01;07 Жесткое ондуляторное излучение в инверсной среде

© Н.А. Корхмазян, Н.Н. Корхмазян, Н.Э. Бабаджанян

Армянский государственный педагогический университет им. Х. Абовяна, 375010 Ереван, Армения e-mail: Natan-k@inbox.ru

(Поступило в Редакцию 24 октября 2008 г.)

Исследовано рентгеновское излучение быстрых электронов в ондуляторах, наполненных инверсной средой. Получена формула для спектральной плотности числа фотонов. Интенсивность нулевой гармоники, а также интенсивность излучения при отсутствии поля ондулятора описываются формулой Тамма-Франка для черенковского излучения. Показано, что в интервале длин волн $\lambda \cong 0.4-2.0$ Å спектральная плотность излучаемых фотонов в такой среде может быть увеличена на четыре порядка по сравнению с интенсивностью излучения в вакуумном ондуляторе. При этом, если в первом случае энергия излучаемых электронов должна быть в интервале 5-2 GeV, то для вакуумных ондуляторов требуются электроны с энергией от 14 до 6 GeV.

PACS: 52.59.Px

В работе [1] впервые была рассмотрена задача об излучении релятивистских электронов в жесткой области частот в инверсной среде, когда диэлектрическую проницаемость можно представить в виде [2,3]

$$\varepsilon = 1 + \frac{\omega_0^2}{\omega} - i \frac{\mu c}{\omega}; \quad \omega \gg \omega_0.$$
 (1)

Здесь ω_0 — плазменная частота среды, а $\mu(\omega)$ — линейный показатель поглощения.

Исследованы жесткое переходное и черенковское излучение в вакууме, когда электрон из среды (1) выходит в вакуум. Поскольку $1 + \left(\frac{\omega_0}{\omega}\right)^2 > 1$, то при скорости электрона $\beta \Rightarrow 1$ имеем $\beta \sqrt{\varepsilon} > 1$, поэтому в такой среде возможна генерация жесткого черенковского излучения, так как основной целью работы [1] была констатация наличия жесткого излучения в среде с отрицательной дисперсией, то авторы ограничиваются следующей оценкой.

В инверсной среде, для которой $\omega_0 = 4.8 \cdot 10^{16} \, {\rm s}^{-1}$, электрон с Лоренц-фактором $\gamma = 200$ на пути пробега в 0.1 ст так, чтобы угол многократного рассеяния остался в пределах $\leq 1/\gamma$, излучает ≈ 5.5 квантов с энергией 1.2–1.5 keV.

В настоящей работе исследуется жесткое излучение, генерируемое в ондуляторах, наполненных инверсной средой (1), где для простоты положим $\mu = 0$. Пусть электрон со скоростью $\beta_0 c \Rightarrow c$ влетает в плоский ондулятор вдоль его оси *z* и движется по закону [4]

$$\mathbf{r}(t) = \{-x_0 \cos \Omega t, \ 0, \ \beta_{\mathrm{II}} c t\},\tag{2}$$

где

$$\Omega = \frac{2\pi\beta_{\rm H}c}{l}, \quad x_0 = \frac{cq}{\Omega\gamma_0}, \quad \beta_{\rm H} = \beta_0 - \frac{q^2}{4\gamma_0^2},$$
$$q = \frac{eH_0l}{2\pi m_0 c^2} = 10^{-4}H_0l, \quad \gamma_{\rm H}^2 = \frac{\gamma_0^2}{1 + q^2/2}, \quad (3)$$

l и H_0 — шаг и амплитуда магнитного поля ондулятора, Ω и x_0 — частота и амплитуда колебания электрона, q — параметр ондулятора.

Воспользовавшись формулой

$$\frac{dW}{d\omega dQ} = \frac{e^2 \omega^2 \sqrt{\varepsilon}}{4\pi^2 c^3} |\mathbf{I}|^2, \quad \mathbf{I}^2 = \int_{-\infty}^{\infty} [\mathbf{n}\mathbf{v}] \exp i(\omega t - \mathbf{k}\mathbf{r}) dt$$
(4)

для частотно-углового распределения излучения, с единицы пути пробега частицы получим

$$\frac{dW}{d\omega dQdz} = \frac{e^2\omega}{2\pi\beta_{\rm II}c^4} \sum_p (\mathbf{A}\alpha - p\mathbf{B})^2 \\ \times \frac{I_p^2(\alpha)}{\alpha^2} \delta \left[\cos\theta - \frac{1}{\beta_{\rm II}\sqrt{\varepsilon}} \left(1 + \frac{p\Omega}{\omega}\right)\right];$$
$$(\mathbf{A}\alpha - p\mathbf{B})^2 = x_0^2 \left[\beta_{\rm II}^2 \varepsilon c^2 \omega^2 \sin^4\theta \cos^2\varphi + p^2 \Omega^2 (1 - \sin^2\theta \cos^2\varphi) + 2p\beta_{\rm II}\sqrt{\varepsilon}\Omega\omega \sin^2\theta \cos\theta \cos^2\varphi\right], \quad (5)$$

где I_p — функция Бесселя *p*-го порядка. Из теории ондуляторного излучения известно, что при условии $q \ll 1$ и даже при

$$\alpha \equiv \frac{\omega}{c} \sqrt{\varepsilon} x_0 \sin \theta \cos \varphi \le q < 1/2 \tag{6}$$

существенный вклад в излучение вносят лишь низшие гармоники.

Будем полагать, что условие (6) всегда выполняется.

1. Гармоника p = -1 при условии $\beta_{II}\sqrt{\varepsilon} < 1$

Подставим это значение в (5) и учтем, что при (6) имеем $I_1^2(\alpha) \cong 1/4$. После интегрирования по углам

находим

$$\begin{aligned} \left. \frac{dW}{d\omega dz} \right|_{p=-1} &= \frac{e^2 x_0^2 \omega}{8c^4} \left[\beta_{\rm II}^2 \varepsilon \omega^2 \sin^4 \theta^* \right. \\ &+ \Omega^2 (1 + \cos^2 \theta^*) - 2\beta_{\rm II} \sqrt{\varepsilon} \Omega \omega \sin^2 \theta^* \cos \theta^* \right], \quad (7) \end{aligned}$$

где

$$\cos\theta^* = \frac{1}{\beta_{\rm II}\sqrt{\varepsilon}} \left(1 - \frac{\Omega}{\omega}\right) = 1 + \frac{1}{2\gamma_{\rm II}^2} - \frac{\omega_0^2}{2\omega^2} - \frac{\Omega}{\omega}.$$
 (8)

Требования $\cos \theta^* \le 1$ и $\beta_{\rm H} \sqrt{\varepsilon} < 1$, приводят к следующему интервалу для излучаемых частот:

$$\omega_0 \ll \omega_0 \gamma_{\mathrm{II}} \le \omega \le \gamma_{\mathrm{II}} \left(\sqrt{\omega_0^2 + (\Omega \gamma_{\mathrm{II}})^2} + \Omega \gamma_{\mathrm{II}} \right) \equiv \omega_m.$$
(9)

Разделим (7) на $\hbar\omega$, подставим в нем, где это можно, $\cos \theta^* = 1$ и перейдем к безразмерной частоте $\omega = \xi \omega_m$. Тогда для спектральной плотности числа квантов находим

$$\frac{dN}{d\xi dz}\Big|_{p=-1} = R\omega_m \left\{ \left[\frac{\omega_m}{\Omega} f(\xi) - 1\right]^2 + 1 \right\}; R \equiv \frac{x_0^2 \Omega^2}{137 \cdot 8c^3},$$
$$f(\xi) = \xi \sin^2 \theta^* = \left(\frac{\omega_0}{\omega_m}\right)^2 \frac{1}{\xi} + 2\frac{\Omega}{\omega_m} - \frac{1}{\gamma_{\mathrm{II}}^2}\xi; \frac{\omega_0}{\omega_m} \ll \xi \le 1.$$
(10)

Обсудим пример.

Пусть $\omega_0 = 4.5 \cdot 10^{15} \text{ s}^{-1}$, l = 6 cm, $H_0 = 500 \text{ Oe}$, q = 0.3, $\Omega = \pi \cdot 10^{10} \text{ s}^{-1}$, $\gamma_{\text{II}} = 10^4$, $\omega_m = 4.82 \cdot 10^{19} \text{ s}^{-1}$. Тогда для частоты $\omega = 4.79 \cdot 10^{19} \text{ s}^{-1}$ (близкого к ω_m) по формуле (10) находим ($\lambda \approx 0.39 \text{ Å}$):

$$\frac{dN}{d\xi dz}\Big|_{p=-1} = 4.71 \cdot 10^{-23} \omega_m = 2.27 \cdot 10^{-3} \,\text{kV/cm},$$
$$\frac{dN}{d\omega dz}\Big|_{p=-1} = 4.71 \cdot 10^{-23} \,\text{kV} \cdot \text{s/cm}.$$
(11)

Пусть теперь имеется тот же ондулятор, но без среды (вакуумный), тогда спектральная плотность числа квантов определяется формулой [4]

$$I_{\text{und}} \equiv \frac{dN}{dxdz} = \frac{\pi q^2}{137 \cdot 2l} \left[1 + (1 - 2x)^2 \right]; \quad \omega \equiv 2\Omega \gamma_{\text{II}}^2 x.$$
(12)

Чтобы получить те же кванты ($\lambda = 0.39 \text{ Å}$) в самом пике x = 1, необходимы электроны с более высокой энергией, с лоренц-фактором $\gamma_{\text{II}} = 2.76 \cdot 10^4$. Тогда имеем

$$\frac{dN}{dxdz}\Big|_{\rm vac} = 2.62 \cdot 10^{-3} \,\rm kV/cm;$$
$$\frac{dN}{d\omega dz}\Big|_{\rm vac} = 5.47 \cdot 10^{-23} \,\rm kV \cdot s/cm \tag{13}$$

Сравнив с результатом (11), можно увидеть (сравнивать следует вторые выражения), что значения интенсивности практически одинаковы. Однако на этот раз вместо 5 GeV требуются электроны с энергией в 14 GeV.

2. Гармоника p = -1 при условии $\beta_{\rm H}\sqrt{\varepsilon} > 1$

Область частот, где выполняется это неравенство, определяется условием $\omega < \omega_0 \gamma_{\rm II}$, а правая часть условия (9) остается в силе. Поэтому частота излучения ограничена в пределах

$$\omega_0 \ll \omega \le \omega_0 \gamma_{\rm II} < \omega_m. \tag{14}$$

Нам не удалось отыскать какого-нибудь ощутимого результата в этом пункте.

3. Гармоника *p* = 1

Из (5) имеем

$$\cos\theta^* = (1 + \Omega/\omega)/\beta_{\rm II}\sqrt{\varepsilon},$$

и поэтому излучение этой гармоники отсутствует в области частот где $\beta_{II}\sqrt{\varepsilon} \leq 1$. Условия $\cos \theta^* \leq 1$; $\beta_{II}\sqrt{\varepsilon} > 1$ на этот раз дают

$$\omega_0 \ll \omega \le \min\left\{\omega_0 \gamma_{\mathrm{II}}; \ \gamma_{\mathrm{II}} \left[\sqrt{\omega_0^2 + (\Omega \gamma_{\mathrm{II}})^2} - \Omega \gamma_{\mathrm{II}}\right]\right\} \equiv \omega_m.$$
(15)

Все формулы с (7) по (10) остаются в силе, если в них сделать замену $\Omega \Rightarrow -\Omega$. Пусть для ондулятора имеем те же параметры, что и в пункте 1. Тогда из (15) находим $\omega_m = 4.2 \cdot 10^{-19} \, \text{s}^{-1}$, а для частоты $4.18 \cdot 10^{19} \, \text{s}^{-1}$ (окрестность ω_m) находим (ср. с (11)),

$$\left. \frac{dN}{d\omega dz} \right|_{p=1} = 6.1 \cdot 10^{-23} \,\mathrm{kV} \cdot \mathrm{s/cm}; \quad \lambda = 0.45 \,\mathrm{\mathring{A}}. \quad (16)$$

Таким образом, в излучении нашего инверсного ондулятора можно получить два близких пика, на длинах волн, $\lambda = 0.39$ и 0.45 Å соответствующих гармоникам $p \pm 1$.

4. Гармоника p = 0

Подставив это значение в (5) и проинтегрировав по углу θ , находим

$$\frac{dW}{d\omega dz}\Big|_{p=0} = \frac{e^2\omega}{2\pi c^2}\sin^2\theta^* \int_0^{2\pi} I_0^2(\alpha^*)d\varphi;$$
$$\alpha^* = \frac{\omega}{c}\sqrt{\varepsilon}x_0\sin\theta^*\cos\varphi; \quad \cos\theta^* = \frac{1}{\beta_{\rm II}\sqrt{\varepsilon}};$$
$$\sin^2\theta^* = \left(\frac{\omega_0}{\omega}\right)^2 - \frac{1}{\gamma_{\rm II}^2}; \quad \omega_0 \ll \omega \le \omega_0\gamma_{\rm II} \equiv \omega_m. \quad (17)$$

В этом выражении с точностью до малых $(\alpha^*/2)^2$ можно произвести замену $I(\alpha^*) \Rightarrow 1$. Ту же замену, но совершенно точно можно произвести также выключением магнитного поля ондулятора, так как $H \sim q \sim x_0 \sim \alpha = 0$ (см. (3)). В итоге вместо (17) получим формулу для черенковского излучения (в жесткой области частот) [1],

$$\frac{dW}{d\omega dz} = \frac{e^2 \omega}{c^2} \sin^2 \theta^*; \quad \theta^* \cong \left[\left(\frac{\omega_0}{\omega}\right)^2 - \frac{1}{\gamma_{\rm II}^2} \right]^{1/2}.$$
 (18)

Журнал технической физики, 2009, том 79, вып. 9

Самое ценное свойство последнего случая состоит в том, что, согласно (17), частота излучения снизу практически не ограничивается. Это свойство дает принципиальную возможность, варьируя параметры ω_0 и γ_{II} , получить необычайно большие значения спектральной плотности направленного жесткого излучения в широком диапазоне частот. Пусть, например, для некоторой инверсной среды имеем $\omega_0 = 1.4 \cdot 10^{16} \text{ s}^{-1}$, а $\gamma_{II} = 10^4$. Тогда для излучаемых частот имеем интервал

$$1.4 \cdot 10^{16} \ll \omega \le \omega_0 \gamma_{\text{II}} = 1.4 \cdot 10^{20} = \omega_m.$$

Перейдя к спектральной плотности числа фотонов, из (18) получим

$$I_{\rm inv} = \frac{dN}{d\omega dz} = \frac{1}{137c} \cdot \sin^2 \theta^*.$$
(19)

Для иллюстрации преимущества инверсной среды $(\omega_0 = 1.4 \cdot 10^{16} \, \text{s}^{-1})$ по формулам (19) и (12) составим таблицу $(dN/d\omega dz)$. Из последней строчки таблицы видно, что инверсная среда увеличивает интенсивность излучения в интервале длин волн $\lambda \simeq 0.4-2 \,\text{\AA}$ примерно от 3 000 до 15 000 раз.

λ, Å	0.4	0.8	1.2	1.6	2.0
$I_{ m inv} \cdot 10^{20} \ I_{ m und} \cdot 10^{24} \ (I_{ m inv}/I_{ m und}) \cdot 10^{-4}$	1.97	8.61	19.70	35.20	53.35
	7.30	14.56	21.84	29.12	36.52
	0.27	0.59	0.90	1.20	1.46

Кроме того, если в инверсной среде энергия излучаемых электронов должна быть от 5 до 2, то для вакуумного ондулятора необходимо иметь электроны со значениями энергии 13.7, 9.68, 7.90, 6.85, 6.72 GeV соответственно.

Полученная в таблице плотность излучения (I_{inv}) находится примерно в таком же отношении к интенсивностям излучения в кристаллических микроондуляторах [5].

Отсюда видно, что с применением инверсной среды появляется возможность получить поистине "черенковское обилие" излучаемых квантов (лазероподобную) в рентгеновской области частот.

Список литературы

- [1] Корхмазян Н.А., Геворгян Л.А. // Изв. НАН Армении. Физика. 1997. Т. 32. Вып. 6. С. 283.
- [2] Королев Ф.А. Теоретическая оптика. М.: Высш. шк., 1969.
- [3] Соколов А.А., Лоскутов Ю.М., Тернев И.М. Квантовая механика. М.: Просвещение, 1965.
- [4] Корхмазян Н.А. // Изв. Арм. ССР. Физика. 1973. Т. 8. Вып. 6. С. 405.
- [5] Корхмазян Н.А., Корхмазян Н.Н., Бабаджанян Н.Э. // ЖТФ. 2004. Т. 74. Вып. 4. С. 213; Изв. НАН Армении. Физика. 2004. Т. 38. Вып. 5. С. 320.