⁰⁵ Электронный транспорт, магнитное состояние и тип дырок в $(La_{0.8}Ca_{0.2})_{1-y}Mn_{1-z}O_{3+\delta}$

© Н.М. Чеботаев

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: naumov@imp.uran.ru

(Поступила в Редакцию 4 мая 2012 г. В окончательной редакции 29 августа 2012 г.)

> Проведены измерения сопротивления (ρ) и намагниченности ($2 \le T \le 300 \, \text{K}, \, 0 \le H \le 9 \, \text{T}$) поликристаллических образцов La_{0.8}Ca_{0.2}MnO_{3.06}, (La_{0.8}Ca_{0.2})_{0.975}MnO_{3.01} и La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06}. Для первого и второго образцов получены обычные для КМС-манганитов результаты: рост сопротивления с уменьшением Т до Т до $T \approx T_C$ и далее резкое его падение. Состав третьего образца отличается от состава первого тем, что в нем количество Mn-вакансий на ~ 2.5% больше и эта разница обуславливает весьма сильное отличие свойств. Во-первых, ферромагнетизм в нем практически полностью подавляется и при низких температурах (T ~ 50-70 K) наблюдается переход в состояние, близкое к состоянию кластерного стекла. Во-вторых, его сопротивление при низких Т и H = 0 на 4 порядка величины выше сопротивления первого образца, хотя количество дырок в нем значительно больше. Показано, что для всех трех образцов при всех температурах величина локальной энергии активации (Е) зависит от поля. Особый интерес представляет тот факт, что Е довольно сильно уменьшается с полем в парамагнитной области, что не свойственно обычным полупроводникам. Отмеченные особенности свойств образцов удалось объяснить, если принять гипотезу, по которой дырки во всех трех образцах могут быть как в виде Mn^{4+} , так и в виде O^- и они могут переходить друг в друга. Делается заключение, что понижение T и повышение H способствует образованию Mn^{4+} -дырок и приводит к понижению р и Е и установлению ферромагнитного порядка, а увеличение количества вакансий в Мп-подрешетке способствует образованию O^- дырок и ведет повышению ρ и подавлению ферромагнетизма в образце.

Работа частично поддержана проектом ОФН РАН и Президиума УрО РАН 12-Т-2-1005.

1. Введение

Соединения La_{1-x}A_xMnO_{3+ δ} (A = Ca, Sr, Ba) демонстрируют большое разнообразие электрических, магнитных и структурных свойств и их взаимосвязь [1]. Несмотря на очень большое количество исследований этих материалов, некоторые вопросы остаются неясными. Так, остается спорным вопрос о природе дырочных центров вводимых при допировании. Если дырка имеет *d*-характер, это соответствует появлению иона Mn⁴⁺ $(3d^3)$, если *p*-характер, то иона О⁻ (состояние $3d^4L$, <u>L</u> означает дырку в валентной зоне). В общем виде для многих соединений данный вопрос решен в работе [2]. Конкретные результаты зависят от многих энергетических параметров, рассчитать которые или определить экспериментально довольно трудно. Важность решения данной проблемы отмечается в работах [3,4]. В этих работах отмечается также, что результаты экспериментальных исследований по этой проблеме весьма противоречивы. Так, для La_{1-x}Sr_xMnO_{3+δ} при помощи расчетов и экспериментов, использующих различные методики рентгеновской спектроскопии, попытки определить характер дырок были предприняты в [5,6]. Результаты получены противоположные. В [5] утверждается, что дырки имеют *d*-природу, а в [6] делается заключение о р-характере дырок. Имеются работы, в которых отмечается смена характера дырок при определенной концентрации x [7]. Итак, можно заключить, что литературные данные о природе дырок в La_{1-x}A_xMnO_{3+ δ} имеют существенные разногласия и методы ее определения как экспериментальные, так и расчетные не совсем надежны. На наш взгляд, весьма полезно в подобной ситуации исследовать образцы, в которых определенный характер дырок имеет существенные преимущества, исходя из некоторых общих соображений. Так, мы полагаем, что в образцах с вакансиями в Mn-подрешетке наиболее вероятно образование кислородных дырок.

В работах [8,9] было найдено, что в LaMnO_{3+δ} в обеих катионных подрешетках (A — редкоземельной и B — переходного металла) имеются вакансии, а кислородная подрешетка полностью занята (если образцы синтезированы не в крайне восстановительных условиях) и химическую формулу правильнее записывать La_{3/3+δ}Mn_{3/3+δ}O₃. В работах [10,11] было показано, что существуют составы с неравным количеством вакансий La_{1-y}MnO_{3+δ} и LaMn_{1-z}O_{3+δ}. В дальнейшем мы будем использовать химическую формулу (La_{1-x}Ca_x)_{1-y}Mn_{1-z}O_{3+δ}. Величины *y* и *z* задаются начальным составом. Величина δ определяется условиями конечной термообработки и дает равное $1-3/(3+\delta)$ количество вакансий в обеих катионных подрешетках дополнительно к величинам *y* и *z*.

Из условия электронейтральности решетки следует, что все три типа точечных дефектов решетки в

La_{1-x}A_xMnO_{3+δ} приводят к образованию дырок. Замена La³⁺ на A²⁺ дает одну дырку, а вакансия в каждой из катионных подрешеток порождает три дырки. При малых концентрациях дефектов и низких температурах дырки локализуются около породивших их дефектов с образованием соответствующих кластеров. Кластер вокруг иона A^{2+} описан в [3]. В этой работе принято, что дырка реализуется в виде иона Mn⁴⁺, хотя возможность образования иона О⁻ не отрицается. Ион Мп⁴⁺ будет совершать прыжки по 8 ближайшим к A^{2+} узлам марганца. Поскольку в этих узлах находятся ионы Mn³⁺, то этот кластер будет проводящим и из-за двойного обмена ферромагнитным. Если принять, что дырка реализуется в виде иона О-, то данный ион будет совершать прыжки по 12 ближайших к A^{2+} узлам ионов O^{2-} . Ионов марганца такой кластер не содержит и он не будет ферромагнитным. Для идеальной перовскитовой ячейки с параметром а ближайшие к дефекту ионы кислорода находятся на расстоянии $a\sqrt{2}/2$, а ближайшие ионы марганца на расстоянии $a\sqrt{3}/2$, т.е. дырка в кластере с О- будет находиться ближе к дефекту, чем в кластере с Mn⁴⁺, ее кулоновская связь с зарядом дефекта будет сильнее и энергия этой связи меньше. Энергия образования кластера кроме этой энергии будет зависеть от потенциалов ионизации катионов, электроотрицательности аниона и изменения энергии Маделунга. Из других видов энергий следует отметить энергию, связанную с двойным обменом (ДО) [12,13] в кластерах с Mn⁴⁺ и Mn³⁺. Она будет способствовать образованию таких кластеров, поскольку с ее появлением общая энергия системы понижается. В кластерах с О- такого типа энергии нет. Вакансии в La-подрешетке также находятся в А-узлах перовскитовой ячейки и геометрия их ближайшего окружения совпадает с окружением иона A^{2+} . Можно ожидать, что и кластеры около этих дефектов будут подобными. Однако имеется существенное отличие. Катионные вакансии намного сильнее искажают решетку, чем замена ионов La^{3+} на A^{2+} . Формально образование катионной вакансии приводит к образованию отрицательного заряда, равного Зе, что ведет к более сложному кулоновскому взаимодействию между этим зарядом и тремя дырками. Можно предположить, что в этом случае часть дырок будет связана с дефектом более сильно, чем другая часть. Совершенно другая геометрическая ситуация возникает при образовании вакансии в подрешетке марганца. Вакансия окружена 6 ионами кислорода на расстоянии a/2 и 6 ионами марганца на расстоянии а, причем вакансия, ион кислорода и ион марганца находятся на одной линии. Ясно, что энергия кулоновской связи между зарядом дефекта и дырками будет примерно в 2 раза ниже, если дырки будут расположены на ионах кислорода, чем если они будут на ионах марганца. Поэтому, мы полагаем, что в кластерах около вакансий в Mn-подрешетке наиболее вероятно образование О--дырок.

Очевидно, что физические свойства образцов с кластерами с ${\rm Mn}^{4+}$ или с ${\rm O}^-$ будут заметно отличаться.

Из сказанного выше следует, что в образцах с Mn⁴⁺, будут усиливаться ферромагнитные (ФМ) свойства, например, рост $T_{\rm C}$, а сопротивление (ρ) и его энергия активации (Е) таких образцов будут уменьшаться. И, наоборот, в образцах с $O^-\rho$ и *E* будут расти, а T_C падать. Такие особенности получены в работах [11,14-16]. Авторы этих работ особенно отмечают падение ТС в образцах с вакансиями Mn-подрешетке, вплоть до полного исчезновения ферромагнетизма (ФМ) [11]. Авторы считают, что этот факт не является неожиданным, потому что именно Mn-подрешетка ответственна за магнитные свойства образцов и наличие большого количества вакансий марганца блокирует магнитные связи. Разрыв магнитной связи в образцах с вакансиями в магнитной подрешетке имеет некоторое сходство с диамагнитным разбавлением. Однако в этом случае подавление магнитного порядка происходит постепенно. Так в системе LaMn_{1-x}Ga_xO_{3+ δ} ФМ подавляется только при $x \sim 0.9$ [17]. Поэтому мы полагаем, что разрыв ФМ-связи не является главным фактором, определяющим свойства, и противоположное влияние на ρ и $T_{\rm C}$ различных катионных вакансий главным образом связано с различием характера дырок в кластерах около вакансий в А- и В-подрешетках. Чтобы проверить эту гипотезу, мы исследовали электрические и магнитные свойства образцов (La_{0.8}Ca_{0.2})_{1-v}Mn_{1-z}O_{3+ δ}. Исследование допируемых образцов имеет существенное преимущество, поскольку в недопированных образцах ФМ достигается при довольно высоком значении б. При дальнейшем увеличении δ этот ФМ подавляется, т.е. мы имеем дело с довольно сложным явлением [14]. При замене La³⁺ на Ca²⁺ ФМ существует и при $\delta = 0$ и выяснить природу физических явлений в этом случае проще. Исследовались образцы с концентрацией кальция x = 0.2, которая немного ниже порога перколяции x = 0.22 [18].

2. Эксперимент

Образцы $(La_{0.8}Ca_{0.2})_{1-\nu}Mn_{1-z}O_{3+\delta}$ были приготовлены методом твердофазных реакций из порошков La₂O₃, Mn₃O₄ и CaO, имеющих близкие к стехиометрическим составы. Синтез проводился при 1250°С в течение 30 h, далее следовали перетирание, прессование и окончательный обжиг при 1250°C в течение 50 h. Были получены весьма плотные образцы, требуемых для физических измерений форм и размеров. Магнитные и электрические исследования проведены на установках PPMS-9 и MPMS R2-XL-2 в Центре магнитных исследований ИФМ. Рентгеновский анализ показал, что при y = z = 0, y = 0.025 и z = 0.025 образцы однофазны. В образце у=0.05 присутствовала фаза Mn_3O_4 , в образце z = 0.05найдена фаза La₂O₃. Отметим, что после нижеописанных отжигов фазовый состав образцов практически не менялся. Для получения составов с $\delta \sim 0$ образцы отжигались в потоке Ar при 950°C в течение 30 h. Параметры решетки этих образцов приведены в табл. 1. Далее часть

Состав	$La_{0.8}Ca_{0.2}MnO_{3+\delta}$		$(La_{0.8}Ca_{0.2})_{0.2}$	$_{0.975}\mathrm{MnO}_{3+\delta}$	$La_{0.8}Ca_{0.2}Mn_{0.975}O_{3+\delta}$	
Атмосфера	Ar	O ₂	Ar	O_2	Ar	O ₂
a (Å)	5.492	5.497	5.490	5.489	5.485	5.492
b (Å)	5.492	5.465	5.490	5.489	5.485	5.463
c (Å)	7.767	7.727	7.764	7.764	7.757	7.729
V (Å)	58.58	58.03	58.50	58.48	58.35	57.97
$\Delta\delta$		0.05		0.00		0.05
δ	0.01	0.06	0.01	0.01	0.01	0.06
Образец	Образец 1		Образец 2		Образец 3	

образцов отжигалась в потоке кислорода при 700°C в течение 50 h. Таким образом были получены составы с содержанием кислорода, близким к максимальному при использовании $p_{O_2} = 1$ atm. До и после этого отжига измерялся вес образцов. Параметры решетки и величины $\Delta\delta$ (изменения δ после отжига в кислороде, рассчитанные из изменения веса) представлены в табл. 1. Далее образец La_{0.8}Ca_{0.2}MnO_{3+δ} для краткости мы будем называть образец 1, образец $(La_{0.8}Ca_{0.2})_{0.975}MnO_{3+\delta}$ образец 2 и образец $La_{0.8}Ca_{0.2}Mn_{0.975}O_{3+\delta}$ — образец 3. Из таблицы видно, что окисления образца 2 не произошло. Дополнительный отжиг в тех же условиях показал такой же результат. В дополнительном отжиге окислялся также порошок, полученный дроблением плотного образца 2. В этом случае окисление произошло и параметры решетки и $\Delta\delta$ порошка примерно соответствовали этим величинам плотного образца 1. Причина такого поведения образца 2 неясна. Очевидно, что она связана с плотностью образца. Отметим, что все образцы получались в одинаковых условиях и имели примерно одинаковую плотность.

Наиболее точные измерения величины δ (с погрешностью ± 0.002) для образцов La_{1-x}A_xMnO_{3+ δ} (A = Ca,Sr) были проведены методом гравиметрического анализа в работах [19,20]. Для определения δ наших образцов, как и в [16], мы использовали данные этих работ. В них показано, что в зависимостях $\delta(T)$ при $\delta = 0$ имеются области T, в которых величина б практически не меняется (не более, чем на 0.002), причем положение этих областей слабо зависят от концентрации кальция или стронция. При отжиге в Ar такая область составляет $1000 \le T \le 1100^{\circ}$ С, при отжигах на воздухе — $T \ge 1450^{\circ}$ С. Отжиг в данных условиях можно использовать для получения стехиометрических образцов. В [20] было показано, что сопротивление образцов резко возрастает, если их отжигать при температуре, соответствующей верхней границе указанной области (при отжиге в Ar $T = 1100^{\circ}$ C). По-видимому, при этих условиях в решетке начинают появляться кислородные вакансии. Для того, чтобы полностью избежать влияния этого эффекта, мы отжигали в Ar при $T = 950^{\circ}$ С. Очевидно, что при этих условиях $\delta \ge 0$

и значение δ мы находили путем сравнения параметров решетки наших образцов с данными в [19]. Сравнивая объемы элементарной ячейки на формульную единицу, мы получили для окисленного образца 1 $\delta = 0.06$, а для этого образца, отожженного в Ar, $\delta = 0.01$, отсюда — $\Delta \delta = 0.05$, что соответствует эксперименту. Составы наших образцов отличаются незначительно, параметры решетки образцов, отожженных в Ar, отличаются также незначительно, поэтому для образцов 2 и 3, отожженных в Ar, принято значение $\delta = 0.01 + \Delta \delta$ (см. табл. 1). Мы полагаем, что погрешность определения δ наших образцов не превышает 0.01.

3. Результаты

Анализ литературных данных показал, что в сильно окисленных манганитах, содержащих набольшее количество катионных вакансий, наблюдаются необычные физические свойства, которые можно связать с изменением характера дырок, поэтому исследование наших образцов мы начали с измерения электрических и магнитных свойств окисленных образцов (образцы 1, 2, 3; см. табл. 1). Образцы 1 и 3 имеют одинаковые значения δ и сравнивать свойства можно только этих образцов. Ниже будет показано, что результаты, полученные из измерений на образце 2, также содержат полезную информацию.

На рис. 1 приведены температурные зависимости сопротивления образца 1 в полях H = 0 и 9 Т. На кривой $\rho(T)$ при H = 0 имеется максимум при $T_{\rm M} = 164$ К. В поле H = 9 Т значения сопротивления уменьшаются при всех T, максимум уширяется и его положение сдвигается в сторону высоких температур, $T_{\rm M} \sim 200-220$ К. Подобное поведение $\rho(T)$ в различных полях наблюдалось в работе [21] для состава La_{0.75}Ca_{0.25}MnO₃. Кривая $\rho(T)$ при H = 0 нашего образца 1 (x = 0.2) в области низких температур резко отличается от подобных кривых для монокристаллов с x = 0.18 [22] и x = 0.22 [18]. Для указанных монокристаллов сопротивление при низких температурах значительно выше и показывает полупроводниковый ход. Важно отметить, что

Таблица 2. Электросопротивление и локальная энергия активации образцов 1 ($La_{0.8}Ca_{0.2}MnO_{3.06}$), 2 (($La_{0.8}Ca_{0.2})_{0.975}MnO_{3.01}$), 3 ($La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06}$) и некоторых образцов $La_{1-x}Ca_xMnO_3$, взятые из цитируемых работ

Состав	Образец 1	Образец 2	Образец 3	x = 0.18 [22]	x = 0.225 [18]	x = 0.25 [21]	x = 0.3 [23]
$ ho, \Omega \cdot cm, 300 K$	0.10	0.09	0.16	1.5	0.1	0.05	0.035
<i>E</i> , meV, 300 K	125	117	133	108			78

Рис. 1. Температурная зависимость $\log \rho$ образца $La_{0.8}Ca_{0.2}MnO_{3.06}$ (образец 1) в полях H = 0 и H = 9 Т. На вставке температурная зависимость локальной энергии активации в полях H = 0 и H = 9 Т.

в области высоких Т эти кривые хорошо согласуются (см. табл. 2). Этот факт показывает, что различие при низких Т связано не с состоянием образца (моно- или поликристалл), а с различием составов, скорее всего с различной величиной δ образцов. Монокристаллы выращивают из расплава при весьма высоких температурах. Процесс роста проходит довольно быстро. Мы полагаем, что такие условия способствуют росту кристаллов не только с $\delta = 0$, но и с $\delta < 0$, т.е. в монокристаллах возможно возникновение некоторого количества вакансий в кислородной подрешетке. На вставке (рис. 1) представлена температурная зависимость локальной энергии активации, определенной как $E = k_B d \ln \rho / dT^{-1}$. При H = 0 в интервале $300 \ge T \ge 250 \,\mathrm{K}$ величина E практически постоянна, в области 200 ≥ T ≥ 75 K локальная энергия активации показывает критическое поведение [23] и при $T < 50 \text{ K} E \sim 0$. При H = 9 T происходит сильное уменьшение величины Е (особенно в области $250 \ge T \ge 100 \,\mathrm{K}$), критическое поведение локальной энергии активации наблюдается в очень широком интервале $300 \ge T \ge 75$ K, далее $E \sim 0$. Область, в которой E = const в наших измерениях при H = 9 T отсутствует, по-видимому, она смещается в сторону более высоких

температур. Магнитосопротивление (МС) при H = 9 Т определяется выражением

$$\frac{\Delta\rho}{\rho_0} = \frac{\rho(9T) - \rho(0)}{\rho(0)} = \frac{\rho(9T)}{\rho(0)} - 1 \tag{1}$$

определяется отношением $\rho(9T)/\rho(0)$. Используя данные на рис. 1, можно получить температурную зависимость $\Delta \rho/\rho(0)$ или $\rho(9T)/\rho(0)$. Но можно этого и не делать, поскольку данные на рисунке уже характеризуют $\rho(9T)/\rho(0)$, $\log \rho(9T)/\rho(0)$ равен разности кривых $\log \rho$ при H = 9 T и $\log \rho$ при H = 0. Из рисунка видно, что максимум MC находится при $T \sim T_{\rm C}$ (см. ниже), но и при $T \sim 0$ и T = 300 K MC имеет довольно высокие значения.

На рис. 2 представлены температурные зависимости намагниченности (M) и dM/dT образца 1 в полях H = 50 Ое и H = 90 kOe. Для данного состава, если считать, что дырки реализуются в виде Mn⁴⁺, полное ферромагнитное упорядочение всех спинов ионов Mn³⁺ и Mn⁴⁺ дает величину $M = 3.68\mu_{\rm B}$ на ион Mn. Это значение хорошо соответствует $M = 3.66\mu_{\rm B}$ на ион Mn при H = 9 T и T = 0 K (рис. 2). Отсюда можно сделать

Рис. 2. Температурная зависимость намагниченности образца La_{0.8}Ca_{0.2}MnO_{3.06} (образец 1) в полях H = 50 Oe (величина, умноженная на 10) и H = 90 kOe. На вставке температурная зависимость dM/dT в полях H = 50 Oe и H = 90 kOe.

важный вывод, что в данных условиях все дырки имеют *d*-характер. В работе [23] из результатов исследования монокристалла La_{0.7}Ca_{0.3}MnO₃ был сделан вывод, что сдвиг максимума $\rho(T)$ при увеличении поля соответствует сдвигу T_C. Значение T_C определялось точкой перегиба кривой M(T), которая соответствует минимуму *dM/dT*. Мы проделали указанную процедуру и получили $T_{\rm C} = 168 \,{\rm K}$ при $H = 50 \,{\rm Oe}$ и $T_{\rm C} \approx 200 \,{\rm K}$ при $H = 90 \, \text{kOe}$ (рис. 2). Эти значения удовлетворительно соответствуют положению максимумов на кривых $\rho(T)$. Отметим, что в поле H = 90 kOe минимум dM/dT, как и максимум $\rho(T)$ уширены по сравнению с данными при H = 0. Эти уширения мы связываем с появлением неоднородностей магнитного состояния в образце при H = 9 Т. Значение $T_{\rm C}$ в малых полях образца 1 на 10-20 К ниже, чем эти значения в работе [21]. Этот факт мы объясняем высокой величиной δ для нашего образца. В [14,15] отмечается, что, начиная с некоторого значения δ , при ее дальнейшем росте, $T_{\rm C}$ начинает падать.

На рис. 3 приведены температурные зависимости сопротивления и локальной энергии активации образца 2 в полях H = 0 и H = 9 Т. Сравнивая эти данные с данными на рис. 1, можно заключить, что значения ρ , E и MC образцов 1 и 2 мало отличаются, заметно меняются только положения максимумов. Магнитные измерения на образце 2 не проводились. Мы полагаем, что, как и для образца 1, положение максимума $\rho(T)$ примерно равно $T_{\rm C}$, тогда при H = 0 $T_{\rm C} \approx T_{\rm M} = 190$ К и при H = 9 T $T_{\rm C} \approx T_{\rm M} \approx 240$ К. Увеличение $T_{\rm C}$ образца 2 по сравнению с $T_{\rm C}$ образца 1 связано с увеличением количества вакансий в *A*-подрешетке [11] и малой величиной δ [14].

Зависимости $\rho(T)$ и E(T) образца 3 приведены на рис. 4. Сравним эти данные с данными для образца 1. Составы этих образцов отличаются только тем, что в

Рис. 3. Температурная зависимость $\log \rho$ образца $(La_{0.8}Ca_{0.2})_{0.975}MnO_{3.01}$ (образец 2) в полях H = 0 и H = 9 Т. На вставке температурная зависимость локальной энергии активации в полях H = 0 и H = 9 Т.

Рис. 4. Температурная зависимость $\log \rho$ образца $La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06}$ (образец 3) в полях H = 0 и H = 9 Т. На вставке температурная зависимость локальной энергии активации в полях H = 0 и H = 9 Т.

образце 3 количество Мп-вакансий ~ на 2.5% больше, чем в образце 1. Эта разница в составах обусловливает весьма сильное отличие свойств образцов. Как и для образца 1 на кривых $\rho(T)$, для образца 3 имеются максимумы при $T_{\rm M} = 67 \, {\rm K} \, (H = 0)$ и уширенный максимум при $T \approx 114 \, {\rm K} \, (H = 9 \, {\rm T})$. Положение максимумов образца 3 сдвигается почти на 100 К в сторону низких температур по сравнению с образцом 1. Наиболее сильное отличие заключается в том, что при низких температурах в поле H = 0 значения ρ образца 3 примерно на 4 порядка величины выше ρ образца 1. В поле H = 9 T это отличие уменьшается и составляет 2 порядка. При этих Т весьма сильно отличается и МС, так для образца 3 отношение $ho(9T)/
ho(0) \sim 10^{-3}$. Для образца 1 минимальное значение $ho(9\,{
m T})/
ho(0)\sim 0.05$ при $T=T_{
m C}.$ Отличие величин Е этих образцов менее выражено и заключается в основном в сдвиге кривых E(T) образца 3 по отношению положения этих кривых образца 1 примерно на 100 К в сторону низких Т.

Магнитные свойства образца 3 были исследованы более подробно, чем образца 1. На рис. 5 приведены температурные зависимости действительной и мнимой частей ас-восприимчивости. На приведенных кривых имеются максимумы, положение которых примерно соответствует положению максимума $\rho(T)$. Подобные максимумы наблюдались при исследовании многих манганитов и их наличие связывалось с возникновением состояния кластерного стекла [14,24,25]. На рис. 6 приведены температурные зависимости намагниченности в разных полях. Видно, что при низких Т намагниченность после охлаждения в магнитном поле (FC) и охлаждения в нулевом поле (ZFC) имеет различные значения. Это явление необратимости также характерно для состояния кластерного стекла [24,25]. Для данного состава, если считать, что дырки реализуются в виде Mn⁴⁺, полное ферромагнитное упорядочение всех спинов ионов Mn³⁺ и Mn^{4+} дает величину $M = 3.59 \,\mu_{\rm B}$ на ион Mn. Если дырки в виде O⁻, упорядочение спинов Mn^{3+} дает $4\mu_B$ на ион Mn. Из рисунка видно, что в поле H = 5 T полный ферромагнетизм не достигается. Этот факт совместно с явлением необратимости М свидетельствует о том, что даже в довольно большом поле $H = 5 \,\mathrm{T}$ для образца 3 имеются признаки состоянии кластерного стекла. В работе [25] показано, что для образца LaMnO_{3 15} эти признаки исчезают при $H = 5 \,\mathrm{kOe}$ и при низких T наблюдается полный ФМ. Строго говоря, следует говорить о магнитном состоянии, близком к состоянию кластерного стекла. В работе [14] на основе малоуглового рассеяния нейтронов показано, что образец LaMnO_{3+δ} с $\delta = 0.15$ при низких температурах в основном состоит из неупорядоченных ферромагнитных кластеров размером ~ 15 Å. Однако на нейтронограммах также имеются весьма слабые брегговские ферромагнитные пики, наличие которых указывает на то, что в образце имеется небольшое количество более протяженных ФМ-областей. Мы полагаем, что подобная ситуация возможна и в образце 3 (см. вставку на рис. 6). На основании приведенных фактов, мы считаем, что магнитное состояние

Рис. 5. Температурная зависимость действительной χ' и мнимой χ'' частей *ас*-восприимчивости образца La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06} (образец 3). Амплитуда переменного поля h = 5 Oe, частота f = 75 Hz.

Рис. 6. Температурная зависимость намагниченности образца La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06} (образец 3) в режимах ZFC и FC в разных полях. На вставке dM/dT(T) в полях H = 0.5 kOe и H = 50 kOe в режиме FC.

образца 3 при H = 0 и Т меньше $\sim 70 \, {\rm K}$ соответствует состоянию, близкому к состоянию кластерного стекла. Итак в системе $La_{0.8}Ca_{0.2}Mn_{1-z}O_{3.06}$ ФМ-состояние при z = 0 и H = 0 практически полностью подавляется при z = 0.025. Этот факт будет весьма важен при обсуждении результатов. Для LaMn_{1-z}O_{3+б} данный эффект подавления ФМ достигается при z = 0.10 [11]. Следует отметить, что подавление ФМ в образце 3 может быть только при H = 0. При включении поля магнитное состояние образца имеет некоторую ФМ составляющую, которая увеличивается с увеличением Н и в очень больших полях, по-видимому, осуществляется полный ФМ-порядок. Мы полагаем, что в этих полях исчезнет разница в M, измеренных в FC и ZFC режимах. На вставке рис. 6 приведены температурные зависимости dM/dT. На этих кривых имеются минимумы, как и на подобных кривых образца 1. Для образца 1 эти минимумы определяют T_C. Мы полагаем, что появление подобных минимумов для образца 3 также главным образом связано с появлением ФМ-составляющей.

4. Обсуждение

Как отмечалось, результаты исследования образцов 1 и 2 качественно отличаются мало. Это свидетельствует о том, что в этих образцах все процессы меняются с температурой и полем примерно по одной схеме. Следует отметить, что эти результаты довольно типичны для манганитов [1,21]. Большинство свойств этих соединений объясняется теорией двойного обмена, основанной на исследовании процесса обмена электроном между Mn^{3+} и Mn^{4+} с учетом хундовского взаимодействия [12,13]. Эта теория дает очевидную связь между сопротивлением образца и магнитным порядком и каче-

ственно объясняет резкое падение величины ρ ниже $T_{\rm C}$ и ее сильную зависимость от магнитного поля (явление колоссального магнитосопротивления (КМС). Однако детальные расчеты показали, что применение только одной теории ДО дает результаты, сильно расходящиеся с экспериментом [26]. Так, энергия, связанная с ДО, получается довольно высокой и приводит к $T_{\rm C} \sim 2000$ K [27]. Авторы [26] заявили, что для объяснения свойств КМСсоединений кроме теории ДО необходимо привлекать "дополнительную физику".

Результаты исследования образца 3 не являются типичными и весьма сильно качественно и количественно отличаются от результатов для образца 1. Особенно сильно это отличие проявляется при низких температурах (см. рис. 1, 2, 4, 5, 6). Очевидно, что это отличие объясняется максимальным содержанием вакансий в Мп-подрешетке в образце 3. Если принять, что такие вакансии дают дырки, подобные дыркам в образце 1, например, в виде Mn⁴⁺, то увеличение числа вакансий должно приводить к уменьшению сопротивления, а оно сильно возрастает. Увеличение количества Mn⁴⁺ изза ДО должно приводить к увеличению Т_С. На самом деле ФМ порядок в образце 3 подавляется и его магнитное состояние соответствует состоянию, близкому к состоянию кластерного стекла. Из сказанного ясно, что, если полагать один тип дырок во всех образцах, отличие свойств образцов 1 и 3 объяснить трудно. Для объяснения полученных экспериментальных результатов в данной работе мы выдвигаем следующую гипотезу. В зависимости от типа дефекта решетки, порождающего дырки, температуры и поля в наших образцах около одного и того же дефекта решетки могут быть кластеры как с Mn⁴⁺ ионами, так и с О⁻ ионами и при изменении Т и Н одни кластеры могут переходить в другие. Свойства образца и их изменение определяются типом кластеров и их количеством. Зависимость свойств от типа кластера предложена во введении. Кластеры с Mn⁴⁺ усиливают ФМ связь между спинами ионов и их замена на кластеры с О- приводит к подавлению этой связи. Кулоновская связь дырок с зарядом дефекта решетки в кластерах с O^- сильнее, чем в кластерах с Mn^{4+} , и замена в образце первых кластеров на вторые приводит к уменьшению сопротивления и его усредненной энергии активации. Используя предлагаемую гипотезу, можно просто объяснить отличие свойств образцов 1 и 3. На кривых $\rho(T)$ образцов 1 и 3 присутствуют максимумы, однако причины возникновения этих максимумов, повидимому, отличаются, хотя в обоих случаях максимумы образуются из-за резкого уменьшения сопротивления при $T < T_{\rm M}$. Для образца 1 $T_{\rm M} \approx T_{\rm C}$ и уменьшение ρ связано с появлением ФМ порядка и его можно объяснить теорией ДО. В образце 3 при H = 0 ФМ порядок по всему образцу отсутствует и объяснить падение ρ при *T* < *T*_M трудно. Во введении было показано, что вакансии в Мп-подрешетке способствуют образованию кластеров с О- дырками и можно полагать, что в образце 3 такие кластеры существуют. Тогда указанное

падение ρ можно объяснить, если в рамках предлагаемой гипотезы предположить, что при $T > T_{\rm M}$ существуют кластеры с O^- ионами, а при $T < T_M$ кластеры с Mn^{4+} и при $T = T_M$ происходит полный или частичный p-d-переход одних кластеров в другие (точнее, переход дырок в кластере). Важно отметить, что при таком переходе в Mn⁴⁺ кластере появляется ДО между Mn³⁺ и Mn⁴⁺. Как отмечалось, энергия, связанная с ДО, довольно большая [26] и мы полагаем, что выигрыш в энергии при переходе кластеров с О-, в которых ДО нет, в кластеры с Mn⁴⁺, в которых появляется ДО, является движущей силой для данного перехода. Появление ферромагнитных кластеров с Mn^{4+} при T_M вызывает изменение магнитного состояния образца от парамагнитного к состоянию, близкому к состоянию кластерного стекла. В предыдущей главе отмечалось, что максимумы кривых $\chi'(T)$, $\chi''(T)$, $\rho(T)$ примерно совпадают и это может служить некоторым экспериментальным доказательством высказанного предположения.

Перейдем к рассмотрению процессов, связанных с применением магнитного поля, в образце 3. Из рис. 4 видно, что в поле $H = 9 \,\mathrm{T}$ максимум $\rho(T)$ смещается в сторону высоких температур, т.е. магнитное поле способствует предложенному p-d-переходу. Величина ρ значительно уменьшается по отношению к ρ в поле H = 0 при T < 250 K, т.е. наблюдается явление КМС. Нам представляется две причины такого поведения сопротивления и МС. Во-первых, при T < T_M в образце с увеличением поля происходит увеличение ФМ порядка по всему образцу (см. рис. 6), которое по теории ДО приводит к уменьшению сопротивления. Вторая причина связана с предложенным p-d-переходом. Известно, что для манганитов характерно фазовое расслоение [1]. Мы полагаем, что и в нашем случае для образца 3 возможно одновременное существование кластеров с О⁻ и с Мп⁴⁺. Увеличение Н приводит к увеличению числа кластеров с Mn^{4+} и к уменьшению ρ . Важно, что данный механизм применим и в парамагнитной области и именно им мы объясняем уменьшение сопротивления в поле при высоких Т образца 3.

Во всех трех образцах количество дырок, возникающих из-за замены La³⁺ на Ca²⁺, больше количества дырок, возникающих из-за образования катионных вакансий. Более вероятно, что связь дырки с ионом Ca²⁺ слабее усредненной связи дырок с катионной вакансией. Все это приводит к заключению, что электрические свойства наших образцов главным образом будут определяться наличием кластеров около ионов кальция. Рассмотрим эти свойства всех трех образцов при высоких температурах. Из рис. 1, 3, 4 видно, что зависимости $\rho(T)$ и E(T)имеют одинаковые особенности. Так, для всех образцов имеются максимумы $\rho(T)$. Локальная энергия активации при $T > 250 \,\mathrm{K}$ практически не зависит от T. Для всех трех образцов имеется область критического поведения E(T), причем форма кривых E(T) в этой области отличается незначительно, наблюдается только температурный сдвиг. В таблице II представлены численные значения ρ и E при T = 300 K для наших образцов и данные, взятые из других работ. Из таблицы видно, что эти величины для всех трех наших образцов хотя и отличаются, но не очень сильно. На основании указанного сходства свойств можно сделать вывод, что в области высоких Т сопротивление наших образцов в основном обусловлено одним типом кластера и одним типом проводимости. Естественно считать, что это кластер около иона Ca²⁺. Выше мы пришли к заключению, что дырки в образце 3 при T > T_M имеют *p*-характер. Если принять, что тип проводимости всех трех образцов при высоких Т одинаков, то мы придем к довольно неожиданному выводу, что в образцах 1 и 2 при этих температурах дырки имеют также р-тип. Еще более весомым и, на наш взгляд, во многом решающим аргументом в пользу р-типа дырок в кластерах во всех трех образцах при высоких Т является факт сильной зависимости локальной энергии активации и сопротивления от магнитного поля в парамагнитной области (см. рис. 1, 3, 4). Для обычных полупроводников такая зависимость в относительно слабых полях не характерна. Если предположить проводимость только d-типа, то объяснить уменьшение E и ρ в поле трудно. Так, теория ДО в парамагнитной области вообще приводит к увеличению ρ с увеличением поля [26]. Уменьшение Е в поле можно объяснить, если предположить в согласии с предложенной выше гипотезой переход кластеров с О-, в которых дырки сильно связаны с дефектом решетки, в ФМ кластеры с Mn⁴⁺, в которых эта связь слабее (см. выше). Появление ферромагнитных кластеров и рост их числа с увеличением поля можно наблюдать, используя малоугловое рассеяние нейтронов [28]. Возникновение в поле большого числа ФМ кластеров может приводить к росту Т_С. Для образца 1 в поле $H = 9 \,\mathrm{T}$ наблюдается увеличение T_{C} на $\sim 30 \,\mathrm{K}$ (рис. 2). В парамагнитной области во всех трех образцах в применяемых нами полях *p*-*d*-переход не является полным и в в них присутствуют оба типа кластеров, причем с увеличением Н количество d кластеров растет. Уменьшение Е наблюдается также и при уменьшении T при H = 0. При приближении T к $T_{\rm C}$ или к $T_{\rm M}$ наблюдается критическое поведение E(T), которое, следуя нашим представлениям, естественно связать с переходом р-кластеров в d-кластеры. Выяснение конкретного механизма изменения E(T) в критической области требует дальнейших исследований, но ясно, что при $T = T_{\rm C}$ в образцах 1 и 2 такой переход происходит практически полностью и дает преимущественно *d*-тип дырок в образце с установлением ФМ порядка и резким уменьшением сопротивления (d-состояние дырок в образце 1 при H = 9 Т и T = 0 отмечалось в предыдущей главе). Как предположено выше, для образца 3 при $T = T_{\rm M}$ также происходит p-d-переход, который может быть не полным, потому что *р*-кластеры около вакансий в Мп-подрешетке, как отмечалось выше, весьма стабильны, при этом парамагнитное состояние переходит в состояние, близкое к состоянию кластерного стекла, сопротивление образца уменьшается.

Итак, температурные зависимости сопротивления, магнитосопротивления и локальной энергии активации наших образцов при разных T и H и их связь с магнитным состоянием мы в основном объясняем переходом O^- кластеров в Mn^{4+} кластеры. Указанный p-d-переход может реализоваться только в случае близости энергий образования кластеров с O^- и с Mn^{4+} . К сближению указанных энергий может приводить p-d-гибридизация. В работах [5,6] отмечается довольно сильная гибридизация между Mn3d и O2p состояниями в La_{1-x}Sr_xMnO₃. Ясно, что при очень сильной гибридизации разделить d-и p-подсистемы невозможно.

В предлагаемой работе некоторые вопросы не находят полного объяснения. Так, не ясно равенство нулю локальной энергии активации всех образцов при $T \sim 0$, даже для образца 3 в поле H = 0, для которого при $T \sim 0$ $ho \sim 10^2 \,\Omega \,\mathrm{cm}$. Возможно, что при $T < 2 \,\mathrm{K}$ будет E > 0. Вообще вопрос о локализации и делокализации дырок является сложным. Так, в работе [29] показано, что даже при x = 0.3 и T = 50 К $\sim 20\%$ дырок находятся в локализованном состоянии. Поэтому к принятым в настоящей работе представлениям нужно относиться как гипотезе, для полной проверки которой требуются дальнейшие исследования. Для объяснения свойств КМС-манганитов предложено много теорий [1,30]. Нам удалось в главных чертах объяснить довольно необычные свойства наших образцов, используя самые простые представления о кластерах около различных дефектов решетки и их влияния на свойства, и показать, что свойства многих манганитов обусловлены возникновением не только ионов Mn^{4+} , но и ионов O^- .

В работе [31] исследовались зависимости $\rho(T)$ при различных H образцов системы La_{1-x}Sr_xO₃. Мы сравнили результаты этой работы с результатами для наших образцов и нашли много общего. Так, для образца x = 0.15 при H = 0 максимум ho(T) при $T_{
m M} \sim 250\,{
m K}$ в поле H = 10 T он смещается и $T_{\rm M} = 320$ K. Мы полагаем, что примерно также меняется T_C. Сопротивление в поле довольно сильно уменьшается, максимально при $T \sim T_{\rm C}$, но и при $T = 350 \,{\rm K}$ и $T = 100 \,{\rm K}$ наблюдается заметное уменьшение р. Используя данные настоящей работы, мы оценили значения локальной энергии активации и нашли: при T = 350 K, H = 0 T E = 48 meV, а при H = 10 T $E \sim 0$ meV, т.е. E также сильно зависит от Н в парамагнитной области. К сожалению, нельзя использовать более высокие T и H, поскольку на результаты начинает влиять фазовый переход при $T \sim 390 \, {\rm K}.$ Отметим, что результаты наших измерений не имеют аномалий, которые можно связать с фазовыми переходами. Итак, практически все особенности свойств наших образцов повторяются в системе La_{1-r}Sr_rO₃ и можно заключить, что и в данной системе свойства образцов во многом определяются p-d-переходом дырок. В системе со Sr данный переход совершается легче, чем с Са, (требуется меньшая энергия) и этим можно объяснить тот факт, что T_C образцов со Sr выше, чем с Ca. Отметим, что измерения в [31] выполнены на монокристаллах. Переходом p-d-дырок можно объяснить и тот факт, что в КМС-манганитах при высоких Tнаблюдается полупроводниковый ход сопротивления, а при низких T — квазиметаллический. Мы полагаем, что при высоких T имеются p-кластеры, которые имеют малый размер и перколляции практически не происходит, а при низких T существуют другие более объемные d-кластеры и перколляция имеет место.

5. Заключение

Проведены измерения электрических и магнитных свойств La_{0.8}Ca_{0.2}MnO_{3.06}, $(La_{0.8}Ca_{0.2})_{0.975}MnO_{3.01}$ и $La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06}$ в полях H = 0 и H = 9 T. Из данных исследований можно выделить два интересных экспериментальных результата. Во-первых, при низких температурах свойства образца $La_{0.8}Ca_{0.2}Mn_{0.975}O_{3.06}$ значительно отличаются от свойств образца La_{0.8}Ca_{0.2}MnO_{3.06}. Во-вторых, для всех трех образцов наблюдается значительное понижение локальной энергии активации и сопротивления при увеличении поля при *T* > *T*_C или *T*_M. Мы полагаем, что установление этого факта является наиболее важным результатом настоящей работы. Мы объясняем данные результаты, приняв гипотезу, о присутствии в наших образцах кластеров как с Mn⁴⁺ ионами, так и с Оионами и переходом одних кластеров в другие. Переход кластера с О⁻ в кластер с Мп⁴⁺ ослабляет кулоновскую связь и приводит к повышению энергии системы, с другой стороны, в кластере с Mn⁴⁺ появляется энергия ДО, которая понижает общую энергию системы. Состояния с существованием ионов Mn⁴⁺ или О⁻ являются конкурирующими и вопрос о том, какое состояние является предпочтительнее, зависит от того в какую сторону сдвинуто равновесие в уравнении

$$Mn^{4+} + O^{2-} \leftrightarrow Mn^{3+} + O^{-}.$$
 (2)

Результаты нашей работы показывают, что понижение температуры образца и повышение величины магнитного поля сдвигают равновесие влево, а увеличение количества вакансий в Мп-подрешетке сдвигает равновесие вправо.

Автор благодарит А.В. Королева, В.А. Казанцева, И.В. Кочева за проведение измерений, С.В. Наумова и Б.А. Гижевского за обсуждение результатов.

Список литературы

- E. Dagotto. Nanoscale phase separation and colossal magnetoresistance: The physics of manganites and related compounds. Springer — Verlag, Berlin (2002).
- [2] J. Zaanen, G.A. Sawatzky, J.W. Allen. Phys. Rev. Lett. 55, 418 (1985).
- [3] Л.П. Горьков. УФН 168, 665 (1998).

- [4] В.М. Локтев, Ю.Г. Погорелов. ФНТ 26, 231 (2000).
- [5] A. Chainani, M. Mathew, D.D. Sarma. Phys. Rev. B 47, 15397 (1993).
- [6] T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, M. Takano. Phys. Rev. B 51, 13942 (1995).
- [7] V.R. Galakhov. Solid State Phenomena 168–169, 453 (2011).
- [8] J.A.M. van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, H.W. Zandbergen. J. Solid State Chem. 110, 100 (1994).
- [9] J.A.M. van Roosmalen, E.H.P. Cordfunke. J. Solid State Chem. 110, 106 (1994).
- [10] J.A.M. van Roosmalen, P. van Vlaanderen, E.H.P. Cordfunke, W.L. IJdo, D.J.W. IJdo. J. Solid State Chem. 114, 516 (1995).
- [11] A. Arulraj, R. Mahesh, G.N. Subbanna, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao. J. Solid State Chem. 127, 87 (1996).
- [12] C. Zener. Phys. Rev. 82, 403 (1951).
- [13] P.W. Anderson, H. Hasegawa. Phys. Rev. B 100, 675 (1955).
- [14] C. Ritter, M.R. Ibarra, J.M. De Teresa, P.A. Algarabel, C. Marquina, J. Blasco, J. Garcia, S. Oseroff, S.-W. Cheng. Phys. Rev. B 56, 8902 (1997).
- [15] Н.И. Солин, С.В. Наумов, Т.И. Арбузова, Н.В. Костромитина, М.В. Иванченко, А.А. Саранин, Н.М. Чеботаев. ФТТ 50, 1831 (2008).
- [16] Н.И. Солин, С.В. Наумов, Н.М. Чеботаев, А.В. Королев. ФТТ **52**, 269 (2010).
- [17] J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk. Phys. Rev. 124, 373 (1961).
- [18] T. Okuda, Y. Tomioka, A. Asamitsu, Y. Tokura. Phys. Rev. B 61, 8009 (2000).
- [19] B. Dabrowski, R. Dybzinski, Z. Bukowski, O. Chmaissem, J.D. Jorgensen. J. Solid State Chem. 146, 448 (1999).
- [20] B. Dabrjwski, X. Xiong, Z. Bukowski, R. Dybzinski, P.W. Klamut, J.E. Siewenie, O. Chmaissem, J. Shaffer, C.W. Kimball, J.D. Jorgensen, S. Short. Phys. Rev. B 60, 7006 (1999).
- [21] P. Schiffer, A.P. Ramirez, W. Bao, S.-W. Cheong. Phys. Rev. Lett. 75, 3336 (1995).
- [22] Н.Г. Бебенин, Р.И. Зайнуллина, Н.С. Банникова, В.В. Устинов, Я.М. Муковский. ФТТ 50, 664 (2008).
- [23] N.G. Bebenin, R.I. Zainullina, N.S. Bannikova, V.V. Ustinov. Phys. Rev. B 78, 064415 (2008).
- [24] A. Maignan, C. Martin, F. Damay, B. Raveau, J. Hejtmanek. Phys. Rev. B 58, 2758 (1998).
- [25] L. Ghivelder, I. Abrego Castillo, M.A. Gusmao, J.A. Alonso, L.F. Cohen. Phys. Rev. B 60, 12184 (1999).
- [26] A.J. Mills, P.B. Littlewood, B.I. Shraiman. Phys. Rev. Lett. 74, 5144 (1995).
- [27] R. Mahendiran, S.K. Tiwary, A.K. Raychaudhuri, T.V. Ramakrishnan, R. Mahesh, N. Rangavittal, C.N.R. Rao. Phys. Rev. B 53, 3348 (1996).
- [28] J.M. De Teresa, M.R. Ibarra, P.A. Algarabel, C. Ritter, C. Margulna, Z. Arnold. Nature, 386, 256 (1997).
- [29] C.H. Booth, F. Bridges, G.H. Kwei, J.M. Lawrence, A.L. Cornelius, J.J. Neumeier. Phys. Rev. Lett. 80, 853 (1998).
- [30] L.P. Gor'kov, V.Z. Kresin, Phys. Rep. 400, 149 (2004).
- [31] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura. Phys. Rev. B. 51, 14103 (1995).