01; 05 Характеристики автоволн локализации пластического течения

© С.А. Баранникова, Л.Б. Зуев

Институт физики прочности и материаловедения СО РАН, 634021 Томск, Россия e-mail: bsa@ispms.tsc.ru

(Поступило в Редакцию 10 сентярбря 2008 г. В окончательной редакции 26 декабря 2008 г.)

Рассмотрено дисперсионное соотношение для автоволн локализованной пластической деформации на стадиях легкого скольжения и линейного деформационного упрочнения для ряда металлов. Установлены и объяснены квадратичный вид этого соотношения и характер зависимости фазовой и групповой скоростей таких автоволн от волнового числа, а также количественная связь характеристик волновых процессов локализации пластического течения и параметров упругих волн в деформируемых твердых телах. Введен инвариант деформационных явлений на микроскопическом и макроскопическом уровнях.

PACS: 05.45.Df, 05.70.Ln, 62.20.Fe, 62.50.+p, 81.40.Lm, 83.50.-v

Введение

В наших работах [1–4] были приведены экспериментальные данные, согласно которым пластическая деформация твердых тел развивается локализованно, а картины локализации на всех этапах течения связаны с действующим законом деформационного упрочнения. Особенно эффективно локализация пластической деформации проявляется на макроскопическом масштабном уровне, принимая форму автоволн различных типов [3,4] (рис. 1). В отличие от гармонических волн, описывающихся функциями $\sin(wt - kx)$, удовлетворяющих гиперболическим дифференциальным уравнениям в частных производных $\ddot{y} = c^2 y''$, автоволны являются решениями параболических уравнений $\ddot{y} = \phi(x, y) + Dy''$ [5].

В исследованных моно- и поликристаллах при растяжении образцов с постоянной скоростью на стадиях легкого скольжения и линейного деформационного упрочнения, на которых связь между напряжением течения и деформацией линейна $\sigma \sim \varepsilon$, картины локализации имеют форму специфического волнового процесса. В этих условиях вдоль оси образца с одинаковыми и постоянными скоростями синхронно движутся зоны локализации пластической деформации, расстояние между которыми постоянно на протяжении соответствующей стадии деформационного упрочнения (рис. 2). В этом случае можно измерить (см. рис. 2) такие характеристики процесса, как длина волны (расстояние между очагами локализованной пластичности) λ , период колебаний T и вычислить скорость распространения $V_{aw} = \lambda/T$. Эти характеристики определяются как структурой материала, так и условиями нагружения [4]. В частности, длина волны зависит от размеров зерен или дислокационных ансамблей, а скорость распространенся пропорциональна скорости движения подвижного захвата испытательной машины.

Оцениваемые таким образом скорости распространения волн имеют порядок величины $10^{-5} < V_{aw} < 10^{-4}$ m/s. Это много ниже, например, скорости поперечных упругих волн ($V_{\perp} \approx \sqrt{G/\rho} \approx 10^3$ m/s, G — модуль сдвига) и скорости волн пластичности $(V_{pw} \approx \sqrt{\theta/\rho} \approx 10^1 - 10^2 \,\mathrm{m/s},$ $\theta = G^{-1} d\sigma / d\varepsilon$ коэффициент деформационного упрочнения) [6]. Скорость распространения автоволн локализованной пластичности на стадиях легкого скольжения и линейного деформационного упрочнения обратно про-

Рис. 1. Пример развития автоволнового процесса локализации пластической деформации на стадии линейного упрочнения монокристалла легированного *у*-Fe

порциональна коэффициенту деформационного упрочнения $V_{a\omega}(\theta) = V_0 + \Xi/\theta$ [2,4]. Эта зависимость универсальна и охватывает все исследованные к настоящему моменту материалы, кривая течения которых содержит стадию линейного деформационного упрочнения [1–4]. Некоторые соображения о постоянной $\Xi \approx 5 \cdot 10^{-7}$ m/s, определяющей порядок величины V_{aw} рассмотрены в работах [4,7]. Оказалось, что Ξ определяется коэффициентом вязкого торможения дислокаций фононным газом **B**, дислокационной вязкостью η и скоростью упругих волн V_{\perp} , т.е. $\Xi = \frac{B}{\eta}V_{\perp}$, и не совпадает ни с приведенными выше скоростями V_s и V_{pw} , ни со скоростью движения траверсы испытательной машины $V_{mach} = 1.67 \cdot 10^{-6}$ m/s > Ξ .

Дисперсия автоволн локализованной пластичности

Для понимания природы автоволновых процессов локализации пластического течения важны сведения о форме дисперсионного соотношения $\omega(k)$, характерного для волн этого типа. Частоту $\omega = 2\pi/T$ и волновое число $k = 2\pi/\lambda$ можно получить из зависимостей X(t), аналогичных представленным на рис. 2. Экспериментально установленное в работе [8] дисперсионное соотношение для автоволн локализованной пластичности на стадии линейного деформационного упрочнения в последнее время удалось дополнить ветвью, соответствующей периодическим картинам локализации, наблюдающимся на стадии легкого скольжения. С учетом новых данных зависимость $\omega(k)$ приобрела форму

$$\omega(k) = \omega_0 \pm \alpha (k - k_0)^2, \tag{1a}$$

в которой знаки (-) и (+) относятся к стадиям легкого скольжения и линейного деформационного упрочнения

Рис. 2. К определению пространственного и временно́го периодов локализованной пластической деформации в монокристаллах легированного железа на стадиях легкого скольжения (1) и линейного деформационного упрочнения (2).

Рис. 3. Обобщенная дисперсионная кривая для стадий легкого скольжения (1) и линейного деформационного упрочнения (2).

соответственно. Значения эмпирических констант α , ω_0 и k_0 в (1) зависят от исследуемого вещества и приведены в табл. 1 для двух стадий деформационного упрочнения. Произвеля замену перемецных $\omega = \omega_0 \tilde{\omega}$ н

Произведя замену переменных $\omega = \omega_0 \tilde{\omega}$ и

$$k = k_0 + \frac{k}{\sqrt{\mathrm{sign}\alpha \cdot \alpha/\omega_0}}$$

где $\tilde{\omega}$ и \tilde{k} — безразмерные частоты и волновое число, а sign α — знаковая функция от α , соотношение (1a) можно привести, как показано на рис. 3, к виду

$$\tilde{\omega} = 1 \pm \tilde{k}^2. \tag{1b}$$

Такая форма дисперсионного соотношения характерна, например, для волн, являющихся решениями нелинейного уравнения Шредингера [9,10], используемого для описания самоорганизации в активных нелинейных средах.

Инвариант деформационных процессов

Исследования автоволн локализации пластического течения, проведенные на широком круге материалов, позволили установить следующую важную закономерность: произведения макроскопических характеристик автоволновых процессов локализации пластического течения λV_{aw} оказались коррелированными с произведениями микроскопических характеристик соответствующих кристаллов dV_{\perp} , где d — расстояние между плотноупакованными плоскостями в решетке металла, а V_{\perp} — скорость упругих поперечных волн.

Это утверждение основано на сравнении численных данных для разных металлов, приведенных в табл. 2. С приемлемой степенью точности для каждого исследованного материала по отдельности справедливо

Стадия деформационного упрочнения	Металл/сплав	$\alpha, \ 10^7 \mathrm{m}^2 \cdot \mathrm{s}^{-1}$	$k_0, \ 10^{-3} \mathrm{m}^{-1}$	$\omega_0, 10^2 \mathrm{Hz}$
Легкое скольжение (1)	Cu, Sn, сплавы Fe	-3.42	1.26	12.5
Линейное деформационное упрочнение (2)	Al Сплавы Fe Cu, Ni, Zn, сплавы Fe, Cu–Ni–Sn и Zr–Nb	7.9 0.54 0.45	1.08 1.01 1	5.5 3.6 4

Таблица 1. Константы в дисперсионном соотношении (1а)

Таблица 2. Сравнение произведений λV_{aw} и dV_{\perp} для стадий легкого скольжения и линейного деформационного упрочнения

Стадия деформационного упрочнения	Металл	$\lambda V_{aw}, \ 10^7 \mathrm{m}^2 \cdot \mathrm{s}^{-1}$	$d, 10^{10} \mathrm{m}$	$V_{\perp}, \ 10^{-3} \mathrm{m} \cdot \mathrm{s}^{-1}$	$dV_{\perp}, \ 10^7 \mathrm{m}^2 \cdot \mathrm{s}^{-1}$	$rac{2\lambda V_{aw}}{dV_{\perp}}$
Легкое	Cu	1.90	2.08	2.30	4.78	0.79
скольжение (1)	Fe	3.03	2.07	3.32	6.87	0.88
	Sn	3.28	2.91	1.79	5.20	1.26
Линейное	Cu	3.60	2.08	2.30	4.78	1.50
деформационное	Al	7.92	2.33	3.23	7.52	2.10
упрочнение (2)	Zr	1.92	2.46	2.25	5.53	0.70
	V	2.80	2.14	2.83	6.06	0.92
	Fe	2.55	2.07	3.32	6.87	0.74
	Ni	2.10	2.03	3.22	6.54	0.64
	Sn	2.34	2.91	1.79	5.20	0.90

равенство

$$\lambda V_{aw} \approx \frac{1}{2} \, dV_{\perp},$$
 (2)

члены которого имеют размерность коэффициента диффузии $L^2 \cdot T^{-1}$. Величины d и V_{\perp} , необходимые для проверки соотношения (2), были взяты из [11] и [12] соответственно. Усредненное по исследованным металлам отношение совместно для стадий легкого скольжения и линейного деформационного упрочнения

Рис. 4. Проверка справедливости соотношения (2); ■ — стадия легкого скольжения, • — стадия линейного деформационного упрочнения.

 $\langle 2\lambda V_{aw}/dV_{\perp}\rangle \approx 1.04 \approx 1.$ Справедливость (2) подтверждается спрямлением зависимости $\lambda/d(V_{\perp}/V_{aw})$, представленной на рис. 4.

Очевидно, что соотношение (2) связывает характеристики упругих волн в кристаллах (d и V_{\perp}) с характеристиками автоволн локализации пластического течения (λ и V_{aw}) в них. По-видимому, речь может идти о взаимной обусловленности процессов перераспределения упругих напряжений со скоростью V_{\perp} и движения очагов локализованного пластического течения со скоростью V_{aw} . Таким образом, макромасштабная локализация пластического течения становится атрибутивным признаком пластического деформирования, и ее характеристики связаны с параметрами кристаллического строения и определяются ими.

О следствиях из дисперсионного соотношения

Равенство (2), в частности, позволяет объяснить квадратичную форму дисперсионного соотношения (1). Если последнему придать вид

$$V_{aw} = \frac{dV_{\perp}}{2} \frac{1}{\lambda} = \frac{dV_{\perp}}{4\pi} k = \xi k, \qquad (3)$$

то, поскольку групповая скорость автоволны локализованного пластического течения $V_{aw} = V_{gr} = d\omega/dk$, получим

$$d\omega = \xi k dk. \tag{4}$$

Интегрирование (4)

$$\int_{\omega_0}^{\omega} d\omega = \xi \int_{0}^{k-k_0} k dk$$
 (5)

приводит к зависимости $\omega = \omega_0 + \xi/2(k - k_0)^2 = \omega_0 + +\alpha(k - k_0)^2$, совпадающей с экспериментально установленным дисперсионным соотношением (1) для автоволн локализованной пластической деформации.

Таким образом, квадратичное дисперсионное соотношение, характерное для автоволн локализованной пластической деформации на стадиях легкого скольжения и линейного деформационного упрочнения, является следствием равенства $\lambda V_{aw} \approx 1/2 dV_{\perp}$, связывающего микропараметры кристаллической решетки и макрохарактеристики локализованного пластического течения.

Записав правую часть (2) в виде $1/2dV_{\perp} = d^2\omega_D$, где $V_{\perp} \approx 2d\omega_D$, а ω_D — дебаевская частота, и используя известное определение $\hbar\omega_D = k_B\theta_D$, где k_B — постоянная Больцмана, $\hbar = h/2\pi$ — постоянная Планка, а θ_D — дебаевский параметр, зависящий от температуры [13], перейдем к уравнению

$$\frac{1}{2} dV_{\perp} \approx \lambda V_{aw} \approx \frac{d^2 k_B \theta_D(T)}{\hbar}.$$
 (6)

Оно предсказывает температурный ход $\lambda V_{aw} \sim \theta_D(T)$ параметров автоволн локализованного пластического течения, о существовании которого ранее получены прямые экспериментальные свидетельства [4].

Из дисперсионного соотношения (1b) следуют зависимости фазовой $\tilde{V}_{\rm ph}$ и групповой $\tilde{V}_{\rm gr}$ скоростей автоволн от волнового числа k для исследованных стадий деформационного упрочнения. При этом фазовая скорость

$$\tilde{V}_{\rm ph} = \tilde{\omega}/\tilde{k} \sim \tilde{k} \pm 1/\tilde{k},\tag{7}$$

а групповая

$$\tilde{V}_{\rm gr} = d\tilde{\omega}/d\tilde{k} \sim \pm \tilde{k}.$$
 (8)

Действительно, как показано на рис. 5, эти зависимости выполняются, но имеют существенное различие. Как видно из рис. 5, *b*, при $\tilde{k}_c \ge 1$, что соответствует $k_c \ge 1.1 \cdot 10^3 \,\mathrm{m}^{-1}$, $\lambda_c \le 5.7 \cdot 10^{-3} \,\mathrm{m}$ для монокристаллов легированного γ -Fe, и $k_c \ge 1.15 \cdot 10^3 \,\mathrm{m}^{-1}$, $\lambda_c \le 5.5 \cdot 10^{-3} \,\mathrm{m}$ — для поликристаллов Al, графики зависимостей $V_{\rm ph}(k)$ и $V_{\rm gr}(k)$ сливаются, т. е., $V_{\rm ph} = V_{\rm gr}$, и автоволны локализованной деформации такой длины не испытывают дисперсии. Напротив, для стадии легкого скольжения, как следует из рис. 5, *a*, такого слияния не возникает. Это означает, что автоволновой процесс неустойчив, чем можно объяснить известные экспериментальные трудности, связанные с наблюдением этой стадии.

 $\widetilde{V}_{
m gr}$

2

0

22

Из соотношения (2) следует возможность некоторых количественных оценок. Используя (6), запишем

$$V_{aw} \approx \frac{d^2 k_B \theta_D}{\hbar} \frac{1}{\lambda} \approx \frac{d^2 k_B \theta_D}{h} k \approx \xi k.$$
(9)

Согласно экспериментальным данным $V_{\rm gr} \sim k$, так что $\xi = d^2 k_B \theta_D / h \approx d^2 \omega_D$ есть коэффициент пропорциональности в этом соотношении. Его нетрудно рассчитать используя величины d из [11] и значения дебаевской температуры $\theta_{DFe} = 420$ К и $\theta_{DAI} = 394$ К [13], и сравнить результат с данными, полученными в [8] для монокристаллов Fe и поликристаллов Al. Расчет показал, что $\xi_{\rm Fe} = d^2 k_B \theta_{DFe} / h \approx 3.7 \cdot 10^{-7} \, {\rm m}^2 \cdot {\rm s}^{-1}$, а $\xi_{\rm AI} = d^2 k_B \theta_{DAI} / h \approx 4.45 \cdot 10^{-7} \, {\rm m}^2 \cdot {\rm s}^{-1}$.

Экспериментальные значения, определенные по наклону зависимостей $V_{\rm gr}(k)$ на рис. 6, составили: $(1 \pm 0.08) \cdot 10^{-7} \, {\rm m}^2 \cdot {\rm s}^{-1}$ для γ -Fe и $(12.9 \pm 0.15) \times \times 10^{-7} \, {\rm m}^2 \cdot {\rm s}^{-1}$ — для Al, так что расчетные и экспе-

а

 $V_{\rm ph}$

Рис. 6. Зависимости групповой скорости распространения автоволн локализованной пластичности от волнового числа для *у*-Fe и Al.

риментально определенные значения коэффициентов *ξ* удовлетворительно согласуются друг с другом.

Заключение

Представляется, что вышеприведенные данные могут рассматриваться как указание на существование связи локализации пластического течения с акустическими характеристиками деформируемой среды. Среди ряда проявлений такой связи в первую очередь можно назвать:

— существование равенства $\lambda V_{aw} \approx 1/2 dV_{\perp}$, количественно объединяющего характеристики упругих волн в кристаллах (d и V_{\perp}) и характеристики автоволн локализации пластического течения (λ и V_{aw}) в них:

— зависимость постоянной $\Xi = \frac{B}{\eta} V_{\perp}$ в уравнении, определяющем скорость автоволн локализованного пластического течения, от коэффициента вязкого торможения дислокаций фононным газом **B** и скорости упругих волн V_{\perp} [4,7].

Это указывает на важную роль фононной подсистемы кристалла в формировании автоволновых картин локализации пластического течения и имеет простое объяснение, основанное на том, что, согласно уравнению Тейлора–Орована $\dot{\varepsilon} = b\rho_d V_d$ [14], непосредственный вклад дислокаций с вектором Бюргерса *b* и плотностью ρ_d в пластическую деформацию со скоростью $\dot{\varepsilon}$ возможен лишь при $V_d \neq 0$. Соответствующие этому условию скачки дислокаций между эффективными стопорами контролируются фононным и электронным газами [15], что и объясняет появление характеристик фононного газа в описании медленных процессов развития локализованной пластичности.

Работа выполнена по проекту № 3.6.1.2 Программы 3.6.1 фундаментальных исследований СО РАН и при финансовой поддержке гранта президента Российской Федерации (проекта МД-278.2008.8).

Список литературы

- Zuev L.B., Danilov V.I. // Phil. Mag. A. 1999. Vol. 79. N 1. P. 43–57.
- [2] Zuev L.B. // Ann. Phys. 2001. Vol. 10. N 11-12. P. 956-984.
- [3] Zuev L.B. // Ann. Phys. 2007. Vol. 16. N 4. P. 286-310.
- [4] Зуев Л.Б., Данилов В.И., Баранникова С.А. Физика макролокализации пластического течения. Новосибирск: Наука, 2008. 327 с.
- [5] Земсков В.П., Лоскутов А.Ю. // ЖЭТФ. 2008. Т. 134. № 2 (8). С. 406-412.
- [6] Кольский Г. Волны напряжений в твердых телах. М.: ИИЛ, 1955. 192 с.
- [7] Зуев Л.Б. // Металлофиз. и новейш. технол. 2006. Т. 28. № 9. С. 1261–1276.
- [8] Баранникова С.А. // Письма в ЖТФ. 2004. Т. 30. Вып. 8. С. 75-80.
- [9] Косевич А.М., Ковалев А.С. Введение в нелинейную физическую механику. Киев: Наукова думка, 1989. 297 с.
- [10] Скотт Э. Нелинейная наука. Рождение и развитие когерентных структур. М.: Физматлит, 2007. 559 с.
- [11] Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М.: ГИФМЛ, 1961. 863 с.
- [12] Андерсон О. Физическая акустика. Динамика решетки. М.: Мир, 1968. Т. 3. С. 62–121.
- [13] Ашкрофт Н., Мермин Н. Физика твердого тела. М.: Мир, 1979. Т. 2. 422 с.
- [14] Фридель Ж. Дислокации. М.: Мир, 1967. 643 с.
- [15] Альшиц В.И., Инденбом В.Л. // УФН. 1975. Т. 115. № 1. С. 3–39.