Увеличение диамагнитного отклика в ВТСП $Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_2Cu_3O_x$ и композитах $Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_2Cu_3O_x + Ад$ низкой плотности

© М.И. Петров,¹ Д.А. Балаев,¹ И.Л. Белозерова,² С.И. Попков,¹ А.А. Дубровский,¹ К.А. Шайхутдинов,¹ О.Н. Мартьянов³

¹ Институт физики им. Л.В. Киренского СО РАН,
660036 Красноярск, Россия
² Сибирский государственный аэрокосмический университет им. М.Ф Решетнева,
660014 Красноярск, Россия
³ Институт катализа им. Г.К. Борескова СО РАН,
660090, Новосибирск, Россия
e-mail: smp@iph.krasn.ru

(Поступило в Редакцию 9 июля 2008 г.)

05:12

Синтезированы поликристаллические ВТСП Ві_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x низкой плотности, обладающие микроструктурой пены, и композиты, состоящие из вышеуказанного ВТСП и серебра (20, 25, 30% vol). Исследованы микроструктура, температурные и полевые зависимости намагниченности M(T) и M(H)полученных материалов. Обнаружено, что в пористых ВТСП Ві_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x и композитах Ві_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x + Ад происходит усиление диамагнитного отклика и экранирующих свойств по сравнению с поликристаллическим ВТСП того же состава, приготовленного по стандартной технологии. Наблюдаемый эффект объясняется особенностями проникновения магнитного потока в пористую среду.

PACS: 74.62.Bf, 74.72.Hs, 75.60.Ej

При практическом использовании поликристаллических ВТСП в качестве сверхпроводящих подшипников и подвесов, магнитных экранов и т.п. необходимо, чтобы сверхпроводник имел высокие значения плотности критического тока внутри кристаллитов, что определяет левитационные свойства материала. Известно, что наилучшими левитационными свойствами обладают ВТСП на основе редких земель [1], однако такая керамика подвержена деградации вследствие процессов гидролиза, и ее использование в условиях термоциклирования ограничено. В этом случае использование ВТСП на основе висмута предпочтительней, поскольку они являются более стабильными и не подвержены процессам гидролиза. Однако левитационные свойства поликристаллических ВТСП на основе висмута существенно ниже, чем у ВТСП на основе редких земель.

Ранее нами было обнаружено, что в ВТСП Ві_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x низкой плотности, обладающем микроструктурой пены [2], происходит усиление диамагнитного отклика и силы пиннинга. В такой материал, содержащий открытые поры, легко проникает жидкий азот, что способствует эффективному отводу тепла при рабочем режиме в объеме образца. Результаты изучения вольт-амперных характеристик и уширения резистивного перехода пористых Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x в магнитном поле приведены в работах [3–4].

Для выяснения влияния степени пористости материала на величину диамагнитного отклика и экранирующих свойств в настоящей работе исследованы структурные и магнитные свойства серии образцов ВТСП Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x с различной физической плотностью и различным объемным содержанием серебра. Известно, что добавки ультрадисперсного серебра в ВТСП приводят к образованию дополнительных центров пиннинга и, как следствие, увеличению токонесущей способности материала [5–6]. В связи с этим представляется разумным синтезировать композиты из ВТСП низкой плотности и серебра и исследовать их магнитные свойства.

Технология синтеза поликристаллического ВТСП высокой плотности — стандартная керамическая [7]. Образцы низкой плотности синтезировались аналогичным образом, однако был изменен конечный отжиг, что привело к преимущественному росту ВТСП кристаллитов в *ab*-плоскости. Из-за того что в поликристалле кристаллиты ориентированы хаотически, такой рост приводит к увеличению объема материала. Кроме того, окончательное разложение карбоната кальция осуществлялось во время конечного отжига. Избыточное давление углекислого газа при этом также способствует увеличению объема образца [2].

Композиты Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x + Ag низкой плотности с объемной долей Ag 20, 25 и 30% были синтезированы следующим образом. Технология синтеза композита аналогична описанной в работе [8], однако были внесены изменения. Прекурсор Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca₁Cu₃O₁₀ + CaCO₃ (для обеспечения низкой конечной плотности образцов) смешивали с порошком серебра в нужных пропорциях и гомогенизировали.

Были выбраны следующие объемные проценты содержания серебра в композите — ниже, приблизительно равно и выше порога протекания по несверхпроводящему ингредиенту. Масса образца рассчитывалась по

Образец	Плотность, g/cm ³	Плотность, % от теоретической	Обозначение
Ві _{1.8} Рb _{0.3} Sr _{1.9} Ca ₂ Cu ₃ O _x — поликристалл	5.72	95	Poly
Ві _{1.8} Рb _{0.3} Sr _{1.9} Ca ₂ Cu ₃ O _x — "пена" № 1	2.26	38	foam1
Ві _{1.8} Рb _{0.3} Sr _{1.9} Ca ₂ Cu ₃ O _x — "пена" № 2	1.55	26	foam2
Композит 80% vol $Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_2Cu_3O_x+20\%$ vol Ag	1.19	20	Ag20
Композит 75% vol $Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_2Cu_3O_x + 25\%$ vol Ag	1.19	20	Ag25
Композит 70% vol $Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_2Cu_3O_x+30\%$ vol Ag	1.19	20	Ag30

Таблица 1. Плотность образцов и их обозначения

формуле $M_S = \rho_{HTSC}(100 - n) + \rho_{Ag}n$, где n = 20, 25,30% vol, $\rho_{HTSC} = 5.95$ g/cm³, $\rho_{Ag} = 10.5$ g/cm³. Микрофотография исходного микродисперсного серебра приведена на рис. 1. Из полученной шихты были спрессованы таблетки диаметром 20 и высотой 2-3 mm. Спекание образцов осуществлялось при температуре 820°С в течение 400 h. В результате были синтезированы композиты низкой плотности ~ 20% от теоретической (за вычетом серебра) с объемной долей Ад 20, 25 и 30%. В табл. 1 приведена плотность и обозначения образцов, используемые в настоящей работе.

Рентгеноструктурные измерения поликристаллического образца Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca₂Cu₃O_x и образцов Ві_{1.8}Рb_{0.3}Sr_{1.9}Ca₂Cu₃O_x низкой плотности показали, что на ретгенограммах образцов всегда присутствуют рефлексы фаз Ві2223 и Ві22212. Оценка количественного соотношения фаз 2223 и 2212 проводилась по интенсивности рефлексов (002). Для образцов foam1 и foam2 $(I_{002}2212/I_{002}2223)100\% = 5\%$. На дебаеграммах композитов ВТСП + Ад присутствуют рефлексы от фаз Ві2223 и Bi2212 в таком же соотношении, а также от серебра. Относительные интенсивности рефлексов серебра увеличиваются пропорционально объемному содержанию серебра в композите.

Рис. 1. Микрофотография исходного ультрадисперсного серебра.

На рис. 2 представлены электронные микрофотографии естественных сколов образцов ВТСП низкой плотности foam1 и foam2 (рис. 2, a и 2, b соответственно), а также одного из композитов — Ag20 (рис. 2, c, d). На всех микрофотографиях образцов низкой плотности видно, что материалы состоят из пластинчатых микрокристаллитов шириной 10-20 µm и толщиной 1-2 µm. Из-за хаотической ориентации микрокристаллитов $Bi_{1,8}Pb_{0,3}Sr_2Ca_2Cu_3O_x$ сверхпроводящая пена имеет специфическую хлопьеобразную структуру, что и приводит к увеличению объема материала. Из рис 2, а и 2, b видно, что образцы foam1 и foam2 отличаются только размером пор между микрокристаллитами, что находит отражение в различии их физической плотности. На рис. 2, с и 2, d отчетливо виден второй ингредиент композита — серебро, которое в процессе синтеза из микродисперсного порошка коагулируется в сферические образования с характерным диаметром $d \approx 10-20 \, \mu m$. Видно, что серебро образует дополнительные слабые связи в ВТСП низкой плотности, которые, по нашему мнению, могут увеличить токонесущую способность материала.

Для выяснения влияния пористости и добавок серебра на магнитные свойства образцов были проведены измерения полевых и температурных зависимостей намагниченности M(H) и M(T). Измерения магнитных свойств проводились на вибрационном магнетометре. Образцы имели цилиндрическую форму, длину ≈ 5 и диаметр $\approx 0.5 \,\mathrm{mm}$. Магнитное поле было приложено параллельно оси цилиндров. Измерения температурных зависимостей намагниченности M(T) проводились в режиме отогрева образца.

На рис. 3 и 4 приведены петли гистерезиса намагниченности, измеренные при температуре жидкого гелия и жидкого азота соответственно. Из рисунков видно увеличение диамагнитного отклика от всех образцов, обладающих пониженной плотностью по сравнению с эталонным поликристаллическим образцом. Наибольшей величиной диамагнитного отклика обладает образец foam2, для которого значение остаточной намагниченности M_{rem} в 3.7 раза больше, чем для стандартного поликристаллического образца. Данные по величинам

Рис. 2. Электронные микрофотографии (SEM) естественных сколов образцов ВТСП низкой плотности: *a* — foam1; *b* — foam2; *c* — композит Ag20; *d* — композит Ag20.

остаточной намагниченности для всех образцов приведены в табл. 2.

В случае композитов с серебром Ag20, Ag25 Ag30 значения остаточной намагниченности на грамм образца меньше, чем для чистых пористых образцов, однако, если провести пересчет значения $M_{\rm rem}$ с учетом реальной массы ВТСП в композите, который и дает диамагнитный отклик, данная величина оказывается приблизительно равной $M_{\rm rem}$ от образцов чистой пористой керамики.

Таблица 2. Остаточная намагниченность образцов при $T = 4.2 \,\mathrm{K}$

Образец	$M_{\rm rem}(H=0)$, emu/g	$M_{\rm rem}(H=0)$, emu/ g_{HTSC}
poly	9.83	9.83
foam1	25.44	25.44
foam2	36.58	36.58
Ag20	21.93	30.89
Ag25	15.58	24.75
Ag30	14.41	25.29

Это указывает на то, что включения ультрадисперсного серебра не ухудшают сверхпроводящих свойств микро-кристаллитов.

Для полной характеризации синтезированных образцов были измерены температурные зависимости намагниченности M(T) при значении внешнего магнитного поля H = 13 Ое. Оказалось, что температура начала сверхпроводящего перехода T_C для всех образцов одинакова и составляет 108 К. Известно, что разница между намагниченностью образца, охлажденного в магнитном поле, M_{fc} , и в нулевом поле M_{zfc} пропорциональна силе пиннинга и, следовательно, критическому току [9].

На рис. 5 представлены зависимости M(T) эталонного поликристалла и образца foam2. Видно, что максимальная величина намагниченности $|M_{zcf}(77.4 \text{ K})|$ и разность значений $\Delta M = |M_{zfc} - M_{fc}|$ больше в случае ВТСП низкой плотности. Это указывает на усиление силы пиннинга в внутригранульного критического тока в образцах низкой плотности.

Значения $|M_{zcf}(77.4 \text{ K})|$ и $\Delta M = |M_{zcf} - M_{fc}|$ для всех образцов приведены в табл. 3. Композиты Ag20, Ag25, Ag30 также демонстрируют значения ΔM и намаг-

Образец	$ M_{zcf}(77.4 \mathrm{K}) , \mathrm{emu/g}$	$\Delta M = M_{zcf} - M_{fc} , \text{emu/g}$	$ M_{zcf}(77.4 \mathrm{K}) $, emu/ g_{HTSC}	$\Delta M = M_{zcf} - M_{fc} , \mathrm{emu}/g_{HTSC}$
poly	0.066	0.018	0.066	0.018
foam1	0.188	0.086	0.188	0.086
foam2	0.267	0.129	0.267	0.129
Ag20	0.232	0.103	0.334	0.149
Ag25	0.173	0.093	0.275	0.148
Ag30	0.167	0.074	0.293	0.13

Таблица 3. Магнитные характеристики образцов при 77.4 К

ниченности $M_{zcf}(77.4\,\mathrm{K})$, большие, чем для эталонного поликристалла высокой плотности.

Таким образом, все образцы низкой плотности, исследовавшиеся в работе, демонстрируют диамагнитный отклик, существенно больший, чем у эталонного образца висмутового поликристалла высокой плотности. Качественно причина такого усиления диамагнитного отклика может заключаться в следующем. Поскольку образцы ВТСП пены содержат открытые поры, силовые линии магнитного поля могут проникать в объем образца даже при полях, меньших первого критического, и в процессе экранировки внешнего магнитного поля будут участвовать микрокристаллы ВТСП всего объема образца; соответственно величина намагниченности всего образца будет являться суммой намагниченностей отдельных кристаллитов. В ВТСП высокой плотности при экранировке внешнего магнитного поля участвуют в основном гранулы, расположенные в приповерхностном

Рис. 3. Петли гистерезиса намагниченности M(H) при T = 4.2 К для образцов: a - Ag20 (\circ), Ag25 (\triangledown), Ag30 (\square); b - poly (\square), foam1 (\triangledown), foam2 (\circ).

Рис. 4. Петли гистерезиса намагниченности M(H) при T = 77.4 К для образцов: a - Ag20 (\circ), Ag25 (\vee), Ag30 (\square); b - poly (\square), foam1 (\vee), foam2 (\circ).

Журнал технической физики, 2009, том 79, вып. 8

Рис. 5. Температурные зависимости намагниченности M(T) для образцов poly (• — zfc, \circ — fc) и foam2 (• — zfc, \triangle — fc).

слое, т.е. объем сверхпроводника, задействованный в процессе экранировки, будет меньше, чем в ВТСП низкой плотности.

Работа выполнена в рамках программы РАН "Квантовая макрофизика" и комплексного интеграционного проекта СО РАН № 3.4, а также частично поддержана Красноярским краевым фондом науки, гранты 17G057, 18G148, 18G011. Д.А. Б. и А.А. Д. благодарят Фонд содействия отечественной науке.

Список литературы

- [1] Chen I.-G., Hsu J.-Ch., Janm G. // Chinese J. of Phys. 1998. Vol. 36. P. 420-428.
- [2] Петров М.И., Балаев Д.А., Шайхутдинов К.А., Полков С.И., Тетюева Т.Н., Овчинников С.Г. Способ получения пористой высокотемпературной сверхпроводящей керамики на основе висмута. Патент РФ RU2261233.
- [3] Балаев Д.А., Белозерова И.Л., Гохфельд Д.М. и др. // ФТТ. 2006. Т. 48. Вып. 2. С. 193–198.
- [4] Shaykhutdinov K.A., Balaev D.A., Popkov S.I. et al. // Supercond. Sci. Technol. 2007. Vol. 20. P. 491–494.
- [5] Казин П.Е., Третьяков Ю.Д. // Успехи химии. 2003. Т. 72. № 10. С. 960-977.
- [6] Козаков А.Т., Клевцов А.Н., Шевцова С.И., Разумовская О.Н. // Письма в ЖТФ. 1991. Т. 17. Вып. 23. С. 59–64.
- [7] Кравченко В.С., Журавлева М.А., Усков Е.М. и др. // Неорганические материалы. 1998. Т. 34. № 10. С. 1274–1280.
- [8] Song K.Y., Lee M.S. // Supercond. Sci. Technol. 2006. Vol. 19. P. 1253–1258.
- [9] Малоземофф А.П. Физические свойства высокотемпературных сверхпроводников / Под ред. Д.М. Гинзберга. М.: Мир, 1990. С. 87.