 500$ K) для различных значений энергии, подведенной к газу: $E_s = 0.06$ (1); 0.09 (2); 0.12 (3) eV/(molecule O₂) при фотодиссоциации молекул O₂ и при их возбуждении в состояние $b^1 \Sigma_g^+$ (сплошные и штриховые кривые соответственно), $\tau_p = 10^{-4}$ s.

ния горения при одинаковых значениях E_s иллюстрирует рис. 9.

Видно, что для каждого Е_s существует некоторое граничное значение начального давления смеси P_{0b}, при превышении которого величина τ_{in} резко растет. При возбуждении молекул О2 лазерным излучением с $\lambda_I = 762.346$ nm величина P_{0b} заметно больше, чем при их фотодиссоциации излучением с $\lambda_I = 193.3$ nm. Так, например, при $E_s = 0.06 \text{ eV}/(\text{molecule O}_2)$ и $T_0 = 500 \text{ K}$ величина P_{0b} в случае возбуждения молекул О₂ вдвое больше, чем при их фотодиссоциации. Важно отметить, что при $P_0 < P_{0b}$ значения τ_{in} от двух до пяти раз (в зависимости от E_s) меньше в случае воздействия излучения с $\lambda_I = 193.3$ nm. Однако при $P_0 > P_{0b}$ ситуация изменяется на противоположную — время задержки воспламенения (период индукции) при возбуждении молекул О2 в десятки и даже сотни раз меньше, чем в случае их фотодиссоциации.

Наличие области при $P_0 > P_{0b}$, в которой τ_{in} растет с увеличением давления, объясняется тем, что скорость реакции обрыва цепи № 7 (она трехчастичная) квадратично зависит от P_0 . Скорости всех реакций продолжения и разветвления цепи (реакции № 16–20) линейно зависят от давления. Поэтому при некотором P_0 во всех случаях (и даже при очень больших E_s) скорость реакции обрыва цепи становистя больше скорости реакции развития цепи. Чем больше значение E_s , тем больше в смеси концентрация активных атомов и радикалов и тем больше значение P_0 , при котором реализуется данная ситуация. При высоких P_0 и низких T_0 на увеличении τ_{in} сказывается и рекомбинация атомов, образующихся в больших количествах в случае фотодиссоциации молекул O_2 .

Выводы

Проведенный анализ показал, что фотохимические методы инициирования горения, основанные на фотодиссоциации молекул О₂ излучением с $\lambda_I = 193.3$ nm и на их возбуждении излучением с $\lambda_I = 762.346$ nm, намного эффективнее с точки зрения уменьшения температуры воспламенения и сокращения периода индукции, чем метод нагрева среды лазерным излучением. Несмотря на то что метод, основанный на фотодиссоциации молекул О2, позволяет фактически исключить стадию химического инициирования цепи и сразу получить активные атомы О — носители цепного механизма, тем не менее лазерно-индуцированное возбуждение молекул О2 дает возможность воспламенить смесь Н2/воздух при более низкой температуре. Обусловлено это тем, что скорость реакции разветвления цепи с участием возбужденных молекул О2 при низких температурах во много раз больше скорости аналогичной реакции с участием молекул О2 в основном электронном состоянии. Однако существует область параметров, где фотодиссоциация молекул О2 приводит к более сильному сокращению периода индукции, чем их возбуждение — это область повышенных температур и низких давлений. Границы этой области при заданных P₀ и T₀ зависят от величины подведенной к газу энергии лазерного излучения.

Работа выполнена при финансовой поддержке РФФИ (гранты № 08-01-00808 и 08-08-00839).

Список литературы

- Lucas D., Dunn-Rankin D., Hom K., Brown N.J. // Combust. Flame. 1987. Vol. 69. N 2. P. 171–184.
- [2] Lavid M., Nachshon Y., Gulati S.K., Stevens J.G. // Combust Sci. Tehnol. 1994. Vol. 96. N 4–6. P. 231–245.
- [3] Ronney P.D. // Opt. Eng. 1994. Vol. 33. N 2. P. 510-521.
- [4] Старик А.М., Титова Н.С. // ЖТФ. 2003. Т. 73. Вып. 3. С. 59–68.
- [5] Старик А.М., Титова Н.С., Луховицкий Б.И. // ЖТФ. 2004. Т. 74. Вып. 1. С. 77–83.
- [6] Луховицкий Б.И., Старик А.М., Титова Н.С. // Физика горения и взрыва. 2005. Т. 41. № 4. С. 29–38.
- [7] Nicolet M., Cleslik S., Kennes R. // Planet. Space Sci. 1989.
 Vol. 31. N 4. P. 427–458.
- [8] Ritter K.J., Wilkerson T.D. // J. Mol. Spectr. 1987. Vol. 121.
 P. 1–19.
- [9] Seiser N., Robie D.C. // Chem. Phys. Lett. 1998. Vol. 282.
 P. 263–267.
- [10] Yoshino Y, Freeman D.E., Parkinson W.H. // J. Phys. Chem. Ref. Data. 1984. Vol. 13. N 1. P. 207–227.
- [11] Старик А.М., Титова Н.С. // Кинетика и катализ. 2003. Т. 44. № 1. С. 35-46.
- [12] Димитров В.И. Кинетика и механизмы превращений в быстропротекающих процессах. Дис. докт. физ.-мат. наук. Новосибирск: ИТПМ СОАН СССР, 1981. 350 с.
- [13] Dougherty E.P., Rabitz H. // J. Chem. Phys. 1980. Vol. 72.
 N 12. P. 6571–6586.
- [14] Даутов Н.Г., Старик А.М. // ТВТ. 1993. Т. 31. № 2. С. 292– 301.

- [15] Эммануэль Н.М., Кнорре Д.Г. Лекции по химической кинетике. М.: Высш. шк., 1974. 400 с.
- [16] Craig R.R. A shock tube study of the ignition delay of hydrogen-air mixtures near the second explosion limit. Report AFAPL-TR-66-74, 1966.
- [17] Snyder A.D., Robertson J., Zanders D.L., Skinner G.B. Shock tube studies of fuel-air ignition characteristics. Report AFAPL-TR-65-93, 1965.
- [18] Slack M., Grillo A. Investigation of hydrogen-air ignition sensitized by nitric oxide and nitrogen dioxide. NASA Report CR-2896, 1977.
- [19] Schultz E., Shepherd J. Validation of Detailed Reaction Mechanisms for Detonation Simulation. California Institute of Technology, Report FM99-5, 2000.
- [20] Smith G.P., Golden D.M. Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., Bowman C.T., Hanson R., Song S., Gardiner W.C., Lissianski V., and Qin Z. (http://www.me.berkeley.edu/gri_mech/)
- [21] Just T., Schmalz F. Measurements of ignition delays of hedrogen-air mixtures under simulated conditions of supersonic combustion chambers. AGARD CP. 1968. N 34. Pt. 2. Paper 19.
- [22] Cupitt L.T., Takacs G.A., Glass G.P. // Int. Chem. Kinet. 1982. Vol. 14. N 5. P. 487–497.
- [23] Басевич В.Я., Веденеев В.И. // Хим. физика. 1985. Т. 4. № 8. С. 1102–1106.
- [24] Mueller M.A., Kim T.J., Yetter R.A., Dryer F.L. // Int. J. Chem. Kinet. 1999. Vol. 31. P. 113.
- [25] Азатян В.В., Рубцов Н.М., Цветков Г.И., Черныш В.И. // Журн. физ. хим. 2005. Т. 79. № 3. С. 397–402.
- [26] Baulch D.L., Bowman C.T., Cobos C.J. et al. // J. Phys. Chem. Ref. Data. 2005. Vol. 34. N 3. P. 757–1397.
- [27] Capitelli M., Ferreira C.M., Gordiets B.F., Osipov A.I. Plasma Kinetics in Atmospheric Gases. Springers Series on Atomic. Optical and Plasma Physics N 31. Berlin: Springer, 2000.
- [28] Slanger T.G., Copeland R.A. // Chem. Rev. 2003. Vol. 103. P. 4731–4765.