11;12 Свойства низкорефрактивных пленок, полученных по методу близкого переноса при сублимации графита в квазизамкнутом объеме

© Н.В. Сопинский, В.С. Хомченко, О.С. Литвин, А.К. Савин, Н.А. Семененко, А.А. Евтух, В.П. Соболевский, Г.П. Ольховик

Институт физики полупроводников им. В.Е. Лашкарёва НАН Украины, 03028 Киев, Украина e-mail: sopinsky@isp.kiev.ua, vsk@isp.kiev.ua

(Поступило в Редакцию 28февраля 2011 г.)

Представлены результаты исследований свойств низкорефрактивных углеродных пленок, нанесенных технологией близкого переноса при сублимации графита в закрытом объеме. При помощи метода монохроматической многоугловой эллипсометрии исследованы оптические свойства пленок, а по методу атомносиловой микроскопии — морфология их поверхности. Установлено, что пленки имеют столбчатую структуру с базовой шероховатостью поверхности ~ 1 nm, кроме того, на поверхности пленки присутствуют отдельные островки сечением основы ~ 200 nm и высотой до 50 nm. Показано, что осаждение низкорефрактивной углеродной пленки по методу близкого переноса на поверхность кремниевых острий приводит к снижению порога электронной полевой эмиссии и резкому росту величины тока.

Введение

Аморфные углеродные пленки в последнее время находят практическое применение благодаря уникальным свойствам. Получен целый ряд аморфных углеродных пленок — от прозрачных, диэлектрических до непрозрачных черных пленок с различной электропроводностью, в том числе высокой [1,2]. Несмотря на большое количество теоретических и экспериментальных исследований, практический потенциал свойств этих пленок еще полностью не реализован [3,4]. Это обусловливает целесообразность проведения дополнительных технологических и электрофизических исследовательских работ с пленками на основе углерода и разработку новых методов получения пленок.

Чрезвычайно широкий спектр свойств углеродных материалов обусловлен полиморфизмом структурных конфигураций углерода как в кристаллическом, так и в аморфном состояниях. В аморфном состоянии в зависимости от условий синтеза может формироваться структура с разным характером ближнего порядка. Кроме относительного фазового состава (удельного содержания атомов углерода в той или иной гибридизации), не менее важными факторами являются степень гидрогенизации (содержание водорода), наличие таких примесей, как кислород и азот, пористость пленок и др. Все эти факторы влияют на механизмы формирования и реконструкцию ближнего, среднего и дальнего порядков, на морфологию и подсистему дефектов пленок, а значит, и на функциональные свойства [5]. Вклад этих факторов структурного влияния различается в зависимости от метода и условий получения пленок. Новые методы изготовления пленок способны сформировать пленки с таким набором характеристик, который трудно получить другими методами.

Недавно нами было предложено получать углеродные пленки по методу сублимации графита с близкого расстояния в квазизамкнутом объеме при атмосферном давлении [6]. При таком способе одновременно происходят осаждение и отжиг пленки. Осаждение таким способом на кремниевые подложки позволило получить, в частности, пленки с относительно низким показателем преломления (~ 1.3), что свидетельствует о неплотном характере структуры таких пленок (их значительной пористости). Низкорефрактивные пленки представляют интерес не только с точки зрения их оптических свойств, но и для создания газовых сенсоров [7] и для электронной эмиссии [8]. Поэтому представляло интерес детально исследовать такие пленки.

Целью настоящей работы являются исследования эллипсометрических свойств, морфологии поверхности и электронно-эмиссионных характеристик низкорефрактивных пленок, изготовленных вышеуказанным методом, а также сопоставление полученных данных.

Методика эксперимента

В настоящей работе исследованы углеродные пленки, полученные при температуре 750°С, близкой к нижней границе температур (~ 700°С), пригодных для получения пленок указанным методом [6].

Исследование пленок, нанесенных на поверхность полированных плоских кремниевых пластин КЭФ-4,5 (100), осуществлялось с помощью методов атомно-силовой эллипсометрии И микроскопии. Величины эллипсометрических параметров (углов) ψ и Δ измерялись при 11 углах падения φ_0 из диапазона $45 - 70^{\circ}$ на лазерном эллипсометре ЛЭФ-3М-1 ($\lambda = 632.8 \text{ nm}$). Эллипсометрический анализ полученных угловых зависимостей осуществлялся как

на основе модели однородного изотропного слоя, так и на основе моделей, учитывающих неоднородность (как резкую, так и плавную) и анизотропию пленок. В рамках таких моделей минимизировалась целевая функция [9]

$$G(B) = \Sigma \Big[\big\{ \psi_i^m - \psi_i^c(B, \varphi_{0i}) \big\}^2 + \big\{ \Delta_i^m - \Delta_i^c(B, \varphi_{0i}) \big\}^2 \Big],$$

где ψ_i^m , Δ_i^m — поляризационные углы, измеренные при углах падения φ_{0i} , ψ_i^c , Δ_i^c — поляризационные углы, рассчитанные в рамках принятой модели, параметры которой являются компонентами вектора *B*. *G*(*B*) вычисляется в (deg.)², но в тексте для краткости единица измерения опускается. Более детально использованная методика эллипсометрического анализа описана в работах [10,11].

Топометрия поверхности пленок выполнялась на атомно-силовом микроскопе (ACM) NanoScope IIIa Dimension 3000TM фирмы Digital Instruments (подразделение Veeco Corp.) в режиме периодического контакта с использованием серийных кремниевых зондов NSG-11 с номинальным радиусом закругления острия до 10 nm (NT-MDT, Россия).

Для исследования электронной полевой эмиссии (ЭПЭ) с углеродных пленок пленки наносились на матрицу кремниевых острий, сформированных на поверхности кремния *n*-типа с ориентацией поверхности (100) и концентрацией легирующей примеси (фосфор) $N_d = 1 \cdot 10^{18}$ сm⁻³. Плотность острий с основой $10 \times 4\,\mu$ m составляла 10^5 /сm², радиус кривизны поверхности вершины острий составлял 10-20 nm. Детально технология формирования острий описана в [12].

Измерение эмиссионных вольт-амперных характеристик (ВАХ) образцов проводилось с использованием типичной схемы для измерений ВАХ-вакуумного диода в системе, которая откачивалась до стабильного давления остаточных газов 10^{-5} Ра. Расстояние анод-катод составляло 12.7 µm и задавалось толщиной тефлоновой прокладки с отверстием посредине с диаметром 1.5 mm. Кремниевая подложка со сформированной структурой использовалась в качестве катода, роль анода выполняли плоские пластины кремния КЭФ-0.05, предварительно очищенные в 10%-ном водном растворе HF. Резистор 0.56 МΩ добавлен последовательно в цепь анода для защиты от короткого замыкания и пробоя образцов [12]. Эмиссионные ВАХ матрицы кремниевых острий до и после нанесения углеродной пленки на их поверхность строились в координатах Фаулера-Нордгейма (Ф-Н) для сравнения наклонов эмиссионных кривых. По измерению наклона эмиссионной кривой после покрытия острий углеродной пленкой проводилось определение работы выхода электронов из пленки в вакуум.

Результаты и обсуждение

При вычислении значений показателя преломления и толщины пленки в двухпараметрической модели непоглощающего однородного изотропного слоя (НОИСмодели) по значениям ψ и Δ для отдельно взятых углов падения наблюдается изменение величины $n(\varphi_0)$, $d(\varphi_0)$ с изменением угла падения — при изменении φ_0 от 45 до 70° $n(\varphi_0)$ уменьшается от 1.365 до 1.319, а $d(\varphi_0)$ растет от 72.5 до 76.2 nm. Это говорит о неполной адекватности НОИС-модели. Для измерений при 11 углах из интервала 45–70° минимум целевой функции в рамках НОИС-модели составил

$$G_{\min} = 5.84$$
 при $n = 1.337, h = 74.5$ nm.

Значение G_{\min} достаточно большое, оно, с одной стороны, еще раз подтверждает результаты одноугловых измерений, а с другой — служит реперным значением при сравнении работы других моделей.

Отклонение от НОИС-модели может быть обусловлено наличием в пленке поглощения, анизотропии и неоднородности. Влияние этих факторов в первом приближении может быть оценено на основе решения обратной задачи эллипсометрии в рамках трехпараметрических моделей и одной четырехпараметрической модели: модели поглощающего однородного изотропного слоя (ПОИС-модель, искомые параметры n, k, h), модели непоглощающего однородного одноосно анизотропного слоя (HOOAC-модель, искомые параметры n_o , n_e, h), модели непоглощающего линейно-неоднородного изотропного слоя для оценки плавной неоднородности пленки (НЛНИС-модель с линейным распределением диэлектрической проницаемости по глубине пленки, искомые параметры n_b , n_t , h), модели двух непоглощающих однородных изотропных слоев с резкой границей раздела (2-НОИС-модель, искомые параметры n_d , n_u , h_d , *h_u*) для оценки наличия резкой неоднородности в пленке.

Минимум G, полученный в рамках ПОИС-модели, является ошибочным, на что указывает отрицательное значение k:

$$G_{\min} = 0.0217$$
 при $n = 1.544, k = -0.16, h = 50$ nm.

Следовательно, не поглощение, а анизотропия и (или) неоднородность являются главным образом ответственными за отклонение от модели прозрачного однородного изотропного слоя. Для НЛНИС-модели, как и в случае ПОИС-модели, минимум *G* достигнут при нефизичном значении одного из искомых параметров (а именно при значении показателя преломления на верхней границе пленки меньшем единицы):

$$G_{\min} = 3.21$$
 при $n_b = 1.39, n_t = 0.884, h = 150$ nm.

В то же время модель, описывающая резкую неоднородность пленки (2-НОИС-модель), минимизирует *G* при вполне разумных значениях искомых параметров

$$G_{\min} = 4.58$$
 при $n_d = 1.36, n_u = 1.16,$
 $h_d = 55, h_u = 30$ nm.

Значение показателя преломления нижнего слоя ($n_d = 1.36$) несколько выше, а такая величина для верхнего

слоя $(n_u = 1.16)$ значительно ниже, чем значение показателя преломления пленки в НОИС-модели (n = 1.337). Этот результат указывает на значительную разницу в структуре нижней и верхней частей пленки. Малое значение G_{\min} при физически разумных значениях параметров модели получено в рамках НООАС-модели

$$G_{\min} = 0.116$$
 при $n_o = 1.164, n_e = 1.397,$
 $h = 64 \,\mathrm{nm} \, (n_{av} = 1.242),$

что свидетельствует о наличии анизотропии в пленке. Как видно, пленка достаточно неплотная и имеет значительную положительную анизотропию $(n_e > n_o)$.

Таким образом, проведенный эллипсометрический анализ позволяет утверждать, что оптические характеристики пленки обусловлены в первую очередь одноосной анизотропией, а также наличием резкой неоднородности по глубине пленки. Положительная оптическая анизотропия в пленках часто вызвана столбчато-пористой структурой пленки с преимущественной ориентацией столбцов и пор перпендикулярно подложке [13]. Низкие значения показателя преломления нижней и верхней частей пленок указывают на низкую плотность пленки.

Сделанные на основе эллипсометрического исследования выводы согласуются с результатами топометрического исследования поверхности пленки, представленными на рис. 1. Основной рельеф поверхности гладкий, упорядоченный, с перепадом высот $Z_{\text{range}} \approx 6\,\text{nm}$ на фрагменте $5 \times 5 \,\mu\text{m}^2$ и RMS = 1.12 nm, на нем болееменее однородно присутствуют отдельные холмоподобные островки с диаметром основы в среднем ~ 200 nm и высотой ~ 30-50 nm. Вершины островков куполоподобные, радиус кривизны закругления которых лежит в границах 40-120 nm и, как правило, не зависит от высоты островков. Площадь их основы в среднем $S \sim 0.03 \,\mu\text{m}^2$, а их количество составляет 4–5 на 1 μm^2 . Эти островки покрывают ~ 12-15% площади плоской поверхности нижней базисной пленки. Важно, что средняя высота островков (~ 40 nm) довольно близка к значению толщины верхнего слоя в 2-НОИС-модели $(h_u = 30 \, \text{nm})$. Это свидетельствует о том, что верхний слой 2-НОИС-модели в приближении "эффективного слоя" описывает именно этот ансамбль островков на плоской поверхности основной нижней части пленки.

Опираясь на данные АСМ-исследований, можем уточнить эллипсометрическую модель пленки, т. е. получить дополнительную информацию об оптических свойствах пленок с большей достоверностью. В частности, из данных АСМ следует, что в оптической модели пленки ее верхнюю часть (собственно ансамбль отдельных островков) корректнее описывать не однородным, а линейно-неоднородным слоем. Это было сделано в рамках модели двух непоглощающих изотропных слоев, где нижний слой считался однородным (с искомыми параметрами n_1 , h_1), а верхний слой имел линейное по толщине распределение диэлектрической проницаемости. При описании верхнего слоя его толщина была взята постоянной и равной $h_2 = 40$ nm.

Рис. 1. АСМ-изображение поверхности углеродной пленки на плоской кремниевой пластине (*a*) и сечение поверхности углеродной пленки (*b*).

Касательно показателя преломления верхнего слоя были рассмотрены два варианта. В первом случае показатель преломления самих островков n_i взят равным показателю преломления основной (нижней) части пленки, а n_{2b} связан с n_1 как $n_{2b} = 0.15n_1 + 0.85$. Во втором варианте показатель преломления островков считался не связанным с показателем преломления основной части пленки. Значение показателя преломления на верхней границе верхнего слоя в обоих случаях составляло $n_{2t} = 1$. Для первого случая получено

$$G_{\min} = 5.27$$
 при $n_I = 1.347, n_{2b} = 1.052,$
 $h_I = 69.1 \,\mathrm{nm} \; (n_{2av} = 1.026).$

для второго

$$G_{\min} = 4.34$$
 при $n_I = 1.358, h_I = 52.5$ nm, $n_{2b} = 1.283 \ (n_{2av} = 1.14).$

Видим значительную разницу в полученных значениях n_{2b} в моделировании для этих двух вариантов неоднородностей. Отметим, что в первом варианте значения показателя преломления и толщины основной (нижней) части пленки ближе к соответствующим значениям, полученным в НОИС-модели, тогда как во втором варианте — к значениям, полученным в 2-НОИС-модели. Также во втором варианте значение n_{2av} близко к значениям n_u в 2-НОИС-модели. Это, а также то, что G_{\min} во втором варианте меньше, позволяет считать его более достоверным. Учитывая, что показатель преломления островков-холмиков n_i в другом случае связан с n_{2b} как $n_i = (n_{2b} - 0.85)/0.15$, получаем оценку показателя преломления островков довольно груба, однако она позволяет утверждать, что островки имеют плотную внутреннюю структуру и могут состоять из графитоподобной и/или алмазоподобной фаз.

Вместе с тем полученные в рамках разных моделей значения показателя преломления нижней (основной) части пленки, которые находятся в среднем около величины 1.3, позволяют говорить о неплотном (пористом) характере ее внутреннего строения, поскольку такие значения показателя преломления слишком низки для плотных пленок. Как видно из рис. 1, основная поверхность состоит из зерен с нечеткими границами, размер зерен порядка 200 nm. Такая морфология поверхности может отображать столбчатый (колоннообразный) характер макроструктурного строения нижней части пленки с достаточно компактно упакованными колоннами. Однако такая упаковка колонн (столбцов) при плотном характере внутреннего строения самих столбцов не может обеспечить настолько низкое значение показателя преломления нижнего слоя и настолько значительную анизотропию в нем. Поэтому величина показателя преломления 1.3 скорее свидетельствует о том, что пористость свойственна самим колоннам (зернам), т.е. речь должна идти о нанопористости этой пленки. Поэтому следует допускать наличие пористости на наноуровневом масштабе строения пленки, т.е. ее наноструктурированность. Поскольку непористые аморфные углеродные пленки имеют значение показателя преломления ≥ 1.6 , то, приняв 1.6 за значение показателя преломления материала столбцов, получаем нижнюю оценку объема пор нижнего слоя пленки в ~ 50% от объема слоя. Значительная положительная анизотропия свидетельствует о вытянутости пор и углеродной фазы в направлении, перпендикулярном подложке, и о большом аспектном отношении для нанокластеров.

Зависимости величины тока ЭПЭ от приложенного напряжения для чистых и покрытых углеродной пленкой катодов представлены на рис. 2. Как видно, покрытие острий пленкой приводит к улучшению эффективности ЭПЭ, а именно ток эмиссии увеличивается, пороговое напряжение эмиссии уменьшается. Плотность тока эмиссии достигает значения $3 \cdot 10^{-4}$ A/cm², пороговое поле начала эмиссии составляет $2 \cdot 10^5$ V/cm (против $4 \cdot 10^5$ V/cm для непокрытых кремниевых острий). Из рис. 2 также видно, что для покрытых пленкой острий наблюдались пики тока, наиболее четко — при напряжении ~ 240 V. Это может быть обусловлено

Рис. 2. Эмиссионные ВАХ кремниевых острий, покрытых (крестики) и непокрытых (кружки) углеродной пленкой.

Рис. 3. Эмиссионные ВАХ кремниевых острий, покрытых (крестики) и непокрытых (кружки) углеродной пленкой, построенные в координатах Фаулера-Нордгейма.

квантоворазмерным эффектом [14] при наноструктурированном строении пленки (см. эллипсометрические и АСМ-измерения).

Для расчета работы выхода, эффективной площади эмиссии и коэффициента локального усиления электрического поля данные рис. 2 были построены в координатах Фаулера-Нордгейма (рис. 3). Как видно из рис. 3, на всех кривых наблюдаются прямолинейные участки. Наличие линейных участков в этих координатах указывает на то, что эмиссионные BAX описываются процессом туннелирования.

Следующие результаты были получены при расчете параметров ЭПЭ по методике, описанной в [12], принимая значение работы выхода исходных кремниевых острий равным 4.15 eV. После покрытия поверхности острий пленкой это значение снизилось до 3.32 eV. Коэффициент локального усиления электрического поля, который для острий составлял \approx 40, после нанесения пленки увеличился до \approx 245, т.е. в 6 раз. Интересно отметить наличие некоторых схожих черт в структуре и свойствах исследованных нами пленок и углеродных структурированных пленок, полученных по методу высокоскоростного электронно-лучевого испарения графита в вакууме на подложки, подогретые до температур ~ 700-800°C [15,16]. На поверхности последних пленок, как и в нашем случае, присутствует большое количество микро- и нановыступов. И те, и другие пленки характеризуются интенсивной ЭПЭ, но слабой фотолюминесценцией. Спектры комбинационного рассеяния обоих типов пленок являются бесструктурными, типичными для аморфного состояния углерода.

Усиление ЭПЭ может быть обусловлено, как и в случае "алмазоподобных" пленок, сосуществованием хорошо проводящих графитоподобных нитей с $s p^2$ гибридной структурой и наноразмерных включений алмазоподобной $s p^3$ -конфигурации, которая имеет низкую проводимость, но малую работу выхода электронов; благодаря ей и осуществляется автоэмиссия электронов; которые поступают в эти включения из графитоподобной сетки. Дополнительную эмиссию могут давать заостренные поверхностные структуры. Установление относительной роли в полевой эмиссии этих альтернативных механизмов требует отдельных исследований.

Заключение

В результате сублимации на поверхность матрицы кремниевых острий углеродной пленки простым безвакуумным методом близкого переноса получены структуры, характеризующиеся относительно низким порогом полевой эмиссии $\approx 20 \text{ V/}\mu\text{m}$ и током ЭПЭ $3 \cdot 10^{-4} \text{ A/cm}^2$, что указывает на их перспективность для применения в вакуумной микроэлектронике. Анализ совокупности данных ЭПЭ, АСМ и эллипсометрии указывает на нанопористый и макронеоднородный характер строения пленок и позволяет допускать, что области неоднородности, в которых находятся эмиссионные центры, могут располагаться как в середине пленок, так и на их поверхности.

Авторы выражают благодарность члену-корреспонденту НАН Украины В.Г. Литовченко за интерес к настоящей работе, полезные обсуждения ее результатов и критические замечания.

Список литературы

- [1] *Lifshitz Y. //* Diamond Relat. Mater. 1996. Vol. 5. N 3–5. P. 388–400.
- [2] Camino D., Jones A.H.S., Mercs D., Teer D.G. // Vacuum. 1999. Vol. 52. P. 125–131.
- [3] Литовченко В.Г. // Фізика і хімія твердого тіла. 2004. Т. 5. № 1. С. 9–15.
- [4] Семикина Т.В. // Оптоэлектроника и полупроводниковая техника (Киев). 2006. Вып. 41. С. 121–129.
- [5] Попов А.И., Воронцов В.А. // ФТП. 2001. Т. 35. Вып. 6. С. 665–670.

- [6] Хомченко В.С., Сопинский Н.В., Савин А.К., Литвин О.С., Заяц Н.С., Хачатрян В.Б., Корчевой А.А. // ЖТФ. 2008. Т. 78. Вып. 6. С. 84–89.
- [7] Siegal M.P., Overmyer D.L., Provencio P.P. // Appl. Phys. Lett. 2002. Vol. 80. N 5. P. 2171–2173.
- [8] Satyanarayana B.S., Robertson J., Milne W.I. // J. Appl. Phys. 2000. Vol. 87. N 6. P. 3126–3131.
- [9] Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. М.: Мир, 1981. 582 с.
- [10] Сопинский Н.В. // Микроэлектроника. 2001. Т. 30. Вып. 1. С. 41–46.
- [11] Sopinskyy M.V., Shepelyavyi P.E., Stronski A.V., Venger E.F. // J. Opt. Adv. Mater. 2005. Vol. 7. N 5. P. 2255–2266.
- [12] Семененко Н.А. Эмиссионные свойства кремниевых и углеродных нанокомпозитных пленок. Автореф. канд. дис. Киев, 2008. 148 с.
- [13] Головань Л.А., Кашкаров П.К., Тимошенко В.Ю. // Кристаллография. 2007. Т. 52. Вып. 4. С. 697–710.
- [14] Litovchenko V., Evtukh A., Kryuchenko Yu., Goncharuk N., *Yilmazoglu O., Mutamba K., Hartnagel H.L., Pavlidis D. //* J. Appl. Phys. 2004. Vol. 96. N 1. P. 866–877.
- [15] Евтух А.А., Клюй Н.И., Литовченко В.Г., Лукьянов А.Н., Мовчан Б.О., Пирятинский Ю.П. // Оптоэлектроника и полупроводниковая техника (Киев). 2006. Вып. 41. С. 100–107.
- [16] Эвтух А.А., Клюй М.І., Крушинська Л.А., Курапов Ю.А., Литовченко В.Г., Лук'янов А.М., Мовчан Б.О., Семененко М.О. // Укр. фіз. журн. 2008. Т. 53. N 2. С. 179–186.