05:12

Магнитоэлектрический эффект в планарных структурах аморфный ферромагнетик FeNiSiC-пьезоэлектрик

© Л.Ю. Фетисов, 1 Ю.К. Фетисов, 2 Н.С. Перов, 1 Д.В. Чашин 2

- 1 Московский государственный университет им. М.В. Ломоносова,
- 119991 Москва, Россия
- ² Московский государственный институт радиотехники, электроники и автоматики (технический университет),
- 119454 Mocква, Россия

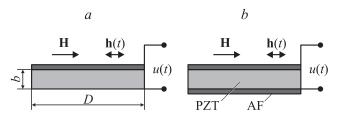
e-mail: fetisovl@yandex.ru

(Поступило в Редакцию 10 августа 2010 г.)

Исследован магнитоэлектрический (МЭ) эффект в композитных дву- и трехслойных дисковых структурах с магнитострикционными слоями из аморфного ферромагнетика FeNiSiC и пьезоэлектрическим слоем из цирконата-титаната свинца. Благодаря высокой магнитострикции $\sim 33 \cdot 10^{-6}$ и малым полям насыщения $\sim 200\,\mathrm{Oe}$ слой FeNiSiC имеет большой пьезомагнитный коэффициент, что приводит к эффективному МЭ-взаимодействию в слабых полях $\sim 25\,\mathrm{Oe}$. Величина МЭ-эффекта составляла $\sim 0.2\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$ на низкой частоте и возрастала до 11.9 и до $13.2\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$ при резонансном возбуждении в структурах изгибных и планарных колебаний на частоте ~ 8.2 и $\sim 170\,\mathrm{kHz}$. Структуры со слоями из аморфного FeNiSiC перспективны для создания датчиков магнитных полей, генераторов и преобразователей электрической энергии.

Введение

Магнитоэлектрический (МЭ) эффект в планарных структурах, содержащих ферромагнитные (ФМ) и пьезоэлектрические (ПЭ) слои, интенсивно исследуется в связи с перспективами создания на его основе высокочувствительных датчиков магнитных полей, твердотельных генераторов и преобразователей электрического напряжения [1]. Эффект проявляется в виде генерации переменного электрического напряжения и на гранях структуры под воздействием переменного магнитного поля h. Поле вызывает магнитострикционную деформацию ФМ-слоя, которая передается механически связанному с ним ПЭ-слою и изменяет его поляризацию, что приводит вследствие обратного пьезоэффекта к возникновению напряжения. Амплитуда генерируемого напряжения пропорциональна произведению $u \approx q/d$ пьезомагнитного коэффициента $q = \partial \lambda / \partial h$ (где λ магнитострикция) ФМ-слоя и пьезоэлектрического модуля d ПЭ-слоя. Эффективность МЭ-взаимодействия характеризует коэффициент $\alpha_E = (u/b)/h$, измеряемый в единицах $V \cdot cm^{-1}Oe^{-1}$, где b — толщина структуры.


К настоящему времени обнаружен и исследован МЭэффект в структурах с ФМ-слоями из ферритов [2], металлов Ni и Fe [3,4], сплавов (Fe-Ni, Fe-Co, Fe-Ga) [5–7] и ПЭ-слоями из цирконата-титаната свинца (PZT) или магниониобата-титаната свинца (PMN-PT). Эффективность МЭ-взаимодействия в структурах такого состава обычно не превышает $\alpha_E \approx 0.1\,\mathrm{V\cdot cm^{-1}Oe^{-1}}$. Увеличить α_E до $\sim 1\,\mathrm{V\cdot cm^{-1}Oe^{-1}}$ удалось, используя слои из редкоземельного сплава "терфенол", обладающего рекордно высокой магнитострикцией $\lambda \approx 10^{-3}$ [8]. Однако терфенол насыщается в полях $H \approx 10\,\mathrm{kOe}$ и для достижения высокого значения α_E к слою терфенола

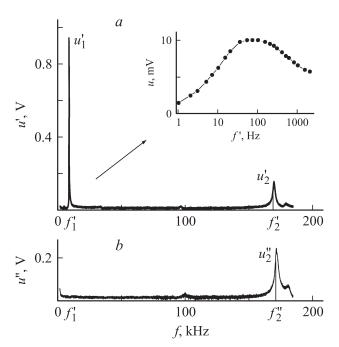
необходимо дополнительно прикладывать большое поле смещения ~ 1 kOe. Кроме того, терфенол дорог и плохо обрабатывается, что ограничивает его применение.

Увеличить эффективность МЭ-взаимодействия в планарных структурах можно и другим способом — используя ФМ-слои из аморфного ферромагнетика (AF) [9,10]. Пленки AF на основе Fe обладают умеренной магнитострикцией $\lambda \approx 10^{-5}$, но при этом насыщаются в слабых полях $H \approx 100$ Ое, что обеспечивает требуемый высокий пьезомагнитный коэффициент q. Кроме того, AF-материалы имеют малые потери на перемагничивание и низкую проводимость, что снижает электромагнитные потери в структурах. Все это делает весьма актуальным исследование МЭ-взаимодействий в структурах со слоями из AF-материалов, чему и посвящена настоящая работа.

Образцы и методика измерений

Исследования МЭ-эффекта проводили в дву- и трехслойных структурах, имеющих форму дисков и содержащих один слой РZT и один слой АF либо один слой РZT, расположенный между двумя слоями AF (рис. 1). Диски

Рис. 1. Структуры "аморфный ферромагнетик—пьезоэлектрик": a — двуслойная, b — трехслойная.


аморфного ферромагнетика состава $Fe_{90.3}Ni_{1.5}Si_{5.2}B_3$ были вырезаны из лент, изготовленных методом сверхбыстрого охлаждения на вращающемся барабане. Каждый диск AF имел диаметр $15\,\mathrm{mm}$ и толщину $40\,\mu\mathrm{m}$. Диски PZT состава $Pb_{0.52}Zr_{0.48}TiO_3$ имели диаметр $D=15\,\mathrm{mm}$ и толщину $b=210\,\mu\mathrm{m}$. На поверхности дисков были нанесены электроды из серебра диаметром $14\,\mathrm{mm}$ и толщиной $\sim 4\,\mu\mathrm{m}$. Диски были поляризованы постоянным напряжением $500\,\mathrm{V}$, приложенным к электродам при нагреве до $100^{\circ}\mathrm{C}$ с последующим охлаждением до комнатной температуры. Измеренный пьезомодуль PZT-диска равнялся $d_{13}=80\,\mathrm{pm/V}$. Для обеспечения механического контакта AF-диски соединяли с PZT-диском с помощью клея "Loctite 499". Генерируемый структурой сигнал u(t) снимали с электродов PZT-диска.

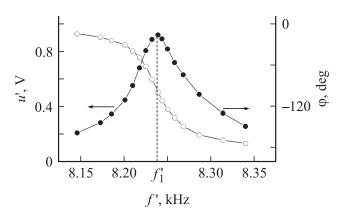
При исследовании МЭ-эффекта дисковый резонатор помещали в постоянное однородное магнитное поле H, направленное параллельно либо перпендикулярно к плоскости структуры. Резонатор подвешивали в области поля на проводниках длиной 1 cm и диаметром $30 \, \mu \text{m}$, припаянных к электродам PZT-диска, для достижения высокой добротности при возбуждении в образце акустических колебаний. Поле Н величиной до 200 Ое создавали с помощью электромагнитных катушек, что гарантировало высокую точность измерений в области малых полей. Поля H величиной до 2kOe создавали с помощью электромагнита. Модулирующее поле $h(t) = h\cos(2\pi f t)$ с амплитудой h = 0-8 Ое и частотой $f = 1 \,\text{Hz} - 200 \,\text{kHz}$, направленное параллельно постоянному полю, создавали катушки диаметром 30 mm, подключенные к низкочастотному генератору. Амплитуду поля h определяли по току через катушки, прокалиброванные с помощью тесламера. Генерируемое структурой МЭ-напряжение измеряли с помощью цифрового осциллографа с входным сопротивлением 1 МΩ. Регистрировали зависимости амплитуды и фазы генерируемого МЭ-структурой сигнала при изменении частоты fи амплитуды h модулирующего поля, напряженности и ориентации постоянного магнитного поля H.

Кривые намагничивания $4\pi M(H)$ аморфной ленты при различных ориентациях поля H напряженностью до $20\,\mathrm{kOe}$ измерены с помощью вибрационного магнитометра. Магнитострикцию $\lambda(H)$ аморфной ленты в поле $H < 2\,\mathrm{kOe}$, приложенном параллельно либо перпендикулярно плоскости ленты, определяли с помощью тензодатчика, наклеенного на ленту.

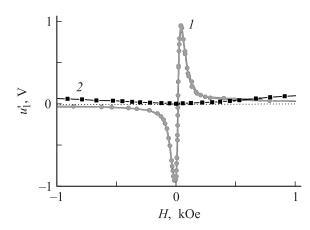
Частотные характеристики магнитоэлектрического взаимодействия

На рис. 2 показаны зависимости амплитуды переменного напряжения u, генерируемого дву- и трехслойной структурами AF-PZT, от частоты f переменного магнитного поля. Зависимости измерены для касательно намагниченных структур при постоянном поле смещения $H=40\,\mathrm{Oe}$, отвечающем максимальной эффек-

Рис. 2. Зависимости МЭ-напряжения u от частоты поля f для: a — двуслойной структуры AF-PZT, b — трехслойной структуры AF-PZT-AF. На вставке показан участок зависимости u(t) в области малых частот.


тивности МЭ-взаимодействия. Амплитуда переменного поля равнялась $h\approx 4\,\mathrm{Oe}$ в диапазоне частот $0\text{--}10\,\mathrm{kHz}$ и затем плавно уменьшалась до $\sim 0.9\,\mathrm{Oe}$ на частоте $\sim 170\,\mathrm{kHz}$ из-за влияния индуктивности модулирующих катушек.

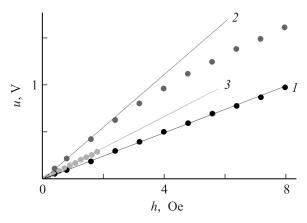
Напряжение u', генерируемое двуслойной структурой AF-PZT (см. рис. 2, a), в целом монотонно уменьшалось с ростом частоты из-за уменьшения поля h и во всем диапазоне частот не превышало 10 mV. В области частот $f < 100 \,\mathrm{Hz}$ величина u' падала из-за рассогласования измерительной схемы вследствие увеличения сопротивления слоя PZT с понижением частоты. Это привело к формированию локального максимума напряжения близи частоты $\sim 70\,\mathrm{Hz}$, что видно на вставке к рис. 2, a. Амплитуда u' резонансно возрастала до $u'_1 = 0.94 \,\mathrm{V}$ на частоте $f_1' = 8.24 \,\mathrm{kHz}$, до $u_2' = 0.16 \,\mathrm{V}$ на частоте $f_2' = 170 \,\mathrm{kHz}$. Добротность резонансов равнялась $Q_1' = 190$ и $Q_2' = 139$ соответственно. Увеличение u' на частотах f_1' и f_2' связано с резким увеличением деформаций в слое пьезоэлектрика при возбуждении в дисковом резонаторе основных мод изгибных и планарных акустических колебаний соответсвенно. На рис. 2, a при $f \approx 96\,\mathrm{kHz}$ виден также слабый резонанс, который соответствует, по-видимому, субгармонике основной моды планарных колебаний. Рассмотрим далее только основные пики с частотой f_1' и f_2' .


Напряжение u'', генерируемое симметричной трехслойной AF-PZT-AF-структурой (см. рис. 2, b), также в целом монотонно уменьшалось с ростом f и имело максимум вблизи частоты $\sim 70\,\mathrm{Hz}$. Во всем диапазоне частот u'' в ~ 2 раза превышала напряжение u', генерируемое двуслойной структурой, что объясняется увеличением величины деформации структуры PZT в 2 раза, за счет действия напряжений на ее обе поверхности. Естественно, что такой механизм деформации резко уменьшал величину изгибных колебаний. Для трехслойной структуры u'' резонансно возрастало до $u_2'' = 0.24 \,\mathrm{V}$ только вблизи частоты $f_2'' = 173.6 \,\mathrm{kHz}$. Добротность резонанса составляла $Q_2'' = 85$. Как уже отмечалось, вид зависимости u''(f) свидетельствует, что в симметричной трехслойной структуре изгибная мода колебаний не возбуждается, а эффективно возбуждаются только планарные акустические колебания. Частота планарных колебаний несколько выше $f_2'' > f_2'$, а добротность меньше $Q_2'' < Q_2'$, что для двуслойной структуры, возможно, из-за увеличения числа демпфирующих слоев

Зависимости u(t), аналогичные показанным на рис. 2, были получены и при намагничивании дву- и трехслойных резонаторов перпендикулярно плоскости. При тех же значениях резонансных частот f_1 и f_2 , амплитуда u генерируемого МЭ-напряжения была на порядок меньше, что, скорее всего, связано с малостью недиагональных компонент тензора магнитострикции.

На рис. З показаны амплитудная и фазовая характеристики МЭ-напряжения в области частот изгибных колебаний для двуслойного резонатора AF-PZT, подмагничиваемого в плоскости полем H=25 Ое. Видно, что МЭ-напряжение u' отстает по фазе от модулирующего поля h. Сдвиг по фазе φ между напряжением и полем на частоте резонанса f_1' достигает $\varphi(f_1')=15^\circ$, что частично связано с поглощением энергии в измерительной цепи. При прохождении частоты сигнала через резонанс сдвиг по фазе изменяется на $\sim 180^\circ$, что типично для резонансных систем. Зависимости, аналогичные показанным на рис. З, наблюдались также на частоте планарных колебаний двуслойной структуры f_2' и вблизи резонансной частоты f_2'' трехслойной структуры.

Рис. 3. Зависимости амплитуды u и сдвига фазы φ МЭ напряжения от частоты вблизи частоты изгибного резонанса f_1' .

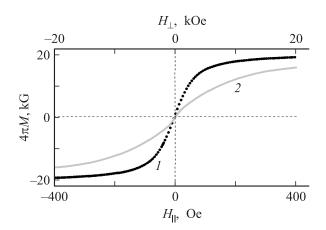

Рис. 4. Зависимости амплитуды МЭ напряжения u'_1 на частоте f'_1 от магнитного поля, приложенного: I — в плоскости и 2 — перпендикулярно плоскости структуры AF-PZT.

Полевые характеристики магнитоэлектрического взаимодействия

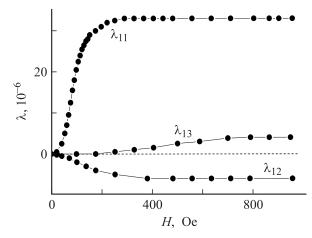
Рис. 4 демонстрирует зависимости амплитуды напряжения u_1' , генерируемого структурой AF-PZT на частоте изгибных колебаний f_1' , от величины и ориентации поля Н. Амплитуда модулирующего поля для данных на рис. 4 составляла $h = 4 \, \mathrm{Oe}$. При намагничивании резонатора в плоскости образца $u_1' = 0$ в отсутствие поля достигает максимума $u_1' = 0.94\,\mathrm{V}$ при $H \approx 40\,\mathrm{Oe}$ и затем вновь монотонно спадает до нуля с увеличением поля. Отрицательные значения u_1' в области графика H < 0 символизируют изменение фазы генерируемого напряжения на π по сравнению с областью H > 0. Величина гистерезиса зависимости $u_1'(H)$ при медленном циклическом изменении поля не превышала 2 Ое. При намагничивании структуры перпендикулярно плоскости величина u'_1 сначала линейно растет с H, достигает максимума $u_1' \approx 0.1 \,\mathrm{V}$ при $H \approx 1 \,\mathrm{Oe}$ и затем монотонно спадает до нуля в области больших полей. Фаза генерируемого сигнала не изменялась при инверсии направления Н. Аналогичного вида зависимости, но с меньшей амплитудой напряжения, были получены также на частоте изгибных колебаний f_2' и в нерезонансных условиях.

При увеличении поля H наблюдалось изменение частот изгибных f_1' и планарных f_2' колебаний структуры. Так, частота изгибных колебаний структуры AF-PZT, равная $f_1' = 8.2426\,\mathrm{kHz}$, при $H = 5\,\mathrm{Oe}$ возрастала примерно линейно до $8.2663\,\mathrm{kHz}$ с увеличением поля до $100\,\mathrm{Oe}$, а затем оставалась постоянной при дальнейшем возрастании H. Зависящее от поля изменение частоты составляло не более 0.3%. Эффект обусловлен изменением модуля Юнга слоя AF во внешнем магнитном поле [5] (ΔE -эффект).

На рис. 5 приведены зависимости МЭ-напряжения u', генерируемого двуслойной структурой AF-PZT, подмаг-


Рис. 5. Зависимости амплитуды u' МЭ-напряжения от амплитуды модулирующего поля h для структуры AF-PZT при $H=25\,\mathrm{Oe}$ на частотах: $1-f=100\,\mathrm{Hz},\ 2-f_1',\ 3-f_2'$. Сплошные линии — линейная аппроксимация данных.

ниченной полем $H=25\,\mathrm{Oe},$ от амплитуды переменного поля h, измеренные на разных частотах. Для кривой 1 на рис. 5 значения напряжения увеличены в 10 раз. Видно, что при нерезонансном возбуждении структуры на частоте 100 Hz, когда амплитуда поля достигает больших значений $h \approx 8$ Oe, но напряжение невелико u' < 0.1 V, генерируемое напряжение линейно растет с увеличением h. На частоте планарных колебаний f'_2 (кривая 3), когда амплитуда поля мала $h < 1.8\,\mathrm{Oe}$ и напряжение относительно невелико $u_2' < 0.3 \,\mathrm{V}$, генерируемое напряжение также линейно растет с h. На частоте изгибных колебаний f'_1 (кривая 2), когда амплитуда модулирующего поля велика $h \approx 8\,\mathrm{Oe}$ и амплитуда генерируемого напряжения достигает $\sim 1.5 \, \text{V}$, зависимость u'(h) отклоняется от линейной в сторону уменьшения напряжения уже при h > 2 Ое, что, очевидно, связано с неупругими потерями энергии при больших амплитудах колебаний.


Характеристики аморфного сплава

На рис. 6 приведены измеренные зависимости намагниченности AF-ленты $4\pi M$ от поля H. Нижняя горизонтальная ось соответствует ленте, намагниченной параллельно плоскости (кривая $1 - H_{\parallel}$), верхняя горизонтальная ось — ленте, намагниченной перпендикулярно плоскости (кривая $2 - H_{\perp}$). При ориентации поля в плоскости ленты намагниченность достигает насыщения $4\pi M_S = 17.4\,{
m kG}$ в полях $H_{\parallel S} \approx 200\,{
m Oe}$. Кривые намагничивания для H_{\parallel} , приложенного в плоскости ленты вдоль и поперек технологической текстуры пленки, отличались не более чем на $\sim 2\,\mathrm{Oe}$. При ориентации поля перпендикулярно плоскости $4\pi M$ нелинейно растет вплоть до полей $H_{\perp S} \approx 20\,\mathrm{kOe}$, приближаясь к той же величине насыщения $4\pi M_S$. Величина коэрцитивной силы для всех ориентаций поля не превышала $H_c < 2$ Oe. В области малых полей $H_{\parallel} < 40\,\mathrm{Oe}$ магнитная проницаемость касательно намагниченной пленки составляла $\mu \approx (3-6) \cdot 10^3.$

На рис. 7 показаны зависимости деформации ленты AF $\lambda = \Delta x/x$ от поля H для различных ориентаций поля. Кривая λ_{11} соответствует ориентации поля в плоскости вдоль оси датчика, а кривая λ_{12} — в плоскости перпендикулярно оси датчика, кривая λ_{13} — полю, приложенному перпендикулярно плоскости ленты. Видно, что при касательном намагничивании продольная магнитострикция насыщается на уровне $\lambda_{11} \approx 33 \cdot 10^{-6}$, а поперечная — на уровне $\lambda_{12} \approx -6 \cdot 10^{-6}$ в полях $H_{\parallel S} \approx 200\,\mathrm{Oe}$. При намагничивании ленты перпендикулярно плоскости магнитострикция насыщается на уровне $\lambda_{13} \approx 4 \cdot 10^{-6}$ в поле $H_{\perp S} \approx 1$ Ое. Данные рис. 7 позволяют рассчитать пьезомагнитные коэффициенты $q = \partial \lambda / \partial h$ для ленты AF, которые определяют эффективность МЭ-взаимодействия в структуре. Так, для ленты, намагниченной в плоскости, продольный коэффициент достигает максимума $q_{11} \approx 37 \cdot 10^{-8} \, \mathrm{Oe}^{-1}$ в поле смещения $H_{\parallel} \approx 60\,\mathrm{Oe}$, а в случае перпендикулярно намагниченной ленты коэффициент на порядок меньше

Рис. 6. Кривые намагничивания ленты аморфного ферромагнетика I — в плоскости, 2 — перпендикулярно плоскости.

Рис. 7. Зависимости магнитострикции λ аморфного ферромагнетика от магнитного поля H для различных ориентаций поля.

и достигает максимума $q_{13} \approx 0.85 \cdot 10^{-8} \, \mathrm{Oe}^{-1}$ в поле смещения $H_{\perp} \approx 400 \, \mathrm{Oe}.$

Таким образом, для намагниченного в плоскости слоя AF, благодаря малому полю насыщения, пьезомагнитный коэффициент оказался существенно больше, чем для пластины никеля $(q_{11}\approx 5.7\cdot 10^{-8}\,\mathrm{Oe}^{-1}$ в поле $\sim 50\,\mathrm{Oe}\ [11])$ и пластины галфенола $(q_{11}\approx 6\cdot 10^{-8}\,\mathrm{Oe}^{-1}$ в поле $\sim 250\,\mathrm{Oe}\ [7])$ и больше, чем у пленок терфенола $(q_{11}\sim 30\cdot 10^{-8}\,\mathrm{Oe}^{-1}$ в поле $\sim 1\,\mathrm{kOe}\ [12])$.

Оценки и обсуждение результатов

Найдем значения частоты, при которых наблюдается увеличение амплитуды МЭ-напряжения из-за возбуждения акустических колебаний в дисковом резонаторе. Частоты изгибных колебаний однородного свободного диска даются формулой [13]:

$$f = \alpha_{ns} \frac{b}{2\pi R^2} \sqrt{\frac{Y}{12\rho(1-\nu^2)}},$$
 (1)

где α_{ns} — коэффициент, отвечающий моде с n узловыми диаметрами и s узловыми окружностями, b — толщина диска, R — радиус диска, ρ — плотность материала диска, Y — модуль Юнга, ν — коэффициент Пуассона.

Для двуслойного диска, содержащего слои магнетика и пьезоэлектрика, эффективные плотность и модуль Юнга находятся по формулам

$$\rho = \frac{\rho_m b_m + \rho_p b_p}{b_m + b_p}, \qquad Y = \frac{Y_m b_m + Y_p b_p}{b_m + b_p}$$
 (2)

где Y_m , ρ_m , b_m , Y_p , p_p , b_p — модуль Юнга, плотность и толщина магнитного и пьезоэлектрического слоев соответственно. Используя уравнения (1), (2) и параметры материалов структуры (сплав АF: $Y_m = 18.6 \cdot 10^{10} \, \text{N/m}^2$, $\rho_m = 8.2 \cdot 10^3 \, \text{kg/m}^3$ и $b_m = 40 \, \mu \text{m}$; слой PZT: $Y_p = 7 \cdot 10^{10} \, \text{N/m}^2$, $\rho_p = 7.7 \cdot 10^3 \, \text{kg/m}^3$ и $b_p = 210 \, \mu \text{m}$), находим частоту низшей ($\alpha_{01} = 9.076$) изгибной моды $f_1' = 6.58 \, \text{kHz}$.

Частота радиальных колебаний свободного диска, толщина которого значительно меньше диаметра $(b \ll R)$, не зависит от толщины и дается формулой [13]:

$$f = \frac{\beta}{2\pi R} \sqrt{\frac{Y}{\rho(1 - \nu^2)}}.$$
 (3)

Оценка частоты низшей моды радиальных колебаний ($\beta=2.088$) для двуслойной структуры дает значение $f_2'=156\,\mathrm{kHz}$. Видно, что рассчитанные частоты резонансов МЭ структуры достаточно хорошо совпадают с показанными на рис. 2.

Рассчитаем эффективности МЭ преобразования для дву- и трехслойных структур AF-PZT, используя данные рис. 2. Для 2-слойной структуры, намагниченной в плоскости, коэффициент МЭ преобразования составлял: $\alpha_E' = 120 \, \mathrm{mV} \cdot \mathrm{cm}^{-1} \, \mathrm{Oe}^{-1}$ на частоте 100 Hz,

 $lpha_{E1}'=11.9\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$ на частоте изгибных колебаний f_1' и $lpha_{E2}'=8.5\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$ на частоте планарных колебаний f_2' . Для трехслойной намагниченной в плоскости структуры коэффициент равнялся $lpha_E'=220\,\mathrm{mV}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$ в области низкочастотного максимума и $lpha_{E2}''=13.2\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$ на частоте планарных колебаний резонатора. Для структуры, намагниченной перпендикулярно к плоскости полем $H\approx 1\,\mathrm{kOe}$, коэффициент МЭ преобразования достигал на частоте изгибных колебаний f_1' максимальной величины $\sim 1.2\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$.

Эффективность МЭ-взаимодействия в структуре вдали от резонансных частот оценим по формуле [14]:

$$\alpha_E = \frac{-2d_{31}(q_{11} + q_{12})\eta}{(s_{11}^m + s_{12}^m)\varepsilon + (s_{11}^p + s_{12}^p)\varepsilon\eta - 2(d_{31})^2\eta}.$$
 (4)

Для структуры AF-PZT при соответствующих эксперименту значениях параметров слоев $d_{31}=80\cdot 10^{-12}$ m/V, $q_{11}+q_{12}=37\cdot 10^8$ Oe $^{-1}$, податливости магнитного и пьезоэлектрического слоев $s_{11}^m+s_{12}^m=8\cdot 10^{-12}$ m²/N, $s_{11}^p+s_{12}^p=6\cdot 10^{-12}$ m²/N, диэлектрической проницаемости слоя PZT $\varepsilon=\varepsilon_r\varepsilon_0=15.5\cdot 10^{-9}$ F/m, отношении толщины магнитного и пьезоэлектрического слоев $\eta=b_m/b_p=0.2$ расчет по формуле (4) дает величину $\alpha_E'\approx 0.84$ V · cm $^{-1}$ Oe $^{-1}$. Для трехслойной структуры AF-PZT-AF аналогичный расчет по формуле (4) дает значение $\alpha_E''\approx 1.45$ V · cm $^{-1}$ Oe $^{-1}$.

На частоте акустического резонанса эффективность МЭ-преобразования должна возрасти в добротность раз [15]. Оценка для двуслойной структуры с использованием измеренных добротностей ($Q_1'=190$ и $Q_2'=139$) дает на частоте изгибных колебаний значение $\alpha_{E1}'\approx 160\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$, на частоте планарных колебаний — $\alpha_{E2}'\approx 117\,\mathrm{V}\cdot\mathrm{cm}^{-1}\mathrm{Oe}^{-1}$.

Видно, что рассчитанные значения эффективности МЭ-преобразования как в нерезонансных условиях, так и на частоте резонанса, примерно на порядок превышают измеренные, что может быть обусловлено несовершенством клеевого механического соединения между слоями структуры и ограничениями теоретической модели, использованной для оценок.

Заключение

Таким образом, обнаружен и исследован МЭ-эффект в композитных дву- и трехслойных дисковых структурах с магнитными слоями из аморфного ферромагнетика FeNiSiC и пьезоэлектрическими слоями из PZT. Эффективность МЭ-преобразования в структурах составляла $\alpha \sim 0.2\,\mathrm{V\cdot cm^{-1}Oe^{-1}}$ на частоте 70 Hz и возрастала до $11.9\,\mathrm{u}$ до $13.2\,\mathrm{V\cdot cm^{-1}Oe^{-1}}$ при возбуждении в структурах изгибных и планарных механических колебаний на частотах $\sim 8.2\,\mathrm{u} \sim 170\,\mathrm{kHz}$ соответственно. При максимальной магнитострикции $\lambda \approx 33\cdot 10^{-6}\,\mathrm{u}$ малых полях насыщения $\sim 200\,\mathrm{Oe}$ пьезомагнитный коэффициент аморфного слоя оказался больше, чем у других

магнитострикционных материалов (никель, галфенол и терфенол). Это привело к высокой эффективности МЭ-преобразования в слабых полях смещения $H\sim25\,\mathrm{Oe},$ что важно для практических применений.

Композитные МЭ-структуры со слоями из аморфного FeNiSiC могут быть использованы для создания датчиков магнитных полей, генераторов и преобразователей электрической энергии.

Работа поддержана Министерством образования и науки РФ (проект № 2.11.6650) и Российским фондом фундаментальных исследований (грант № 09-02-12439 офи_м).

Список литературы

- Nan C.-W., Bichurin M.I., Dong S. et al. // J. Appl. Phys. 2008. Vol. 103. P. 131 101.
- [2] Srinivasan G., Rasmussen E.T., Gallegos J. et al. // Phys. Rev. B. 2001. Vol. 64. P. 214408.
- [3] Babu S.N., Bhimasankaram T., Suryanarayana S.V. // Bull. Mater. Sci. 2005. Vol. 28. N 5. P. 419–422.
- [4] Fetisov Y.K., Petrov V.M., Srinivasan G. // J. Mater. Res. 2007. Vol. 22. N 8. P. 2074–2080.
- [5] Srinivasan G., De Vreugd C.P. et al. // Phys. Rev. B, 2005. Vol. 71. P. 184 423.
- [6] Dong S.X., Zhai J., Bai F. et al. // J. Appl. Phys. 2005. Vol. 97. P. 103 902.
- [7] Буш А.А., Каменцев К.Е., Мещеряков В.Ф. и др. // ЖТФ. 2009. Т. 79. Вып. 9. С. 71–77.
- [8] Ryu J., Carazo A.V., Uchino K., Kim H.-E. // Jpn. J. Appl. Phys. 2001. Vol. 40. Pt. 1. N 8. P. 4948–4951.
- [9] Dong S., Zhai J. Xing Z. et al. // APL. 2007. Vol. 91. P. 122 915.
- [10] Giang D.T.H., Quynh L.K., Dung N.V. et al. // J. of Phys. Conf. series. 2009. Vol. 187. P. 012 057.
- [11] Chashin D.V., Fetisov Y.K., Kamentsev K.E., Srinivasan G. // APL. 2008. Vol. 92. P. 102 511.
- [12] Speliotis A., Niarchos D. // Sensors and Actuators. 2003. Vol. A106. P. 298–301.
- [13] *Тимошенко П.* Колебания в инженерном деле. М.: Физматлит, 1959. 439 с.
- [14] Harshe G., Dougherty J.P., Newnham R.E. // Int. J. Appl. Electromagn. Mater. 1993. Vol. 4. P. 145.
- [15] Bichurin M.I., Filippov D.A., Petrov V.M. et al. // Phys. Rev. B. 2003. Vol. 68. P. 132 408.