05;07;12

Влияние естественного старения на фотолюминесценцию пористого кремния

© А.С. Леньшин, В.М. Кашкаров, С.Ю. Турищев, М.С. Смирнов, Э.П. Домашевская

Воронежский государственный университет, 394006 Воронеж, Россия e-mail: ftt@phys.vsu.ru

(Поступило в Редакцию 1 февраля 2011 г.)

Исследовано влияние естественного старения на интенсивность и положение пика фотолюминесценции пористого кремния (рог-Si) n-типа. Изменение фазового состава и относительного содержания аморфных и оксидных фаз кремния в рог-Si в процессе старения определялось моделированием экспериментальных ультрамягких рентгеновских эмиссионных Si $L_{2,3}$ -спектров с помощью спектра эталонных фаз.

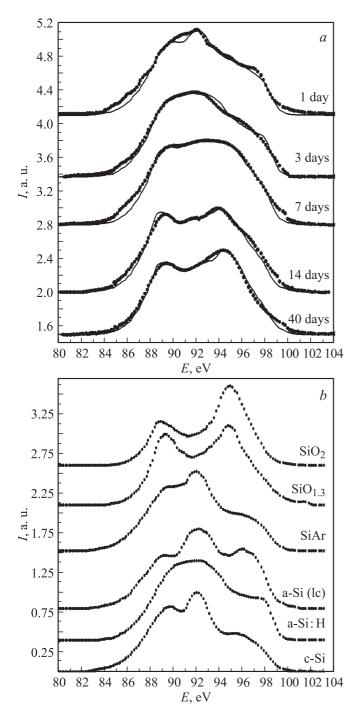
Введение

В настоящее время значительное число работ посвящено исследованию пористого кремния благодаря его сенсорным, каталитическим и фотолюминесцентным (ФЛ) свойствам, перспективным для практического применения. Обобый интерес представляют стабилизация и модификация указанных свойств пористого кремния, а также создание новых композитных материалов на его основе. Известно, что пористый кремний (por-Si) представляет собой достаточно сложную многофазную систему, состав и свойства которой изменяются с течением времени.

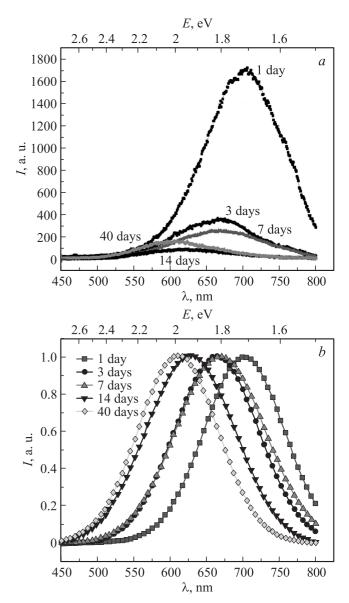
Пористый слой включает в себя кристаллический кремний (в наноформе), различные формы аморфного и разупорядоченного кремния, а также дефектные оксиды SiO_x и стехиометрический диоксид кремния SiO_2 [1–3]. Метод ультрамягкой рентгеновской эмиссионной спектроскопии USXES (Ultrasoft *X*-ray Emission Spectroscopy) широко используется для изучения электронной структуры неупорядоченных систем, поскольку представляет информацию о ближайшем химическом окружении атомов в материале [4]. Методика USXES на практике позволяет определять химические связи, характерные для указанных выше фаз и их соотношение [5].

На данный момент существует несколько общих гипотез о механизмах и моделях ФЛ пористого кремния. Одной из наиболее ранних и широко используемых моделей ФЛ является квантоворазмерная модель [6,7]. Существует модель, в которой предполагается, что люминесценция — следствие существования Si-H-связей, образующихся в процессе образования аморфного слоя на поверхности (нано)столбов пористого кремния и его гидрированием [8]. Также известна модель ФЛ из-за наличия границ Si-SiO₂ в пористом кремнии, в которой предполагается, что за возникновение ФЛ ответственна граница Si-SiO_x, насыщенная дефектами [9,10]. Цель настоящей работы — установление влияния изменений фазового состава пористого кремния при естественном старении и осаждении металлов группы железа на его излучательные свойства.

Методика


Образцы пористого кремния были получены электрохимическим анодным травлением пластин кремния *п*-типа КЭФ (111) с использованием плавиковой кислоты, изопропилового спирта и перекиси водорода [1,2]. Образцы пористого кремния были выдержаны на воздухе в течение 1, 3, 7, 14 и 40 дней. В процессе естественного старения образцов, выдержанных на воздухе от 1 до 40 дней, были проведены исследования распределения плотности состояний в валентной зоне por-Si по методу USXES и фотолюминесцентных свойств.

Si $L_{2,3}$ -спектры образцов пористого кремния были получены на рентгеновском спектрометре-монохроматоре РСМ-500, который позволяет исследовать спектры в диапазоне длин волн 0.5-50 nm. Глубина анализа образцов составляла 20 nm при энергии электронов 1.5 keV, возбуждающих рентгеновское излучение. Моделирование USXES-спектров проводилось весовыми коэффициентами с помощью оригинальной программы [5]. При моделировании Si $L_{2,3}$ -спектров образцов por-Si использовались следующие эталонные спектры: монокристаллического кремния с-Si; аморфного гидрированного кремния a-Si: H; низкокоординированного кремния Si(lc), который наблюдался в аморфных пленках Si [11] (координационное число $\sim 2.5-3$); разупорядоченного кремния после имплантации аргоном SiAr; субоксида кремния SiO_x , где $x \sim 1.3$, и двуокиси кремния SiO_2 [11–13]. Погрешность моделирования определялась как разница площадей под экспериментальным и смоделированным Si $L_{2,3}$ -спектрами и не превышала 10%. Отметим, что приведенные фазы отбирались на основе многолетних комплексных исследований с учетом данных других методов исследования пористого кремния [5,14].


Исследования ФЛ-образцов проводились на автоматическом спектрально-люминесцентном комплексе на основе монохроматора МДР-4. Согласно оценкам, для кремниевых структур глубина возбуждения ФЛ при воздействии лазерного излучения $\lambda=337\,\mathrm{nm}$ с временем импульса $\tau\sim10\,\mathrm{ns}$ и энергией в импульсе $20\,\mu\mathrm{J}$ составляет $\sim10-20\,\mathrm{nm}$, что сопоставимо с глубиной анализа с помощью метода USXES.

Результаты

Экспериментальные Si $L_{2,3}$ -USXES-спектры образцов por-Si (точечные линии) с выдержкой на воздухе от 1 до 40 дней и спектры, полученные в результате моделирования (тонкая сплошная линия), представлены на рис. 1, a. На рис. 1, b приведены спектры эталонных образцов, которые использовались для получения модель-

Рис. 1. Si $L_{2,3}$ -спектры образцов пористого кремния, полученных на подложках КЭФ (111) и выдержанных на воздухе от 1 до 40 дней (a); Si $L_{2,3}$ -USXES-спектры эталонных образцов (b).

Рис. 2. Спектры ФЛ-образцов пористого кремния n-типа, выдержанных на воздухе от 1 до 35 дней: a — без нормировки, b — нормированные на единицу.

ных спектров суммированием с различными весовыми коэффициентами.

Сравнивая экспериментальные спектры por-Si со спектрами эталонных фаз (рис. 1, b) по наличию и форме особенностей, спектры можно условно разделить на 2 группы: в свежеприготовленных образцах 1, 3 и 7 дней естественного старения на воздухе значителен вклад аморфных и кристаллической фаз кремния, а в образцах с выдержкой 14 и 40 дней велика доля оксидов кремния.

Анализ данных моделирования Si $L_{2,3}$ -USXES-спектров показал (см. таблицу), что в поверхностном слое пористого кремния менее 20 nm присутствуют кристаллический кремний, для фазы аморфного кремния и оксиды, и субоксиды кремния, что в целом характерно для подобных структур. С увеличением времени выдержки

Фазовый состав рог-Si%									Характеристика ФЛ		
Дни	"a-Si"			α:	a: 0	a: 0	a:0 a:0	погреш-	пик	полушири-	I, a.u.
	a-Si: H	a-Si(lc)	$\operatorname{a-Si}: \operatorname{H} + \operatorname{a-Si}(lc)$	c-Si	SiO_x	SiO ₂	$SiO_x + SiO_2$	ность, %	E, eV	на пика, eV	1, a.a.
1	43	5	48	42	0	10	10	7	1.76	0.34	1700
3	72	6	78	0	22	0	22	6	1.85	0.39	370
7	37	17	54	0	23	23	46	8	1.85	0.41	260
14	11	26	37	0	63	0	63	7	1.95	0.46	100
40	9	34	43	0	30	27	57	6	2	0.44	160

Сводная таблица фазового состава и характеристик Φ Л-образцов пористого кремния n-типа, выдержанных на воздухе от 1 до 40 дней

образцов на воздухе происходит окисление пористого слоя, что выражается в изменении соотношения фаз кристаллического, аморфного кремния и оксидных фаз в пользу последних.

Спектры фотолюминесценции исследуемых образцов пористого кремния представлены на рис. 2; на рис. 2, b они нормированы на единицу. Это сделано для того, чтобы наглядно показать как изменение интенсивности ФЛ (рис. 2, a), так и изменение положения пика ФЛ-образцов (рис. 2, b) в процессе естественного старения. У свежеприготовленных образцов интенсивность I ФЛ максимальна, затем 3 дня она значительно снижается, и в течение последующих 40 дней падение интенсивности замедляется (см. таблицу). При этом пик ФЛ-образцов с течением времени сдвигается в сторону больших энергий (меньших длин волн) с 1.75 до 2 eV при незначительном уширении полос ФЛ пористого кремния с 0.35 до 0.45 eV.

Сопоставление данных USXES и ФЛ показывает (см. таблицу), что одновременно с появлением дефектного оксида кремния в фазовом составе пористого кремния происходит снижение интенсивности ФЛ-образцов, при этом интенсивность ФЛ минимальна при максимальном вкладе SiO_х в фазовый состав образцов и максимальна при отсутствии дефектного оксида в поверхностном слое свежеприготовленного пористого кремния. Можно предположить, что в данном случае дефекты SiO_x в поверхностном слое пористого кремния являются центрами безызлучательной рекомбинации, преимущественно негативно влияющей на его излучающие свойства в видимом диапазоне. Доля оксидных фаз кремния с течением времени выдержки на воздухе увеличивается. Подобная ФЛ в области 1.75-2 eV характерна для пористого кремния и кремниевых наноструктур, включающих в себя кристаллы/кластеры размерами $\sim 3-4\,\mathrm{nm}$ [13]. Изменение положения пика ФЛ в сторону больших энергий по результатам моделирования Si $L_{2,3}$ -USXESспектров пористого кремния происходит одновременно с уменьшением содержания кристаллической фазы кремния по отношению к оксидным фазам и аморфным в процессе естественного старения.

Заключение

В работе показано влияние фазового состава пористого кремния n-типа на интенсивность и положение пика фотолюминесценции образцов. Установлено, что положение пика ФЛ меняется в пределах $1.75-2\,\mathrm{eV}$ в зависимости от соотношения нанокристаллической и аморфных фаз кремния в por-Si.

Увеличение относительного содержания аморфного кремния и дефектных оксидов при естественном старении пористого кремния приводит к значительному снижению интенсивности ФЛ.

Работа выполнена в рамках ФЦП "Научные и научнопедагогические кадры инновационной России" на 2009— 2013 гг.

Список литературы

- [1] *Кашкаров В.М., Леньшин А.С.* и др. // Известия РАН. Сер. физ. 2008. Т. 72. № 4. С. 484–490.
- [2] Turishchev S.Yu. et al. // Phys. Stat. Sol. C. 2009. Vol. 6. N 7. P. 1651–1655.
- [3] Кашкаров В.М., Леньшин А.С. и др. // Письма в ЖТФ. 2009. Т. 35. Вып. 17. С. 89–96.
- [4] Зимкина Т.М., Фомичев В.А. Ультрамягкая рентгеновская спектроскопия. Л.: Изд-во ЛГУ, 1971. 132 с.
- [5] Terekhov V.A. et al. // J. Electron. Spectrosc. 2001.Vol. 114–116. P. 895–900.
- [6] Canham L.T. // Appl. Phys. Lett. 1990. Vol. 57. N 10. P. 1046–1048.
- [7] Корсунская Н.Е. и др. // ФТП. 2010. Т. 44. Вып. 1. С. 82–86.
- [8] Salonen J. et al. // Appl. Surf. Sci. 1997. Vol. 120. P. 191–198.
- [9] Bao X. et al. // Sol. Stat. Commun. 1999. Vol. 109. P. 169–172.
- [10] Turishchev S.Yu. et al. // J. Electron. Spectrosc. 2007. Vol. 156–158. P. 445–451.
- [11] *Машин А.И., Домашевская Э.П.* и др. // ФТП. 2001. Т. 35. Вып. 8. С. 995–1000.
- [12] Domashevskaya E.P. et al. // J. Electron. Spectrosc. 1998. Vol. 88–91. P. 969–972.
- [13] Ledoux G. et al. // Phys. Rev. B. 2000. Vol. 62. N 23. P. 15 943–15 951.
- [14] *Соцкая Н.В., Леньшин А.С.* и др. // Сорбционные и хроматографические процессы. 2009. Т. 9. № 5. С. 643–652.