01;04 Цилиндрический магнитозвуковой солитон в плазме

© В.К. Валиулина, А.Е. Дубинов

Российский федеральный ядерный центр — Всероссийский научно-исследовательский институт экспериментальной физики, 607188 Саров, Нижегородская область, Россия e-mail: dubinov-ae@yandex.ru

(Поступило в Редакцию 14 июля 2009 г.)

Нелинейные цилиндрические магнитозвуковые возмущения в плазме рассмотрены в рамках двухжидкостной бесстолкновительной электромагнитной модели. Методом разложения по степеням малого параметра в растянутых пространственно-временных переменных было получено цилиндрическое уравнение Кортевега—де Вриза, описывающее нелинейные радиальные цилиндрические волны. Его приближенное решение имеет вид цилиндрического магнитозвукового солитона сжатия.

Введение

Плазменные волны, как известно, являются почти всегда нелинейными, а нелинейность в них может проявляться самыми различными свойствами волн: зависимостью параметров волны от ее амплитуды, укручением и опрокидыванием профиля волны по мере распространения, ее самофокусировкой, возможностью устойчивого стационарного существования пространственнолокализованных всплесков, таких как солитоны, ударные волны, вихри и т.п.

К настоящему времени в литературе по нелинейным волнам в плазме опубликовано неисчислимое количество работ, в которых рассматриваются одномерные плоские солитоны различной природы. Достаточно полное представление о свойствах плоских солитонов в плазме, а также об экспериментальных, теоретических и численных методах их исследования дают книги [1,2]. Кроме того, в [2] представлен подробный материал о свойствах неплоских одномерных солитонов, в частности, о цилиндрических и сферических радиальносходящихся или расходящихся солитонах.

Развивая предложенную в [2] классификацию неплоских солитонов, будем обозначать цилиндрические солитоны символом C, причем солитоны с радиальным движением будем относить к группе CI, а солитоны с осевым или азимутальным движением с сохранением диаметра солитона — к группе CII, аналогично, сферические солитоны — символом S, причем солитоны с радиальным движением — SI, а сферические солитоны с остоянного диаметра с вращательным движением — SII. Если рассматриваемые солитоны первой группы являются радиально-сходящимися, то будем обозначать их с индексами CI_i или SI_i , если радиально-расходящимися, то CI_e или SI_e .

Представленный в [2] материал о неплоских солитонах в плазме основан на многочисленных работах, описывающих их свойства. Экспериментально неплоские солитоны наблюдались в работах [3–9], в которых изучались одиночные солитоны ионно-звукового типа или взаимодействие (столкновение) двух ионнозвуковых солитонов, причем в [3,4,6] изучались CI_i солитоны, в $[9] - CI_e$ -солитоны, в $[5,7] - SI_e$ -солитоны, а в $[8] - SI_i$ -солитоны.

Теоретические работы [10-29], изучающие профили и характер распространения неплоских солитонов, оказались богатыми на разнообразие физических типов изучаемых волн и моделей плазмы. Ионно-звуковые солитоны рассматривались в [10-23]: SI в [10] и CI в [11], в обеих работах — для бесстолкновительной плазмы с изотермическими электронами и холодными ионами; *CI* в плазме с теплыми ионами двух сортов — в [12], *CI* и SI в плазме с изотермическими электронами и двумя группами неизотермических ионов — в [13]; *С*І в плазме с учетом столкновительной теплопроводности — в [14]; CI в многокомпонентной плазме с двумя группами электронов и ионами обоих знаков заряда — в [15]; CI и SI в плазме с диссипацией в ионном движении — в [16]; СІ и SI в пылевой плазме — в [17–19] (в последней с учетом столкновений и ионизации); СІ и SI в квантовой плазме — в [20-23]; СІ и SI в горячей электронпозитрон-ионной плазме — в [24,25]. Пыле-звуковые CI и SI в пылевой плазме рассматривались в [26-28], а в работе [29] — магнитозвуковые CI-солитоны.

Теоретическая модель столкновения двух CI_e-солитонов разработана [30] применительно к экспериментам [5,7]. Модели различных неустойчивостей CI изучались в [31,32].

Проанализировав работы [10–29], можно сделать два заключения:

— используемый в них метод решения задачи о профиле и скорости CI и SI-волн является единственным и достаточно простым: сначала осуществляется замена независимых переменных задачи, т. е. радиальной координаты r и времени t, на так называемые "растянутые" переменные масштабного преобразования, далее производится разложение уравнений по малому параметру, а затем тем или иным путем оно сводится к уравнению типа Кортевега—де Вриза (КдВ). В полученном уравнении всегда будет присутствовать неавтономный — почти во всех найденных нами работах метод применен в задачах, рассматривающих только электростатические волны звукового типа в плазме, когда уравнения динамики всех плазменных компонент самосогласованно связаны с радиальным уравнением Пуассона, и только в одной работе — [29] — рассматривались электромагнитные солитоны, подчиняющиеся уравнениям Максвелла.

Такое заметно большее количество работ, рассматривающих электростатические неплоские солитоны в плазме, по сравнению с работами, которые посвящены изучению электромагнитных неплоских солитонов, объясняется заметными математическими трудностями, возникающими при описании последних. Этим же обстоятельством, по-видимому, объясняется и то, что модель плазмы в единственной известной нам работе по неплоским электромагнитным солитонам [29] является весьма специфичной — астрофизической направленности: электронная и ионная компоненты являются релятивистскими, но абсолютно холодными газами.

Целью данной работы является создание математической модели магнитозвукового CI-солитона в обычной нерелятивистской плазме с горячими электронами и относительно холодными ионами. Напомним некоторые простейшие сведения о магнитозвуковой волне в плазме (по [36]), на которых был основан наш выбор физических условий модели. Магнитозвуковая волна есть волна сжатия-разрежения плотности плазмы, которая распространяется поперек магнитного поля при его полной либо частичной вмороженности в плазму. Колебания плотности плазмы являются продольными относительно направления распространения волны, при этом в волне имеются продольные возмущения поперечной компоненты магнитного поля, а также продольный и поперечный компонент электрического поля. В итоге, магнитозвуковую волну нельзя отнести ни к строго продольной волне, ни к строго поперечной волне, хотя по дисперсионной зависимости $\omega(\kappa)$ эту волну можно отнести к классу волн звукового типа. Хорошо известно, что магнитный звук в виде солитонов может существовать в плазме практически любого состава [37-40], и такие солитоны или ударные волны исследуются в лабораторных экспериментах (например, в работах [41,42] изучалось ускорение ионов при столкновении двух ударных магнитозвуковых волн в плазме и в [42] указано о перспективности магнитозвукового CI_i-солитона или радиально сходящегося конического солитона-воронки для достижения темпа ускорения более 100 MeV/m) или наблюдаются в космических условиях (например, по данным наблюдений системой четырех геоспутников "Cluster" на границе магнитопаузы [43,44]).

5 Журнал технической физики, 2010, том 80, вып. 4

Итак, нахождение решений уравнений динамики плазмы в виде цилиндрических магнитозвуковых солитонов представляет интерес как с физических позиций (поиск новой разновидности волн), так и с математических позиций (проверка работоспособности метода для еще одной модели электромагнитных волн). Но к этим позитивным моментам необходимо добавить и практическую пользу искомых решений. Во-первых, магнитозвуковой CI_i солитон идеологически близок к О-пинчевой конфигурации [45], а следовательно, небольшое усложение модели плазмы путем учета столкновений, диссипации и других факторов может позволить описать цилиндрическую имплозию плазмы; и во-вторых, магнитозвуковой Cl_e-солитон может быть аналогичен расширению плотной лазерной плазмы в фоновой замагниченной плазме [46], когда на некотором этапе первоначально сферическое облако лазерной плазмы деформируется и принимает цилиндрическую форму.

1. Основные допущения модели плазмы и исходные уравнения

Рассмотрим бесстолкновительную плазму, содержащую изотермические безынерционные электроны и холодные однозарядные ионы, т.е. будем считать, что $m_e/m_i \rightarrow 0$ и $T_i/T_e \rightarrow 0$. В дальнейшем будем использовать для обозначения массы ионов и температуры электронов символы *m* и *T* без индексов. Будем считать, что плазма находится в однородном магнитном поле B_0 .

Перед тем, как записать исходные уравнения, еще раз подчеркнем, что в магнитозвуковом *CI*-солитоне обязательно присутствует азимутальная компонента электрического поля, которая превращает это поле в непотенциальное. Следовательно, представляемая здесь модель магнитозвукового *CI*-солитона, в отличие от ионнозвуковых *CI*-солитонов, должна строиться не на уравнении Пуассона, а на уравнениях Максвелла.

Тогда динамика ионной и электронной компонент плазмы и электромагнитного поля будет подчиняться следующей системе векторных уравнений:

$$\begin{cases} \frac{\partial N}{\partial t} + \operatorname{div}(N\mathbf{V}) = \mathbf{0}; \\ \frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V}\nabla)\mathbf{V} = \frac{e}{m}\left(\mathbf{E} + \frac{1}{c}\left[\mathbf{V}\mathbf{B}\right]\right); \\ \frac{\partial n}{\partial t} + \operatorname{div}(n\mathbf{v}) = \mathbf{0}; \\ \mathbf{0} = -e\left(\mathbf{E} + \frac{1}{c}\left[\mathbf{v}\mathbf{B}\right]\right) - \frac{kT}{n}\nabla n; \\ \operatorname{rot}\mathbf{E} = -\frac{1}{c}\frac{\partial \mathbf{B}}{\partial t}; \\ \operatorname{rot}\mathbf{B} = \frac{4\pi}{c}\mathbf{j} + \frac{1}{c}\frac{\partial \mathbf{E}}{\partial t}, \end{cases}$$
(1)

где первая пара уравнений представляет собой динамическую ионную группу, следующая пара — динамиче-

скую электронную группу, а последняя пара — систему уравнений Максвелла. В этих уравнениях введены следующие обозначения: N и n — концентрации ионов и электронов соответственно, V и v — их конвективные скорости, e — величина заряда электрона (e > 0), c скорость света в вакууме, Е — вектор напряженности электрического поля, В — вектор индукции магнитного поля, **ј** — плотность тока, *k* — постоянная Больцмана.

В координатном представлении, когда ось z цилиндрической системы координат совпадает с направлением магнитного поля B_0 , система уравнений (1) приобретает вид:

$$\begin{pmatrix}
\frac{\partial N}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rNV_r) = 0; \\
\frac{\partial V_r}{\partial t} + V_r \frac{\partial V_r}{\partial r} - \frac{V_{\varphi}^2}{r} = \frac{e}{m} \left(E_r + \frac{1}{c} V_{\varphi} B_z \right); \\
\frac{\partial V_{\varphi}}{\partial t} + V_r \frac{\partial V_{\varphi}}{\partial r} + \frac{V_r V_{\varphi}}{r} = \frac{e}{m} \left(E_{\varphi} - \frac{1}{c} V_r B_z \right); \\
\frac{\partial n}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (rnv_r) = 0; \\
0 = enE_r + \frac{e}{c} nv_{\varphi} B_z + kT \frac{\partial n}{\partial r}; \\
0 = enE_{\varphi} - \frac{e}{c} nv_r B_z; \\
\frac{1}{r} \frac{\partial}{\partial r} (rE_{\varphi}) = -\frac{1}{c} \frac{\partial B_z}{\partial t}; \\
\frac{\partial B_z}{\partial r} = \frac{4\pi e}{c} (nv_{\varphi} - NV_{\varphi}) - \frac{1}{c} \frac{\partial E_{\varphi}}{\partial t}; \\
0 = 4\pi e(NV_r - nv_r) + \frac{\partial E_r}{\partial t}.
\end{cases}$$
(2)

Шестое уравнение позволяет исключить из системы (2) неизвестное E_{φ} с помощью замены $E_{\varphi} = v_r B_z / c$. В итоге получаем систему из восьми уравнений относительно неизвестных функций от r и t: $N, V_r, V_{\varphi}, n, v_r$, v_{φ}, E_r и B_z .

Редукция системы к уравнению КдВ 2.

Введем новую координатную систему с помощью следующего масштабного преобразования независимых переменных задачи $(r, t) \rightarrow (\rho, \tau)$

$$\rho = \varepsilon^{1/2} (r - V_M t), \quad \tau = \varepsilon^{3/2}, \tag{3}$$

где *є* — малый параметр. Такое преобразование соответствует расходящейся от оси цилиндра магнитозвуковой волне, т. е. *C*I_e.

0.17

Тогда можно осуществить замену переменных по правилам:

$$r = \varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau, \quad t = \varepsilon^{-3/2}\tau, \quad \frac{\partial}{\partial r} = \varepsilon^{1/2}\frac{\partial}{\partial \rho},$$
$$\frac{\partial}{\partial t} = \varepsilon^{3/2}\frac{\partial}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial}{\partial \rho} \tag{4}$$

и система (2) после этого приобретает следующий вид:

$$\begin{split} & \left(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau\right) \left(\varepsilon^{3/2}\frac{\partial N}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial N}{\partial \rho}\right) \\ & + \varepsilon^{1/2}\frac{\partial}{\partial \rho} \left[NV_r(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau)\right] = 0; \\ & \left(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau\right) \left(\varepsilon^{3/2}\frac{\partial V_r}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial V_r}{\partial \rho} \right) \\ & + \varepsilon^{1/2}V_r\frac{\partial V_r}{\partial \rho}\right) = \frac{e}{m}(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau) \\ & \times \left(E_r + \frac{1}{c}V_{\varphi}B_z\right) + V_{\varphi}^2; \\ & \left(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau\right) \left(\varepsilon^{3/2}\frac{\partial V_{\varphi}}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial V_{\varphi}}{\partial \rho} \right) \\ & + \varepsilon^{1/2}V_r\frac{\partial V_{\varphi}}{\partial \rho}\right) = \frac{e}{mc}(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau) \\ & \times B_z(v_r - V_r) - V_rV_{\varphi}; \\ & \left(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau\right) \left(\varepsilon^{3/2}\frac{\partial n}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial n}{\partial \rho}\right) \\ & + \varepsilon^{1/2}\frac{\partial}{\partial \rho} \left[nv_r(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau)\right] = 0; \\ & enE_r + \frac{e}{c}nv_{\varphi}B_z + \varepsilon^{1/2}kT\frac{\partial n}{\partial \rho} = 0; \\ & \varepsilon^{1/2}\frac{\partial}{\partial \rho} \left[B_zv_r(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau)\right] \\ & = -(\varepsilon^{-1/2}\rho + \varepsilon^{-3/2}V_M\tau) \left(\varepsilon^{3/2}\frac{\partial B_z}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial B_z}{\partial \rho}\right); \\ & 4\pi e(NV_r - nv_r) + \left(\varepsilon^{3/2}\frac{\partial E_r}{\partial \tau} - \varepsilon^{1/2}V_M\frac{\partial E_r}{\partial \rho}\right) = 0; \\ & \varepsilon^{1/2}\frac{\partial B_z}{\partial \rho} = \frac{4\pi e}{c}(nv_{\varphi} - NV_{\varphi}) - \frac{1}{c^2} \left[\varepsilon^{3/2}\frac{\partial}{\partial \tau}(v_rB_z) \right] \\ & - \varepsilon^{1/2}V_M\frac{\partial}{\partial \rho}(v_rB_z) \bigg]. \end{split}$$

(5)

Учитывая, что параметр ε является малым, разложим физические величины в магнитозвуковой волне (неизвестные функции) в ряд по ε :

$$\begin{cases} N = N_{0} + \varepsilon N^{(1)} + \varepsilon^{2} N^{(2)} + \dots; \\ V_{r} = \varepsilon V^{(1)} + \varepsilon^{2} V^{(2)} + \dots; \\ V_{\varphi} = \varepsilon^{3/2} U^{(1)} + \varepsilon^{5/2} U^{(2)} + \dots; \\ n = N_{0} + \varepsilon n^{(1)} + \varepsilon^{2} n^{(2)} + \dots; \\ v_{r} = \varepsilon v^{(1)} + \varepsilon^{2} v^{(2)} + \dots; \\ v_{\varphi} = \varepsilon^{3/2} u^{(1)} + \varepsilon^{5/2} u^{(2)} + \dots; \\ E_{r} = \varepsilon^{3/2} E^{(1)} + \varepsilon^{5/2} E^{(2)} + \dots; \\ B_{z} = B_{0} + \varepsilon B^{(1)} + \varepsilon^{2} B^{(2)} + \dots, \end{cases}$$
(6)

где N_0 и B_0 — значения концентрации и магнитного поля в невозмущенной плазме.

Подставим в систему уравнений (5) разложения (6) и приравняем нулю коэффициенты при двух старших степенях ε в каждом уравнении. В результате получим новую систему уравнений относительно величин магнитозвуковой волны в 1-м порядке:

$$\begin{cases} -V_{M} \frac{\partial N^{(1)}}{\partial \rho} + N_{0} \frac{\partial V^{(1)}}{\partial \rho} = 0; \\ V_{M} \frac{\partial V^{(1)}}{\partial \rho} + \frac{e}{m} \left(E^{(1)} + \frac{1}{c} B_{0} U^{(1)} \right) = 0; \\ V^{(1)} - v^{(1)} = 0; \\ -V_{M} \frac{\partial n^{(1)}}{\partial \rho} + N_{0} \frac{\partial v^{(1)}}{\partial \rho} = 0; \\ en_{0} E^{(1)} + kT \frac{\partial n^{(1)}}{\partial \rho} + \frac{e}{c} N_{0} B_{0} u^{(1)} = 0; \\ B_{0} \frac{\partial v^{(1)}}{\partial \rho} - V_{M} \frac{\partial B^{(1)}}{\partial \rho} = 0; \\ N_{0} (V^{(1)} - v^{(1)}) = 0; \\ \frac{\partial B^{(1)}}{\partial \rho} + \frac{4\pi e}{c} \left(N_{0} U^{(1)} - N_{0} u^{(1)} \right) - \frac{1}{c^{2}} V_{M} B_{0} \frac{\partial v^{(1)}}{\partial \rho} = 0; \end{cases}$$
(7)

5* Журнал технической физики, 2010, том 80, вып. 4

и в следующем 2-м порядке

$$\begin{cases} V_{M}\tau \left(\frac{\partial N^{(1)}}{\partial \tau} - V_{M} \frac{\partial N^{(2)}}{\partial \rho}\right) - V_{M}\rho \frac{\partial N^{(1)}}{\partial \rho} \\ + V_{M}N_{0}\tau \frac{\partial V^{(2)}}{\partial \rho} + (V_{M}\tau N^{(1)} + N_{0}\rho) \frac{\partial V^{(1)}}{\partial \rho} \\ + N_{0}V^{(1)} + V_{M}\tau V^{(1)} \frac{\partial N^{(1)}}{\partial \rho} = 0; \\ \frac{\partial V^{(1)}}{\partial \tau} + V^{(1)} \frac{\partial V^{(1)}}{\partial \rho} - V_{M} \frac{\partial V^{(2)}}{\partial \rho} \\ - \frac{e}{m} \left(E^{(2)} + \frac{1}{c}B^{(1)}U^{(1)} + \frac{1}{c}B_{0}U^{(2)}\right) = 0; \\ \frac{e}{mc}B_{0}(v^{(2)} - V^{(2)}) + \frac{e}{mc}B^{(1)}(v^{(1)} - V^{(1)}) + V_{M} \frac{\partial U^{(1)}}{\partial \rho} = 0; \\ V_{M}\tau \left(\frac{\partial n^{(1)}}{\partial \tau} - V_{M} \frac{\partial n^{(2)}}{\partial \rho}\right) - V_{M}\rho \frac{\partial n^{(1)}}{\partial \rho} + V_{M}N_{0}\tau \frac{\partial v^{(2)}}{\partial \rho} \\ + (V_{m}\tau n^{(1)} + N_{0}\rho) \frac{\partial v^{(1)}}{\partial \rho} + N_{0}v^{(1)} + V_{M}\tau v^{(1)} \frac{\partial n^{(1)}}{\partial \rho} = 0; \\ eN_{0}E^{(2)} + en^{(1)}E^{(1)} + kT \frac{\partial n^{(2)}}{\partial \rho} + \frac{e}{c}N_{0}B^{(1)}u^{(1)} \\ + \frac{e}{c}N_{0}B_{0}u^{(2)} + \frac{e}{c}B_{0}n^{(1)}u^{(1)} = 0; \\ V_{M}\tau \left(\frac{\partial B^{(1)}}{\partial \tau} - V_{M} \frac{\partial B^{(2)}}{\partial \rho}\right) - V_{M}\rho \frac{\partial B^{(1)}}{\partial \rho} + V_{M}B_{0}\tau \frac{\partial v^{(2)}}{\partial \rho} \\ + (V_{m}\tau B^{(1)} + B_{0}\rho) \frac{\partial v^{(1)}}{\partial \rho} + B_{0}v^{(1)} + V_{M}\tau v^{(1)} \frac{\partial B^{(1)}}{\partial \rho} = 0; \\ 4\pi eN_{0}V^{(2)} + 4\pi eN^{(1)}V^{(1)} - 4\pi e(N_{0}v^{(2)} + n^{(1)}v^{(1)}) \\ - V_{M} \frac{\partial E^{(1)}}{\partial \rho} = 0; \\ \frac{\partial B^{(2)}}{\partial \rho} + \frac{4\pi e}{c} (N_{0}U^{(2)} + N^{(1)}U^{(1)} - N_{0}u^{(2)} - n^{(1)}u^{(1)}) \\ - \frac{1}{c^{2}}V_{M} \left(B_{0} \frac{\partial v^{(2)}}{\partial \rho} + v^{(1)} \frac{\partial B^{(1)}}{\partial \rho} + B^{(1)} \frac{\partial v^{(1)}}{\partial \rho} \right) \\ + \frac{1}{c^{2}}B_{0} \frac{\partial v^{(1)}}{\partial \tau} = 0. \end{cases}$$

Проинтегрируем уравнения системы (7) в 1-м порядке с начальными условиями: $V^{(1)}(\rho \to \pm \infty) = 0$, $v^{(1)}(\rho \to \pm \infty) = 0$, $N^{(1)}(\rho \to \pm \infty) = N_0$, $n^{(1)}(\rho \to \pm \infty) = B_0$ и перепишем систему (7),

выразив все переменные первого порядка через $V^{(1)}$:

$$\begin{cases} v^{(1)} = V^{(1)}; \\ N^{(1)} = n^{(1)} = \frac{N_0}{V_M} V^{(1)}; \\ B^{(1)} = \frac{B_0}{V_M} V^{(1)}; \\ E^{(1)} = -V_M \frac{m}{e} \frac{4\pi mc^2 N_0}{4\pi mc^2 N_0 + B_0^2} \frac{\partial V^{(1)}}{\partial \rho}; \\ U^{(1)} = -V_M B_0 \frac{mc}{e} \frac{1}{4\pi mc^2 N_0 + B_0^2} \frac{\partial V^{(1)}}{\partial \rho}; \\ u^{(1)} = \frac{kT}{eB_0} \frac{c}{V_M} \left(\frac{mV_0^2}{kT} \frac{4\pi mc^2 N_0}{4\pi mc^2 N_0 + B_0^2} - 1 \right) \frac{\partial V^{(1)}}{\partial \rho}, \end{cases}$$
(9)

где скорость V_M , введенная нами при записи решения в 1-м порядке, есть альфвеновская скорость, характеризующая поперечное распространение магнитного звука. Она находится из системы (7) и равна:

$$V_M = \sqrt{\frac{B_0^2 + 4\pi k T N_0}{4\pi m N_0 + (B_0/c)^2}}.$$
 (10)

Подобное выражение для скорости волны приведено в [47] для плоского магнитозвукового солитона (без последнего слагаемого в знаменателе, так как в [47] в уравнениях Максвелла не был учтен ток смещения).

Далее, исключив из системы (8) переменные 2-го порядка, получим уравнения относительно величин в магнитозвуковой волне в 1-м порядке. Подставив вместо величин 1-го порядка их выражения в соответствии с (9), запишем в результате несложных математических выкладок динамическое уравнение для $V^{(1)}(\rho, \tau)$:

$$\frac{\partial V^{(1)}}{\partial \tau} + \frac{1}{2\tau} V^{(1)} + AV^{(1)} \frac{\partial V^{(1)}}{\partial \rho} + B \frac{\partial^3 V^{(1)}}{\partial \rho^3} = 0, \quad (11)$$

где постоянные коэффициенты уравнения —

$$A = 1 + \frac{B_0^2(c^2 - 3V_M^2)}{2V_M^2(4\pi m c^2 N_0 + B_0^2)},$$
 (12)

$$B = \frac{2\pi m^3 c^4 N_0}{e^2 (4\pi m c^2 N_0 + B_0^2)^2} V_M^3,$$
 (13)

причем A — безразмерный, а B имеет размерность m^3/s .

Уравнение (11) представляет собой неавтономное цилиндрическое уравнение КдВ, описывающее эволюцию магнитозвуковых CI_e-солитонов.

Для того чтобы получить аналогичное уравнение для магнитозвукового CI_i -солитона, достаточно в (3) положить $\rho = -\varepsilon^{1/2}(r + V_M t)$. Тогда цилиндрическое КдВ-уравнение будет отличаться от (11) лишь знаком при коэффициенте A:

$$\frac{\partial V^{(1)}}{\partial \tau} + \frac{1}{2\tau} V^{(1)} - AV^{(1)} \frac{\partial V^{(1)}}{\partial \rho} + B \frac{\partial^3 V^{(1)}}{\partial \rho^3} = 0.$$
(14)

3. Точные и приближенные решения цилиндрического уравнения КдВ

К аналитическому решению цилиндрического уравнения КдВ можно прийти, произведя следующую замену неизвестной функции:

$$V^{(1)} = \frac{\psi}{\tau} + \frac{\rho}{2A\tau},\tag{15}$$

где ψ — новая неизвестная функция.

После этого уравнение (11) приобретает вид:

$$\frac{\partial\psi}{\partial\tau} + \frac{A\psi}{\tau}\frac{\partial\psi}{\partial\rho} + \frac{\rho}{2\tau}\frac{\partial\psi}{\partial\rho} + B\frac{\partial^{3}\psi}{\partial\rho^{3}} = 0.$$
(16)

После следующего преобразования независимых переменных

$$\tau' = -2\tau^{-1/2}, \quad \rho' = \rho\tau^{-1/2}$$
 (17)

приходим к автономному уравнению КдВ стандартного вида:

$$\frac{\partial \psi}{\partial \tau'} + A\psi \frac{\partial \psi}{\partial \rho'} + B \frac{\partial^3 \psi}{\partial \rho'^3} = 0.$$
 (18)

Его частное решение в виде стационарного солитона известно [10,11]:

$$\psi(\rho',\tau') = \frac{3R}{A}\operatorname{sech}^2\left(\sqrt{\frac{R}{4B}}\left(\rho'-R\tau'\right)\right),\tag{19}$$

где *R* — произвольная постоянная, имеющая размерность длины и отвечающая за фазу волны.

Если возвратиться к исходным переменным $V^{(1)}(r, t)$, то можно получить точное частное решение исходного уравнения. Это было проделано в работах [18,20]. Но полученное таким способом решение (11) не может иметь физического смысла, так как мгновенный профиль скорости $V^{(1)}(r, t)$ в нем линейно растет при $r \to \infty$, а при некоторых *r* скорость может принимать даже отрицательные значения (соответствующий график представлен в [20]). Такое поведение магнитозвукового солитона в нашей задаче невозможно.

В работе [17] утверждается, что другое точное решение уравнения (11), которое может иметь физический смысл, вывести невозможно, и поэтому для решения (11) необходимо применять различные численные схемы.

Численные исследования уравнения (11) были проделаны в работах [10,11], а в [12–14] была предложена простая аппроксимирующая формула, описывающая пространственно-временную эволюцию цилиндрического солитона:

$$V(\rho, \tau) = V_0 \sqrt{\frac{\tau_0}{\tau}} \operatorname{sech}^2 \left\{ \sqrt{\frac{AV_0}{12B}} \sqrt{\frac{\tau_0}{\tau}} \times \left[\rho - \rho_0 - \frac{2}{3} AV_0 \sqrt{\tau_0} \left(\sqrt{\tau} - \sqrt{\tau_0} \right) \right] \right\}, \quad (20)$$

где V₀, ρ_0 , τ_0 — параметры начального магнитозвукового возмущения плазмы.

Графики физических величин $V^{(1)}(r, t)$, $N^{(1)}(r, t)$, $B^{(1)}(r, t)$ и $E_{\varphi}^{(1)}(r, t)$ в магнитозвуковом CI_e -солитоне, построенные по (20).

Сравнение аппроксимации (20) с численным решением уравнения (11), проведенное в [33], показало достаточно хорошее их соответствие. Следовательно, формула (20) годится и для нашего случая магнитозвукового солитона.

На рисунке показаны графики эволюции физических величин $V^{(1)}(r, t)$, $N^{(1)}(r, t)$, $B^{(1)}(r, t)$ и $E_{\varphi}^{(1)}(r, t)$ в магнитозвуковом CI_e -солитоне, построенные по (20) в исходных переменных задачи. Они демонстрируют, что амплитуда солитона и его скорость падают по мере радиального разлета солитона как $1/\sqrt{t}$. Толщина стенки солитона при этом растет по закону \sqrt{t} .

Для получения аналогичных графиков для *CI_i*-солитона формула (20) остается справедливой, если в ней поменять "направление" времени на противоположное.

Заключение

Нелинейные цилиндрические магнитозвуковые возмущения в плазме рассмотрены в рамках двухжидкостной бесстолкновительной электромагнитной гидродинамики с безынерционными электронами и холодными ионами. Методом разложения по степеням малого параметра в растянутых пространственно-временных переменных было получено неавтономное цилиндрическое уравнение Кортевега—де Вриза, описывающее нелинейные радиальные цилиндрические волны, сходящиеся к оси возмущения или расходящиеся от нее. Его приближенное решение имеет вид цилиндрического магнитозвукового солитона сжатия.

Список литературы

- [1] Петвиашвили В.И., Похотелов О.А. Уединенные волны в плазме и атмосфере. М.: Энергоатомиздат, 1989. 200 с.
- [2] Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. М.: Физматлит, 2006. 480 с.
- [3] Hershkowictz N., Romesser T. // Phys. Rev. Lett. 1974. Vol. 32. N 11. P. 581.
- [4] Hershkowictz N., Christensen T.E. // Phys. Rev. Lett. 1975.
 Vol. 35. N 4. P. 216.
- [5] Ze F., Hershkowictz N., Chan Ch., Lonngren K.E. // Phys. Fluids. 1979. Vol 22. N 8. P. 1554.
- [6] Nishida Y., Nagasawa T., Kawamata S. // Phys. Rev. Lett. 1979. Vol. 42. N 6. P. 379.
- Ze F., Hershkowictz N., Chan Ch., Lonngren K.E. // Phys. Rev. Lett. 1979. Vol. 42. N 26. P. 1747.
- [8] Nakamura Y., Ooyama M., Ogino T. // Phys. Rev. Lett. 1980.
 Vol. 45. N 19. P. 1565.
- [9] Tsukabayashi I., Nakamura Y., Kako F., Lonngren K.E. // Phys. Fluids. 1983. Vol. 26. N 3. P. 790.
- [10] Maxon S., Viecelli J. // Phys. Rev. Lett. 1974. Vol. 32. N 1. P. 4.
- [11] Maxon S., Viecelli J. // Phys. Fluids. 1974. Vol. 17. N 8. P. 1614.
- [12] Maxon S. // Phys. Fluids. 1976. Vol. 19. N 2. P. 266.
- [13] Panat P.V. // Phys. Fluids. 1976. Vol. 19. N 6. P. 915.
- [14] Tagare S.G., Shukla P.K. // Phys. Fluids. 1977. Vol. 20. N 5. P. 868.
- [15] El-Labany S.K., El-Warraki S.A., Moslem W.M. // J. Plasma Phys. 2000. Vol. 63. N 4. P. 343.
- [16] Xue J.-K. // Phys. Lett. A. 2004. Vol. 322. N 3-4. P. 225.
- [17] Mamun A.A., Shukla P.K. // Phys. Plasmas. 2002. Vol. 19.
 N 4. P. 1468.
- [18] Sahu B., Roychoudhury R. // Phys. Plasmas. 2003. Vol. 10. N 10. P. 4162.
- [19] Ghosh S. // Phys. Lett. A. 2005. Vol. 337. N 4-6. P. 425.
- [20] Sahu B., Roychoudhury R. // Phys. Plasmas. 2007. Vol. 14. N 1. P. 012 304.
- [21] Sahu B., Roychoudhury R. // Phys. Plasmas. 2007. Vol. 14.
 N 7. P. 072 310.
- [22] Mirza A.M., Bhowmik Ch. // Phys. Lett. A. 2007. Vol. 369. N 1–2. P. 90.
- [23] Masood W., Siddiq M., Nargis Sh., Mirza A.M. // Phys. Plasmas. 2009. Vol. 16. N 7. P. 013 705.
- [24] Jehan N., Mahmood S., Mirza A.M. // Phys. Scripta. 2007. Vol. 76. N 6. P. 661.
- [25] Masood W., Jehan N., Mirza A.M., Sakanaka P.H. // Phys. Lett. A. 2008. Vol. 372. N 23. P. 4279.
- [26] Mamun A.A., Shukla P.K. // Phys. Lett. A. 2001. Vol. 290. N 3–4. P. 173.
- [27] Xue J.-K. // Phys. Plasmas. 2003. Vol. 10. N 8. P. 3430.
- [28] Mushtaq A. // Phys. Plasmas. 2007. Vol. 14. N 11. P. 113 701.
- [29] Wang Y., Zhou Z., Jiang X. et al. // Phys. Lett. A. 2006. Vol. 355. N 4–5. P. 386.
- [30] Huang G., Velarde M.G. // Phys. Rev. E. 1996. Vol. 53. N 3. P. 2988.
- [31] Denavit J., Pereira N.R., Sudan R.N. // Phys. Rev. Lett. 1974. Vol. 33. N 24. P. 1435.
- [32] Jukue X., He L. // Phys. Plasmas. 2003. Vol. 10. N 2. P. 339.
- [33] Ko K., Kuehl H.H. // Phys. Fluids. 1979. Vol. 22. N 7. P. 1343.
- [34] Okutsu E., Schott L. // Phys. Fluids. 1981. Vol. 24. N 2. P. 367.

- [35] Nakamura A., Chen H.-H. // J. Phys. Soc. Jpn. 1981. Vol. 50. N 2. P. 711.
- [36] Франк-Каменецкий Д.А. Лекции по физике плазмы. М.: Атомиздат, 1968. 288 с.
- [37] Chiueh Tz., Lai Tz.-Ch. // Phys. Rev. A. 1991. Vol. 44. N 10. P. 6944.
- [38] Dogen D., Toida M., Ohsawa Y. // Phys. Plasmas. 1998. Vol. 5. N. 5. P. 1298.
- [39] Boldyrev S. // Phys. Plasmas. 1998. Vol. 5. N 5. P. 1315.
- [40] Marklund M., Eliasson B., Shukla P.K. // Phys. Rev. E. 2007.
 Vol. 76. N 6. P. 067 401.
- [41] Дудкин Г.Н., Луканин А.А., Нечаев Б.А. и др. // Письма в ЖЭТФ. 1992. Т. 55. № 12. С. 689.
- [42] Дудкин Г.Н., Егоров В.Ю., Нечаев Б.А., Пешков А.В. // Письма в ЖЭТФ. 1995. Т. 61. № 8. С. 617.
- [43] Stasiewicz K., Shukla P.K., Gustafsson G. et al. // Phys. Rev. Lett. 2003. Vol. 90. N 8. P. 085 002.
- [44] Stasiewicz K., Longmore M., Buchert S. et al. // Geophys. Res. Lett. 2003. Vol. 30. N 24. P. 2241.
- [45] Goldenbaum G.C., Gerber K.A., Levine L.S., Krall N.A. // Phys. Fluids. 1972. Vol. 15. N 8. P. 1491.
- [46] Van Zeeland M., Gekelman W. // Phys. Plasmas. 2004. Vol. 11. N 1. P. 320.
- [47] Mushtaq A., Shah H.A. // Phys. Plasmas. 2005. Vol. 12. N 1. P. 012 301.