01:05

Ориентационные переходы в слое ферронематика с бистабильным сцеплением на границе

© А.Н. Захлевных, О.Р. Семенова

Пермский государственный национальный исследовательский университет, 614990 Пермь, Россия

e-mail: zakhlevn@psu.ru, cemenova_ok@rambler.ru

(Поступило в Редакцию 4 марта 2011 г.)

В рамках континуальной теории показана возможность индуцированного внешним магнитным полем перехода первого рода между гомеотропной фазой и гибридной гомеотропно-планарной фазой в ферронематическом жидком кристалле (ферронематике) с бистабильным сцеплением на границе слоя, а также возвратных переходов. Определены критические значения материальных параметров ферронематика, энергии сцепления, толщины слоя и напряженности магнитного поля, при которых возможен этот переход. Рассмотрены случаи как положительной, так и отрицательной диамагнитной анизотропии ферронематика.

Введение

Как известно, большинство существующих жидкокристаллических ячеек моностабильны, т.е. обладают единственной устойчивой конфигурацией директора (единичного вектора n, характеризующего среднюю ориентацию молекул жидкого кристалла), которая может быть изменена в результате приложенного внешнего воздействия. В таких ячейках индуцированная конфигурация директора поддерживается внешним полем, что требует энергетических затрат. В отличие от них в бистабильных жидкокристаллических ячейках, обладающих двумя устойчивыми состояниями, внешнее поле прикладывают только для переключения директора из одного состояния в другое. Для создания бистабильности обычно производят структурную обработку поверхностей ячейки [1,2], а для теоретического описания используют различные виды потенциала поверхностного сцепления [3–8].

В настоящей работе исследуются индуцированные магнитным полем ориентационные переходы в плоском слое ферронематика. Ферронематик представляет собой разбавленную суспензию игольчатых частиц ферро- или ферримагнетика в нематическом жидком кристалле. Отличительной его особенностью является то, что в нем наряду с характерным для жидких кристаллов квадрупольным (диамагнитным) механизмом воздействия магнитного поля имеется еще и дипольный (ферромагнитный) механизм влияния поля Н на магнитные моменты феррочастиц, внедренных в нематическую матрицу. Диамагнитные взаимодействия между магнитным полем и директором квадратичны по полю Н, а взаимодействие между магнитными частицами и полем линейно по Н, поэтому дипольный механизм определяет поведение ферронематика в слабых полях. По этой причине ферронематики чувствительны к приложенному магнитному полю и ориентируются в отличие от обычных нематиков достаточно слабым полем.

Предполагается, что на верхней границе ячейки имеется абсолютно жесткое гомеотропное сцепление с поверхностью, а на нижней возможна как планарная, так и гомеотропная ориентация директора; каждое из этих состояний директора на нижней границе является локально устойчивым и обладает одинаковой энергией сцепления (бистабильное сцепление). Планарное и гомеотропное состояния разделены потенциальным барьером конечной высоты, который может быть преодолен вследствие мягкого сцепления воздействием внешнего поля на директор.

Подобно тому как авторы работы [7] анализируют конкуренцию флексоэлектрического и диэлектрического эффектов и их влияние на переключение бистабильной ячейки нематика в электрическом поле, в настоящей работе исследуются ориентационная структура и возможность переключения ориентационного состояния бистабильной ячейки ферронематика в магнитном поле.

Структура работы следующая. В разд. 1 минимизацией функционала свободной энергии получена система уравнений, описывающая ориентационное и магнитное состояния ферронематика со слабым бистабильным сцеплением на поверхности. В разд. 2 изучено основное состояние ферронематика в отсутствие внешнего магнитного поля и найдены пороговые значения энергии сцепления, определяющие область существования однородной гомеотропной фазы. Возможность индуцированного внешним магнитным полем перехода первого рода от гомеотропной фазы в гибридную гомеотропно-планарную фазу и возвратного перехода при различных значениях материальных параметров суспензии исследована в разд. 3. Там же определены критические величины материальных параметров ферронематика, энергии сцепления, толщины слоя и величины магнитного поля, при которых возможен переход между гомеотропным и гомеотропно-планарным состояниями ферронематика.

1

1. Уравнения ориентационного равновесия

1.1. Свободная энергия ферронематика

Равновесная конфигурация полей директора и намагниченности определяется условием минимума полной свободной энергии ферронематика

$$F = \int F_V dV + \oint F_S dS, \tag{1}$$

включающей в себя как объемную, так и поверхностную части.

Объемная плотность свободной энергии ферронематика имеет вид [9,10]

$$F_V = \frac{1}{2} \left[K_{11} (\operatorname{div} \mathbf{n})^2 + K_{22} (\mathbf{n} \operatorname{rot} \mathbf{n})^2 + K_{33} (\mathbf{n} \times \operatorname{rot} \mathbf{n})^2 \right]$$
$$- \frac{1}{2} \sigma |\chi_a| (\mathbf{n} \mathbf{H})^2 - M_s f \mathbf{m} \mathbf{H} + \frac{W_p}{d} f (\mathbf{m} \mathbf{n})^2 + \frac{k_B T}{\nu} f \ln f.$$
(2)

Здесь K_{ii} — константы Франка ориентационной упругости жидкого кристалла, χ_a — анизотропия магнитной восприимчивости ($\sigma=1$ для $\chi_a>0$ и $\sigma=-1$ для $\chi_a<0$), ${\bf H}$ — напряженность внешнего магнитного поля, M_s — намагниченность насыщения материала магнитных частиц, ν — объем частицы, f — объемная доля магнитных частиц в суспензии, ${\bf m}$ — единичный вектор намагниченности ${\bf M}=M_sf{\bf m}$ ферронематика, d — диаметр частицы, T — температура, k_B — постоянная Больцмана. Параметр W_p представляет собой анизотропную часть энергии поверхностного натяжения и называется энергией сцепления магнитных частиц с нематической матрицей.

Слагаемое в квадратных скобках в выражении (2) представляет собой плотность свободной энергии искаженного состояния поля директора (потенциал Франка), последующие два вклада описывают квадрупольный и дипольный механизмы взаимодействия диамагнитной нематической матрицы и магнитных моментов частиц $\mu = M_s \nu \mathbf{m}$ с магнитным полем соответственно. Предпоследнее слагаемое определяет поверхностное взаимодействие частиц с директором [9]. Мы полагаем $W_p > 0$, что в отсутствие поля минимуму энергии соответствуют гомеотропные $(\mathbf{m} \perp \mathbf{n})$ условия сцепления на частицах, при которых их длинные оси перпендикулярны директору $(W_p \sim 10^{-3} - 10^{-1} \text{ dyn/cm} [9])$. В случае $\chi_a > 0$ директор n и длинные оси магнитных частиц стремятся ориентироваться вдоль приложенного магнитного поля. Однако, если на поверхности магнитных частиц созданы гомеотропные условия сцепления, при которых директор **n** ортогонален длинным осям частиц, указанные ориентационные механизмы являются конкурирующими. При $\chi_a < 0$ директор стремится ориентироваться перпендикулярно полю и дипольный и квадрупольный механизмы ориентации ферронематика полем усиливают друг друга. Вследствие малой концентрации $f \ll 1$

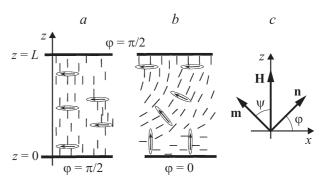


Рис. 1. Схема бистабильной ячейки ферронематика: a — в гомеотропной фазе, b — в гомеотропно-планарной фазе, c — ориентация директора \mathbf{n} и единичного вектора намагниченности \mathbf{m} относительно напряженности магнитного поля \mathbf{H} .

частиц в суспензии магнитное диполь-дипольное взаимодействие между ними полагаем отсутствующим. Последнее слагаемое в потенциале (2) описывает вклад энтропии смешения идеального газа магнитных частиц.

Будем полагать, что на верхней границе ячейки заданы условия жесткого гомеотропного сцепления, так что в отсутствие поля директор перпендикулярен верхней границе, а на нижней границе слоя имеется двукратное вырождение по ориентациям, описываемое потенциалом вида

$$F_S = 4W_0 [1 - (\mathbf{ne}_x)^2] [1 - (\mathbf{ne}_z)^2].$$
 (3)

Здесь $W_0>0$ — поверхностная плотность энергии сцепления нематика с нижней границей, являющаяся мерой глубины минимумов F_S , $\mathbf{e}_x=(1,0,0)$ и $\mathbf{e}_z=(0,0,1)$ — единичные векторы двух осей легкого ориентирования. При $W_0>0$ потенциал (3) имеет минимум при $\mathbf{n}\parallel\mathbf{e}_x$ либо при $\mathbf{n}\parallel\mathbf{e}_z$.

Направим магнитное поле по нормали к слою $\mathbf{H}=(0,0,H)$. В этом случае директор и намагниченность остаются в плоскости (x,z) двух бистабильных ориентаций и компоненты векторов \mathbf{n} и \mathbf{m} можно искать в виде (см. рис. 1)

$$\mathbf{n} = (\cos \varphi(z), 0, \sin \varphi(z)),$$

$$\mathbf{m} = (-\sin \psi(z), 0, \cos \psi(z)). \tag{4}$$

Так как сцепление на верхней границе слоя (z=L) предполагается абсолютно жестким и гомеотропным, то

$$|\varphi(z)|_{z=L} = \pi/2.$$
 (5)

Используя в (3) соотношение (4) для директора \mathbf{n} , получаем

$$F_S = W_0 \sin^2(2\varphi_0). (6)$$

Здесь $\varphi_0 = \varphi(z)|_{z=0}$ — значение угла φ на нижней границе слоя. Поверхностный потенциал (6) имеет два минимума: при $\varphi_0 = 0$, когда $\mathbf{n} \parallel \mathbf{e}_x$, и $\varphi_0 = \pi/2$, т.е. при $\mathbf{n} \parallel \mathbf{e}_z$. Первый из них отвечает планарному сцеплению директора с нижней границей слоя, второй — гомеотропному сцеплению. Потенциал (6) анализировался

ранее применительно к нематическим [7,8] и холестерическим [11] жидким кристаллам.

Выберем в качестве единицы длины толщину ячейки L, тогда безразмерная координата $\tilde{z}=z/L$. Определим безразмерные параметры $k=K_{11}/K_{33},\ w_p=$ $=L^2f_0W_p/(K_{33}d),\ \xi=M_sf_0L/\sqrt{K_{33}|\chi_a|},\ \kappa=L^2f_0k_BT/$ (νK_{33}) и безразмерную напряженность магнитного поля $h=LH\sqrt{|\chi_a|/K_{33}}.$

Здесь $f_0 = N\nu/V$ представляет собой среднюю концентрацию магнитных частиц в суспензии, N — число частиц, V — объем ферронематика. Безразмерный параметр к характеризует анизотропию ориентационной упругости, w_p — безразмерную энергию сцепления магнитных частиц с директором. Смысл параметров ξ и κ обсуждался в работах [10–13]. Параметр $\xi = H_a/H_d$ характеризует режимы влияния внешнего поля на ферронематик. Он представляет собой [12] отношение двух характерных полей, где $H_d \approx K_{33}/(M_s f_0 L^2)$ — поле, при котором искажение директора вызывается дипольным механизмом; $H_q \approx L^{-1} \sqrt{K_{33} |\chi_a|}$ — характерное поле, вызывающее искажение директора под действием квадрупольного механизма. Если $\xi \gg 1$, то ориентационные деформации происходят благодаря дипольному механизму, а в случае $\xi \ll 1$ — квадрупольному. Параметр $\kappa = (L/\lambda)^2$, где $\lambda = \sqrt{\nu K_{33}/f_0 k_B T}$ — так называемая сегрегационная длина [10], задающая характерный масштаб области концентрационного расслоения. Параметр κ ответствен за сегрегационный эффект; в пределе $\kappa \gg 1$ этот эффект несуществен.

1.2. Уравнения равновесия

Подставляя в (2) соотношения (4), находим для объемной плотности свободной энергии

$$F_{V} = \frac{K_{33}}{L^{2}} \left\{ \frac{1}{2} \left[k \cos^{2} \varphi + \sin^{2} \varphi \right] \left(\frac{d\varphi}{d\tilde{z}} \right)^{2} - \frac{1}{2} \sigma h^{2} \sin^{2} \varphi \right.$$
$$\left. - \xi h \frac{f}{f_{0}} \cos \psi + w_{p} \frac{f}{f_{0}} \sin^{2} (\varphi - \psi) + \kappa \frac{f}{f_{0}} \ln f \right\}. \tag{7}$$

Свободная энергия (1) представляет собой функционал относительно углов ориентации директора $\varphi(\tilde{z})$, намагниченности $\psi(\tilde{z})$ и концентрации $f(\tilde{z})$, в котором теперь F_S и F_V определены выражениями (6) и (7). Минимизация (1) по $\psi(\tilde{z})$ дает так называемое [9] уравнение связи

$$\xi h \sin \psi = w_p \sin 2(\varphi - \psi) \tag{8}$$

между ориентациями директора и намагниченности. Минимизация (1) по $f(\tilde{z})$ приводит к распределению концентрации магнитных частиц в суспензии

$$f = f_0 Q \exp\left\{\frac{\xi h}{\kappa} \cos \psi - \frac{w_p}{\kappa} \sin^2(\varphi - \psi)\right\}, \quad (9)$$

где величина Q определяется соотношением нормировки

$$\int f dV = N\nu, \tag{10}$$

представляющим собой условие постоянства числа магнитных частиц в суспензии. Выражение (9) описывает так называемый эффект сегрегации [10], заключающийся в концентрационном перераспределении магнитной примеси по образцу, в результате которого магнитные частицы накапливаются в тех местах слоя, где минимальна сумма их магнитной энергии во внешнем поле и ориентационной энергии в нематической матрице.

Минимизация по $\varphi(\tilde{z})$ приводит к уравнению

$$\begin{split} (k\cos^2\varphi + \sin^2\varphi) \frac{d^2\varphi}{d\tilde{z}^2} + \frac{1}{2}(1-k)\sin 2\varphi \left(\frac{d\varphi}{d\tilde{z}}\right)^2 \\ = -\frac{1}{2}\sigma h^2\sin 2\varphi + w_p \frac{f}{f_0}\sin 2(\varphi - \psi), \end{split}$$

которое интегрируется с помощью уравнений (8) и (9) и приводится к виду

$$\frac{d\varphi}{d\tilde{z}} = \pm \sqrt{A(\varphi, \psi(\varphi))},\tag{11}$$

или в интегральной форме

$$\tilde{z} = \pm \int_{\varphi_0}^{\varphi(\tilde{z})} A^{-1/2}(\varphi, \psi(\varphi)) d\varphi, \tag{12}$$

где

$$A(\varphi, \psi(\varphi)) = (C - \sigma h^2 \sin^2 \varphi - 2\kappa f/f_0)/(k\cos^2 \varphi + \sin^2 \varphi).$$
 (13)

Здесь C — константа интегрирования. Интегрируя уравнение (11) по толщине слоя, получаем уравнение для C:

$$\pm \int_{\varphi_0}^{\pi/2} A^{-1/2}(\varphi, \psi(\varphi)) d\varphi = 1.$$
 (14)

Подставляя (9) в (10) и переходя от интегрирования по координате \tilde{z} к интегрированию по углу φ с помощью (11), находим

$$Q^{-1} = \pm \int_{\varphi_0}^{\pi/2} A^{-1/2} \exp\left\{\frac{\xi h}{\kappa} \cos \psi - \frac{w_p}{\kappa} \sin^2(\varphi - \psi)\right\} d\varphi.$$
(15)

Минимизация полной свободной энергии (1) по $\varphi_0 = \varphi(\tilde{z})|_{\tilde{z}=0}$ приводит к уравнению

$$\pm (k\cos^2\varphi_0 + \sin^2\varphi_0)A^{1/2}(\varphi_0, \psi(\varphi_0)) = 2w_0\sin 4\varphi_0.$$
(16)

Здесь введено обозначение $w_0 = W_0 L/K_{33}$ для безразмерной энергии сцепления директора с нижней поверхностью ячейки. Граничное условие на верхней границе слоя $\tilde{z}=1$, согласно (5), представляет собой

$$\varphi(\tilde{z})|_{\tilde{z}=1} = \pi/2. \tag{17}$$

Уравнение (11) допускает существование решений, для которых $d\phi/d\tilde{z} < 0$, либо $d\phi/d\tilde{z} > 0$. В гомеотропно-планарной фазе $d\phi/d\tilde{z} > 0$ и в уравнениях (11)—(15) следует брать знак "плюс", а в гомеотропной фазе ввиду немонотонности функции $\phi(\tilde{z})$ производная $d\phi/d\tilde{z}$ может иметь любой знак. По этой же причине, согласно (11), в уравнении (16) для $0 < \phi_0 < \pi/4$ следует брать знак "плюс", а для $\pi/4 < \phi_0 < \pi/2$ — знак "минус".

Таким образом, полная система уравнений ориентационного равновесия ферронематика содержит уравнения (4), (8), (9) и (12)–(17). Она допускает решения, отвечающие однородному гомеотропному упорядочению, при котором $\varphi(\tilde{z}) \equiv \pi/2$, т.е. директор во всем объеме ячейки ортогонален границам, а также гибридному гомеотропно-планарному упорядочению, для которого угол φ зависит от координаты \tilde{z} , так что на верхней границе $\varphi = \pi/2$, а на нижней границе $\varphi = \varphi_0(h, w_0, w_p, k, \xi, \kappa)$ в соответствии с уравнением (16).

Сделаем оценку безразмерных параметров, используя материальные параметры для реальных ферронематиков [8,9,14–16]. Полагая $d\sim 10^{-5}$ cm, $M_s\sim 10^2$ G, $f_0\sim 10^{-5}$, $K_{33}\sim 10^{-7}$ cm, $\chi_a\sim 10^{-7}$, $W_p\sim 1$ dyn/cm, $W_0\sim 10^{-4}$ dyn/cm, находим для ячейки толщиной $L\sim 10^{-3}$ cm безразмерные параметры $\xi\sim 10$, $\kappa\sim 10^{-2}$, $w_p\sim 10$ и $w_0\sim 1$. Параметр $w_p\sim 10$ отвечает жесткому сцеплению молекул жидкого кристалла с поверхностью магнитных частиц, а $w_0\sim 1$ — достаточно мягкому сцеплению с бистабильной нижней границей слоя.

2. Ферронематик в отсутствие внешнего магнитного поля

Рассмотрим вначале ориентационную структуру ферронематика в отсутствие поля (h=0). В этом случае уравнения (8) и (11) вместе с граничными условиями (16) и (17) дают $\varphi(\tilde{z})=\psi(\tilde{z})=\pi/2$, т.е. $\mathbf{m}\perp\mathbf{n}$. Это решение отвечает однородной гомеотропной фазе. Наряду с этим при h=0 уравнение (11) имеет другое решение, соответствующее гомеотропно-планарной фазе, в которой угол φ зависит от координаты \tilde{z} , так что на верхней границе слоя $\varphi=\pi/2$, а на нижней границе $\varphi=\varphi_0(w_0,k)$, где $\varphi_0(w_0,k)$ определяется уравнением

$$\sqrt{k\cos^2\varphi_0 + \sin^2\varphi_0} \int_{\varphi_0}^{\pi/2} d\varphi \sqrt{k\cos^2\varphi + \sin^2\varphi}$$

$$= 2w_0 \sin 4\varphi_0. \tag{18}$$

Сама зависимость $\varphi(\tilde{z})$ неявно задана уравнением

$$\tilde{z} \int_{\varphi_0}^{\pi/2} d\varphi \sqrt{k \cos^2 \varphi + \sin^2 \varphi} = \int_{\varphi_0}^{\varphi(\tilde{z})} d\varphi \sqrt{k \cos^2 \varphi + \sin^2 \varphi},$$
(19)

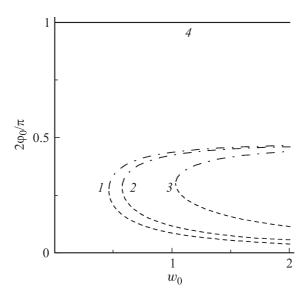


Рис. 2. Зависимость угла ϕ_0 ориентации директора на нижней границе слоя от энергии сцепления w_0 с поверхностью в отсутствие поля. 1-k=2/3, 2-k=1, 3-k=2.5. Прямая 4 отвечает гомеотропному сцеплению на нижней границе слоя.

которое, как и (18), можно записать в терминах эллиптических функций, но в виде (19) оно более удобно для анализа. Как видно из уравнений (9) и (15), в отсутствие поля (h=0) магнитные частицы однородно распределены по объему слоя: $f(\tilde{z})=f_0$.

На рис. 2 показана зависимость $\varphi_0(w_0, k)$, определяемая уравнением (18). Видно, что при любых значениях энергии сцепления w_0 имеется решение $\varphi_0 = \pi/2$ (прямая 4), отвечающее гомеотропной фазе. Однако если энергия сцепления w_0 превышает некоторое критическое значение w_{0c} , соответствующее вершинам кривых 1-3, то наряду с ним имеется еще решение, описывающее гибридную гомеотропно-планарную фазу (штриховые и штрихпунктирные кривые 1-3 на рис. 2). В гомеотропно-планарной фазе директор не достигает планарного состояния $\phi_0 = 0$ на нижней границе при конечных значениях энергии сцепления w_0 из-за упругих искажений в объеме ячейки, вызванных жестким гомеотропным сцеплением на верхней границе. Штриховыми кривыми на рис. 2 изображены решения уравнения (18), отвечающие метастабильной гомеотропнопланарной фазе, а штрихпунктирными кривыми — термодинамически неустойчивые состояния.

Кривые I—S на рис. 2 демонстрируют учет влияния анизотропии ориентационной упругости, когда все три константы Франка различны. Видно, что с ростом параметра $k \equiv K_{11}/K_{33}$ кривые смещаются вправо, так что критическое значение w_{0c} растет. Сравнение кривых I и S с кривой S (S с кривой S (S с кривой S с концает область бистабильного поведения ферронематика в сторону меньших значений энергии сцепления на нижней границе слоя. В отсутствие поля (S с при S с кривой ориентационного равновесия. Одно из них

 $\varphi(\tilde{z}) \equiv \pi/2$ отвечает гомеотропной фазе, другое

$$\varphi(\tilde{z}) = \left(\frac{\pi}{2} - \varphi_0\right)\tilde{z} + \varphi_0$$

описывает гомеотропно-планарную фазу. Само значение ϕ_0 определяется из уравнения (18) и удовлетворяет соотношению

$$w_0 = \frac{\pi/2 - \varphi_0}{2\sin 4\varphi_0},$$

которое было получено ранее авторами работы [7] при решении другой физической задачи. При значениях $w_0 < w_{0c}(w_{0c} = 0.5758$ для k=1) устойчивой является только гомеотропная фаза и бистабильное поведение ячейки отсутствует.

Продемонстрируем возможность перехода между гомеотропным и гомеотропно-планарным состояниями. При k=1 в отсутствие поля (h=0) полная свободная энергия ферронематика (1) имеет вид

$$\tilde{F}_{k=1} = \frac{FL}{K_{33}S} = \frac{1}{2} \left(\frac{\pi}{2} - \varphi_0\right)^2 + w_0 \sin^2 2\varphi_0, \qquad (20)$$

где S — площадь ограничивающих пластин. На рис. 3 приведена ее зависимость от угла φ_0 ориентации директора на нижней границе слоя при различных значениях энергии сцепления w_0 . Как видно в случае $w_0 > w_{0c}$ (кривые 1 и 2), полная свободная энергия ферронематика имеет два минимума. Один из них ($\varphi_0 = \pi/2$) отвечает абсолютно устойчивой гомеотропной фазе, другой — метастабильной гомеотропно-планарной фазе. Эти два состояния разделены потенциальным барьером, который увеличивается с ростом w_0 . Воздействием магнитного поля этот барьер может быть преодолен, и ячейка может

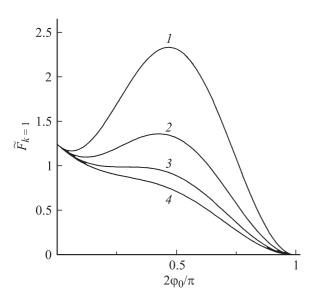


Рис. 3. Зависимость полной энергии ферронематика от угла φ_0 ориентации директора на нижней границе слоя в двух-константном приближении (k=1) при h=0. $1-w_0=2$, $2-w_0=1$, $3-w_0=w_{0c}$, $4-w_0=0.4$.

перейти из гомеотропного состояния в гомеотропнопланарное. При $w_0 \leq w_{0c}$ (кривые 3 и 4) ячейка имеет только одно устойчивое состояние ($\phi_0 = \pi/2$). Как видно из рис. 3, при $w_0 > w_{0c}$ имеется возможность перехода между гомеотропным и гомеотропно-планарным состояниями, при этом ориентация ячейки изменяется скачком, что свидетельствует о переходе первого рода (роль параметра порядка при переходе играет величина $\sin^2 \phi_0$).

3. Ферронематик в магнитном поле

Рассмотрим поведение ферронематика в магнитном поле в отсутствие сегрегации ($\kappa\gg 1,\,f(\tilde{z})\equiv f_0$). В этом случае система уравнений ориентационного равновесия содержит уравнения (4), (8), (12)–(14), (16) и (17), в которых выражение (13) имеет вид

$$A = \frac{C - \sigma h^2 \sin^2 \varphi - 2\xi h \cos \psi + 2w_p \sin^2(\varphi - \psi)}{k \cos^2 \varphi + \sin^2 \varphi}.$$

В силу того что на верхней границе слоя создано жесткое гомеотропное сцепление директора с поверхностью, в магнитном поле для гомеотропной фазы существуют решения φ_- и φ_+ , соответствующие двум функциям $\varphi(\tilde{z})$, для которых $d\varphi/d\tilde{z} < 0$ (в нижней части слоя $0 \le \tilde{z} \le \tilde{z}_*$) и $d\varphi/d\tilde{z} > 0$ (в верхней части слоя $\tilde{z}_* < \tilde{z} \le 1$); здесь величина \tilde{z}_* определена условием $d\varphi/d\tilde{z} = 0$. В этом случае уравнение (12) принимает вид

$$ilde{z}=-\int\limits_{arphi_0}^{arphi(ilde{z})}A^{-1/2}(arphi,\psi(arphi))darphi$$
 при $0\leq ilde{z}< ilde{z}_*,$

$$egin{aligned} ilde z &= -\int\limits_{arphi_0}^{arphi_*} A^{-1/2}(arphi,\psi(arphi)) darphi \ &+ \int\limits_{arphi_*}^{arphi(ilde z)} A^{-1/2}(arphi,\psi(arphi)) darphi \quad ext{при } ilde z_* < ilde z \le 1, \end{aligned}$$

а уравнение (14)

$$-\int\limits_{\varphi_{0}}^{\varphi_{*}}A^{-1/2}(\varphi,\psi(\varphi))d\varphi+\int\limits_{\varphi_{*}}^{\pi/2}A^{-1/2}(\varphi,\psi(\varphi))d\varphi=1,$$

где
$$\varphi_* = \varphi(\tilde{z}_*)$$
.

Все последующие численные расчеты выполнены для ферронематика на основе нематика E7, для которого k=2/3 [16]. Будем полагать, что ориентационные деформации ферронематика происходят преимущественно за счет дипольных взаимодействий (т. е. $\xi=5$) и имеется жесткое гомеотропное сцепление магнитных частиц с нематической матрицей ($w_p=10$).

Как отмечалось выше, в отсутствие поля при фиксированной энергии сцепления w_0 на нижней границе бистабильная ячейка ферронематика находится в гомеотропном состоянии, которому отвечает минимум свободной энергии, но внешнее поле может индуцировать переход в гомеотропно-планарную фазу. Этот переход зависит от знака анизотропии диамагнитной восприимчивости.

3.1. Положительная диамагнитная анизотропия

Если $\chi_a>0$ ($\sigma=1$) и ферронематик находится в гомеотропной фазе, то включение внешнего магнитного поля, перпендикулярного обкладкам слоя, за счет дипольных взаимодействий приводит к повороту магнитных частиц вдоль поля, что из-за гомеотропных условий сцепления с директором приводит к его повороту и переходу в гомеотропно-планарную фазу. Как будет показано ниже, такой переход возможен в дипольном режиме ($\xi\gg1$) и при достаточно жестком сцеплении магнитных частиц с нематической матрицей.

На рис. 4 показана зависимость $\varphi_0(w_0)$ в различных магнитных полях. Кривые I'-4' описывают гомеотропную фазу; кривые I-4 соответствуют гибридной гомеотропно-планарной фазе. На этом и всех последующих рисунках штриховыми кривыми показаны термодинамически неустойчивые состояния ферронематика. В отсутствие поля (кривые I и I') устойчивой является гомеотропная фаза. Включение магнитного поля приводит к переориентации магнитных частиц в направлении поля, а благодаря их связи с молекулами нематика директор отклоняется от своего первоначального положения, т. е. угол φ_0 уменьшается. С ростом поля искажения гомеотропной фазы усиливаются, а кривые $\varphi_0(w_0)$ для гомеотропно-планарной фазы смещаются влево. В поле h=0.1 (кривые 2 и 2') гомеотропная фаза еще является

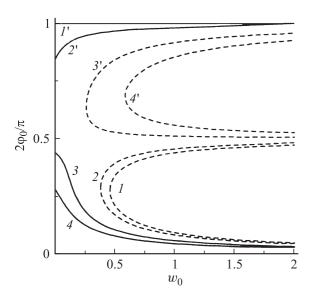


Рис. 4. Зависимость угла наклона директора на нижней границе ячейки φ_0 от энергии сцепления w_0 для $\sigma=1$. 1 и 1'-h=0, 2 и 2'-h=0.1, 3 и 3'-h=0.5, 4 и 4'-h=1.

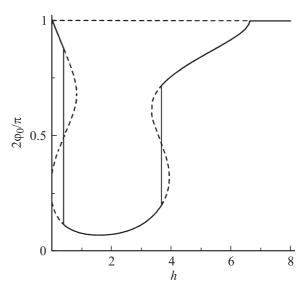


Рис. 5. Зависимость угла наклона директора на нижней границе ячейки $\varphi_0(h)$ при $w_0=0.5$ и $\sigma=1$.

устойчивой, в то время как при h=0.5 (кривые 3 и 3') и при h=1 (кривые 4 и 4') устойчива гомеотропнопланарная фаза. Численно установлено, что при выбранных значениях материальных параметров ориентационный переход из гомеотропной фазы в гомеотропнопланарную происходит при $h=h_c=0.39$.

На рис. 5 показана зависимость $\varphi_0(h)$ для $w_0 = 0.5$. Как видно из рис. 5, при h=0 устойчива гомеотропная фаза. С ростом поля угол ϕ_0 уменьшается и при $h = h_c = 0.39$ энергии гомеотропной и гибридной фаз становятся равными, т.е. происходит переход из гомеотропного состояния в состояние с гомеотропнопланарным упорядочением. Далее гибридная фаза является устойчивой до поля $h_{c2}=3.66$, при котором происходит возвратный переход в гомеотропную фазу. Оба перехода являются переходами первого рода, так как параметр порядка $\sin^2 \varphi_0$ испытывает скачок, показанный вертикальными отрезками на рис. 5 и последующих рисунках. Из рис. 5 также видно, что решение для гомеотропной фазы в полях 0.83 < h < 3.34 при заданном $w_0 = 0.5$ перестает существовать, поэтому кривые $\varphi_0(w_0)$ на рис. 4 для гомеотропной фазы с ростом поля становятся С-образными и начинают смещаться вправо; дальнейшее увеличение поля приводит к росту угла φ_0 и при $h=h_p$, где $h_p=6.90$, угол φ_0 достигает значения $\pi/2$, при этом угол $\psi(\varphi_0) = 0$. Такое состояние отвечает ферронематику с планарными условиями сцепления магнитных частиц с нематической матрицей, при котором $\mathbf{m} \parallel \mathbf{n}$.

Пороговое поле, выше которого директор планарно ориентирован на поверхности магнитных частиц, находится из системы уравнений (4), (8), (12)–(14), (16) и (17) и имеет вид [17]

$$h_p = \frac{w_p}{\xi} \left[1 + \sqrt{1 + \frac{2\xi^2}{w_p}} \right]. \tag{21}$$

Численные расчеты показывают, что для ферронематика с $\chi_a>0$ в квадрупольном режиме $(\xi<1)$ и при мягком сцеплении магнитных частиц с нематической матрицей $(w_p<1)$ гомеотропно-планарная фаза всегда обладает большей свободной энергией, чем гомеотропная, и переход между ними невозможен.

3.2. Отрицательная диамагнитная анизотропия

При $\chi_a < 0$ директор стремится повернуться ортогонально полю, в то время как магнитные частицы ориентируются вдоль поля, поэтому при гомеотропном сцеплении магнитных частиц с матрицей квадрупольный и дипольный механизмы взаимодействия ферронематика с внешним полем будут усиливать друг друга и способствовать переходу между гомеотропной и гомеотропнопланарной фазами.

На рис. 6 представлены зависимости $\varphi_0(w_0)$ в различных магнитных полях. Система уравнений ориентационного равновесия допускает решения, отвечающие гомеотропной фазе (кривая I') и гибридной гомеотропнопланарной фазе (кривая 1); устойчивой является гомеотропная фаза. Пусть энергия сцепления на нижней границе $w_0 < w_{0c}$, где w_{0c} отвечает вершине Cобразной кривой 1 и определяет границу области бистабильного состояния ферронематика в отсутствие поля. С ростом поля C-образные кривые 2-5, соответствующие гибридной фазе, сдвигаются влево, уменьшая w_{0c} , и в некотором поле $h=h_{st}$ они перестают быть Cобразными (кривые 3-5). В то же время кривые 2'-5', отвечающие гомеотропной фазе, при этом же значении поля $h=h_{st}$ приобретают C-образный вид и с ростом поля сдвигаются вправо (см. кривые 3'-5'). Иными



Рис. 6. Зависимость угла наклона директора на нижней границе ячейки φ_0 от энергии сцепления w_0 для $\sigma=-1$. l и l'-h=0, l и l'-h=0, l и l'-h=0. l и l'-h=0. l и l'-h=0. Гибридной гомеотропнопланарной фазе отвечают кривые l-l, гомеотропной фазе l-l'-l'.

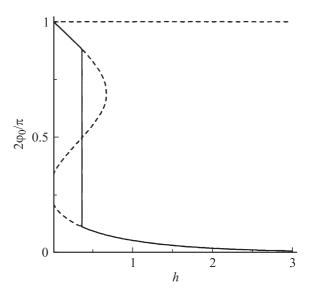


Рис. 7. Зависимость угла наклона директора на нижней границе ячейки $\varphi_0(h)$ при $w_0=0.5$ и $\sigma=-1$.

словами, при $w_0 < w_{0c}$ в полях $h > h_*$ гибридная фаза становится устойчивой (происходит переход первого рода между гомеотропной и гибридной гомеотропнопланарной фазами), а при выключении поля происходит обратный переход из гомеотропно-планарной в гомеотропную фазу.

На рис. 7 изображены зависимости $\varphi_0(h)$ при $w_0=0.5$. Благодаря $\chi_a<0$ квадрупольный механизм воздействия магнитного поля на ферронематик усиливается с ростом поля дипольным механизмом, поэтому директор ориентируется ортогонально полю, т. е. угол φ_0 уменьшается. Вершина кривой $\varphi_0(h)$ на рис. 7 отвечает полю h=0.67, для которого вершина C-образной кривой $\varphi_0(w_0)$ на рис. 6 отвечает поверхностной энергии $w_0=0.5$. В поле $h_c=0.36$ свободные энергии гомеотропной и гомеотропно-планарной фаз становятся равными и происходит переход первого рода из гомеотропной в гомеотропно-планарную фазу. При $h>h_c$ свободная энергия гибридной фазы меньше гомеотропной и гомеотропно-планарная фаза устойчива.

Таким образом, в ферронематике с отрицательной анизотропией диамагнитной восприимчивости оказываются возможными ориентационные переходы из гомеотропной фазы в гомеотропно-планарную и обратно. Заметим, что поскольку C-образные кривые гомеотропной фазы с увеличением поля смещаются вправо (см. рис. 6), то этот переход возможен при любом значении w_0 . При $w_0 < w_{0c}$ ориентационный переход осуществляется в меньших полях, чем в случае $w_0 > w_{0c}$.

3.3. Сегрегационный эффект

Так как магнитные частицы имеют возможность перемещаться в наматической матрице, они могут накапливаться в тех областях слоя, где минимальна сумма их

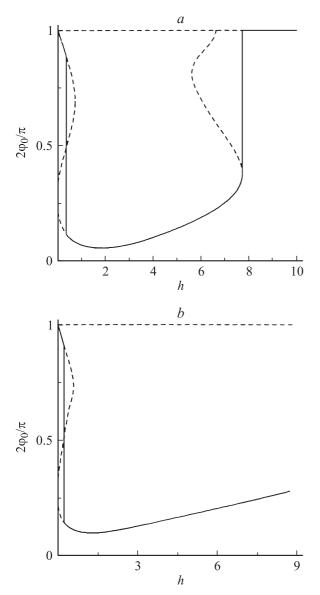


Рис. 8. Зависимость угла наклона директора на нижней границе ячейки $\varphi_0(h)$ для $\sigma=1,\ w_0=0.5$ при значениях $\kappa=2\ (a)$ и $\kappa=0.01\ (b).$

магнитной энергии в поле **H** и ориентационной энергии в нематической матрице (так называемый сегрегационный эффект [10], описываемый формулой (9)).

На рис. 8 показаны зависимости $\varphi_0(h)$ для ферронематика с положительной диамагнитной анизотропией магнитной восприимчивости ($\sigma=1$) и $w_0=0.5$ при различных значениях параметра сегрегации κ . Штриховые кривые на рис. 8 соответствуют термодинамически неустойчивым состояниям. Вертикальные отрезки отвечают ориентационным переходам между гомеотропной и гомеотропно-планарной фазами ферронематика. Численные расчеты показывают, что переход из гомеотропной фазы в гомеотропно-планарную возможен при любом κ , в то время как возвратный переход при увеличении магнитного поля в гомеотропную фазу происходит только для $\kappa > \kappa^*$ (слабая сегрегация), где $\kappa^* = 1.87$. Для

выбранных значений материальных параметров пороговые поля ориентационного перехода из гомеотропной фазы в гомеотропно-планарную равны $h_c=0.34\ (a),$ $h_c=0.23\ (b).$

На рис. 9 показаны ориентационные и концентрационные профили в магнитном поле для ферронематика с $\sigma=1,\,w_0=0.5$ и $\kappa=2$ в гомеотропно-планарной фазе. Точки пересечения кривых $\varphi(\tilde{z})$ с осью ординат соответствуют углу ориентации директора на нижней границе слоя φ_0 (рис. 8). Как видно из рис. 9, в гомеотропнопланарной фазе существует градиент ориентации директора в объеме слоя от близкого к планарному упорядочению на нижней границе слоя до гомеотропного на верхней границе. Из представленных на рис. 9 профилей концентрации $f(\tilde{z})$ видно, что с ростом напряженности магнитного поля частицы мигрируют к бистабильной поверхности. Численные расчеты показывают, что чем

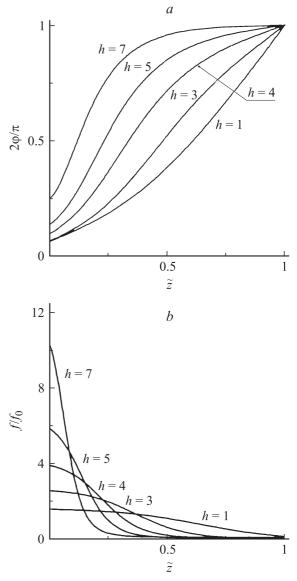


Рис. 9. Ориентационные (a) и концентрационные (b) профили для ферронематика с $\sigma=1,\ \kappa=2$ и $w_0=0.5$ в гомеотропнопланарной фазе в различных магнитных полях h.

меньше параметр сегрегации κ , т. е. чем меньше толщина слоя ферронематика по сравнению с сегрегационной длиной, определяющей характерный масштаб области концентрационного расслоения, тем больше концентрация магнитных частиц вблизи бистабильной поверхности. Таким образом, накапливание магнитных частиц у нижней границы затрудняет поворот директора в направлении магнитного поля, что обусловливает отсутствие возвратного перехода из гомеотропно-планарной фазы в гомеотропную.

Заключение

Известно, что характер сцепления с твердой поверхностью играет ключевую роль в ориентационном поведении жидких кристаллов вообще, и ферронематиков в частности. Поэтому важно определить величину параметра w_0 , задающего не только плотность энергии сцепления на подложке, но и толщину ячейки. Величина w_0 должна быть близка к w_{0c} , в этом случае для осуществления ориентационного перехода между фазами ферронематика потребуется приложение сравнительно небольших полей.

Для ферронематика с положительной диамагнитной анизотропией $(\chi_a>0)$ должны выполняться условия, которые обеспечивают преобладание дипольного механизма ориентации ферронематика магнитным полем над квадрупольным (т.е. создание суспензий с $\xi\gg1$) и жесткое сцепление молекул нематика на поверхности феррочастиц $w_p\gg1$. В этом случае ячейка, помещенная во внешнее магнитное поле, из гомеотропной фазы переключится в гибридную гомеотропно-планарную фазу, а при выключении поля произойдет обратный переход. Также при увеличении поля наблюдаются возвратные переходы в гомеотропную фазу.

При $\chi_a < 0$ дипольные и квадрупольные взаимодействия усиливают друг друга, что способствует ориентационному переходу из гомеотропной фазы в гомеотропно-планарную, однако в этом случае возвратный переход отсутствует.

Учет влияния сегрегационного расслоения ферронематика в магнитном поле показал, что сегрегационные эффекты приводят к уменьшению порогового поля ориентационного перехода из гомеотропной фазы в гомеотропно-планарную, в то время как возвратные переходы с увеличением магнитного поля при сильном сегрегационном эффекте отсутствуют. Это обусловлено резким возрастанием концентрации магнитных частиц вблизи бистабильной поверхности, что препятствует полному повороту директора в направлении магнитного поля.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант N_2 10-02-96030).

Список литературы

- [1] Barberi R., Giocondo M., Li J., Bartolino R., Dozov I., Durand G. // Appl. Phys. Lett. 1997. Vol. 71. P. 3495–3497.
- [2] Barberi R., Bonvent J.J., Giocondo M., Iovane M., Alexe-Ionescu A.L. // J. Appl. Phys. 1998. Vol. 84. P. 1321–1324.
- [3] Qian T., Xie Z., Kwok H.S., Sheng P. // J. Appl. Phys. 2001. Vol. 90. P. 3121–3123.
- [4] Yoneya M., Kim J.H., Yokoyama H. // Appl. Phys. Lett. 2002. Vol. 80. P. 374–376.
- [5] Parry-Jones L.A., Edwards E.G., Elston S.J., Brown C.V. // Appl. Phys. Lett. 2003. Vol. 82. P. 1476–1478.
- [6] Hsu J.-S., Liang B.-J., Chen S.-H. // Jpn. J. Appl. Phys. 2005. Vol. 44. P. 6170–6173.
- [7] Davidson A.J., Mottram N.J. // Phys. Rev. E. 2002. Vol. 65. P. 051 710-1-10.
- [8] Brown C.V., Parry-Jones L., Elston S.I., Wilkins S.J. // Mol. Cryst. Liquid Cryst. 2004. Vol. 410. P. 417–425.
- [9] Burylov S.V., Raikher Yu.L. // Mol. Cryst. Liquid Cryst. 1995. Vol. 258. P. 107–122.
- [10] Brochard F., Gennes P.G. de // J. de Phys. 1970. Vol. 31. P. 691–708.
- [11] Zakhlevnykh A.N., Shavkunov V.S. // J. Magn. Magn. Mater. 2000. Vol. 210. P. 279–288.
- [12] Zakhlevnykh A.N., Sosnin P.A. // J. Magn. Magn. Mater. 1995. Vol. 146. P. 103–110.
- [13] Zakhlevnykh A., Shavkunov V. // Mol. Cryst. Liquid Cryst. 1999. Vol. 330. P. 593–599.
- [14] Zadorozhnii V.I., Sluckin T.J., Reshetnyak V.Yu., Thomas K.S. // SIAM J. Appl. Math. 2008. Vol. 68. P. 1688–1716.
- [15] Chen S.H., Amer N.M. // Phys. Rev. Lett. 1983. Vol. 51. P. 2298–2301.
- [16] Blinov L.M., Chigrinov V.G. Electrooptic Effect in Liquid Crystal Materials. New York: Springer-Verlag, 1994. 464 p.
- [17] Zakhlevnykh A.N. // J. Magn. Magn. Mater. 2004. Vol. 269. P. 238–244.