01:03

Исследование силового воздействия струи газа на поверхность жидкости

© М.М. Мордасов, А.П. Савенков

Тамбовский государственный технический университет, 392000 Тамбов, Россия e-mail: savencow@yandex.ru

(Поступило в Редакцию 21 апреля 2011 г.)

Представлены результаты теоретических и экспериментальных исследований процессов взаимодействия струи газа с поверхностью вязкой жидкости. В результате исследований получены формулы для расчета силы, с которой газовая струя действует на поверхность жидкости. При этом выявлена зависимость коэффициента сжатия струи газа в выходном отверстии сопла от давления перед ним. Определены значения коэффициента формы углубления, создаваемого газовой струей на поверхности жидкости, при различных диаметрах углубления и расстояниях между выходным отверстием сопла и поверхностью жидкости. Сформулированные теоретические выводы подтверждены результатами проведенных экспериментальных исследований.

Введение

Идея использования газового потока для измерения вязкости жидкостей, впервые предложенная в работах [1-3], получила дальнейшее развитие и реализована в комплексе бесконтактных струйных деформационных методов и устройств контроля вязкости. В методах на основе колебательного процесса взаимодействия струи газа и жидкости [4–6] о вязкости судят по частоте f_0 зарождения волн, самопроизвольно и периодически формирующихся и исчезающих на поверхности углубления, образованного струей газа с постоянной скоростью w. В методах, не использующих для измерения вязкости колебательный режим взаимодействия [7-9], для взаимного перемещения слоев жидкости необходимо изменять скорость w газа в струе по заданному закону. В ходе теоретического анализа таких методов необходимо учитывать зависимость степени деформации поверхности жидкости от интенсивности струйного воздействия. При этом определение силы F, с которой газовая струя действует на поверхность жидкости, представляет собой непростую задачу. Формулы для расчета силы действия струи, используемые в гидравлике, в рассматриваемой двухфазной системе "струя газа-жидкость" требуют введения дополнительных корректирующих коэффициентов.

В настоящей работе проведен теоретический анализ процесса взаимодействия газовой струи с преградой, представлены результаты экспериментальных исследований, подтверждающих сформулированные теоретические выводы, и определены числовые значения корректирующих коэффициентов.

1. Теоретический анализ

Для теоретического анализа воспользуемся схемой взаимодействия струи газа с поверхностью жидкости, представленной на рис. 1. Сопло 1 круглого сечения

с выходным отверстием диаметром d расположено на расстоянии H перпендикулярно недеформированной поверхности жидкости 3. Струя газа, выходящая с постоянной скоростью w из сопла 1, образует на поверхности жидкости 3 углубление 4, обладающее осевой симметрией. Углубление 4 характеризуется следующими геометрическими параметрами: высотой h, радиусом основания R_0 и радиусом кривизны поверхности жидкости в нижней точке R_h . Потоки газа, движущиеся вдоль поверхности углубления 4, увлекают за собой

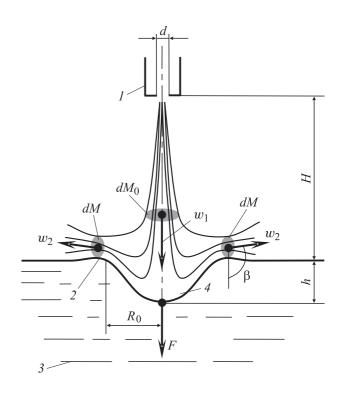


Рис. 1. Схема взаимодействия струи газа с поверхностью жидкости. Объяснение обозначений на рисунке приведено в тексте.

жидкость и формируют кромку 2, возвышающуюся над недеформированной поверхностью жидкости 3.

Форма углубления на поверхности раздела газовой и жидкой фаз зависит от многих факторов, основными из которых являются режим течения газа, скорость w, расстояние H и физические свойства жидкости: плотность ρ , поверхностное натяжение σ и вязкость η [10–16]. Очевидно, что степень деформации поверхности жидкости, характеризующаяся параметрами h и R_0 , зависит от силы F действия струи, которая определяется скоростью w истечения газа из сопла.

Для установления связи между величинами h и w разными авторами предложено использовать:

- энергетический баланс [14,16];
- равенство давлений газовой и жидкой фаз на поверхности раздела [15];
- баланс сил на поверхности раздела [8,9].

Применение теоремы о сохранении энергии в рассматриваемой системе представляется сомнительным, так как после достижения установившегося режима взаимодействия, при котором форма поверхности жидкости остается постоянной, кинетическая энергия струи уже не переходит в потенциальную энергию деформации. Уравнение, полученное в работе [15] для ламинарного режима течения газа исходя из равенства давлений газовой и жидкой фаз на поверхность раздела, привлекает своей простотой, но не может быть использовано в случае турбулентных струй, так как не согласуется с теоремой о сохранении количества движения. Скорость wгаза при турбулентном режиме течения уменьшается по оси струи по мере удаления от сопла, следовательно, уменьшается и давление, оказываемое им на преграду. Несмотря на это, количество движения в струе остается постоянным, и интенсивность струйного воздействия не должна изменяться. В теории газовых струй [17,18] и гидравлике [19] для определения силового действия струй применяют теорему о сохранении количества движения. Единственным подходом, который не противоречит этой теореме, является использование баланса сил на поверхности раздела фаз.

За интервал времени dt из сопла I (рис. 1) со средней скоростью w_0 вытекает газ массой dm. По мере продвижения к поверхности жидкости молекул газа, составляющих массу dm, наблюдается их взаимодействие с молекулами окружающей среды. В струю вовлекаются новые частицы, их масса растет, а скорость движения газа в струе падает. Количество движения в струе сохраняется постоянным. Элементарное количество движения dM_0 газа в струе соответствует истечению из сопла I газа массой dm:

$$dM_0 = dmw_0. (1)$$

В непосредственной близости к поверхности жидкости 3 средняя скорость газа в струе падает до значения w_1 . В результате взаимодействия газа и жидкости газовый поток разворачивается на угол β и приобретает среднюю скорость w_2 , растекаясь по газовому пространству,

окружающему систему "струя газа—жидкость". На поверхность жидкости 3 в соответствии с теоремой о сохранении количества движения в течение интервала времени dt действует сила F, совпадающая по направлению со скоростью w_1 , т.е.

$$dM_0 - dM\cos\beta = Fdt, \tag{2}$$

где dM — количество движения газа, выходящего из области взаимодействия струи и жидкости за время dt, kg \cdot m/s. Из уравнения (2) получим

$$F = \frac{dM_0 - dM\cos\beta}{dt}. (3)$$

Из уравнения (3) следует, что минимальное значение силы F соответствует воздействию струи газа на плоскую недеформированную поверхность жидкости ($\beta=90^\circ$) и составляет величину

$$F_{\min} = \frac{dM_0}{dt}.$$

Максимальное значение силы F возможно достигнуть при формировании углублений с большой высотой h $(\beta \to 180^\circ, dM \to dM_0)$

$$F_{\text{max}} = 2 \frac{dM_0}{dt}$$
.

Для учета изменения формы углубления введем в формулу для определения силы F безразмерный коэффициент k формы, т.е.

$$F = k \frac{dM_0}{dt}. (4)$$

Подставив (1) в (4), получим

$$F = k \frac{dmw_0}{dt} = kGw_0 = k\rho_g Qw_0, \tag{5}$$

где G и Q — массовый и объемный расходы газа в выходном отверстии сопла соответственно, kg/s и ${\rm m^3/s}$; ρ_g — плотность газа, kg/ ${\rm m^3}$.

Скорость w_0 зависит от расхода Q и площади выходного отверстия сопла. Для сопел, используемых в экспериментах, выполненных в виде отверстия в тонкой стенке (рис. 1), существенным является сжатие струи, в результате которого ее действительный диаметр в входном отверстии сопла становится меньшим его диаметра d [18,19]. Средняя скорость w_0 газа в выходном отверстии сопла определяется по формуле

$$w_0 = \frac{4Q}{\pi d^2 \varepsilon},$$

подставляя которую в уравнение (5), получим

$$F(Q) = \frac{4k\rho_g}{\pi d^2 \varepsilon} Q^2, \tag{6}$$

где ε — коэффициент сжатия струи, равный отношению площади струи в плоскости выходного отверстия

к площади отверстия. Коэффициент сжатия связан с коэффициентом μ расхода сопла [19,20] соотношением

$$\varepsilon = \frac{\mu}{\varphi_w},$$

где ϕ_w — коэффициент поля скоростей, учитывающий уменьшение скорости наружных слоев струи, обусловленное трением. Для сопла в виде отверстия в тонкой стенке $\phi_w = 0.97$ [20]. Частное w_0/ϕ_w является максимальной скоростью w газа в выходном отверстии сопла.

В работах по гидравлике приводятся значения коэффициента ε сжатия для струй жидкости. В работе [20] для газовой струи, выходящей из отверстия в тонкой стенке, приведено значение $\varepsilon=0.69$. Наиболее исчерпывающая информация представлена в [18], где рассмотрены различные модели истечения для жидкостей и газов. Вследствие сжимаемости газа коэффициент ε при его истечении из отверстия зависит от сооношения плотностей ρ_g' и ρ_g до и после отверстия соответственно. В работе [18] для расчета коэффициента ε приводится экспериментально проверенная упрощенная формула

$$\varepsilon = \frac{\pi}{\pi + 2\sqrt{K}\frac{\rho_g}{\rho_g'}} \approx \frac{\pi}{\pi + 2\frac{\rho_g}{\rho_g'}},\tag{7}$$

где K — коэффициент, значение которого приближенно равно единице. Увеличение расхода Q приводит к возрастанию давления P газа перед выходным отверстием сопла, плотности ρ_g' и коэффициента ε .

Из формулы (6) следует, что сила F действия струи газа на поверхность жидкости:

- пропорциональна квадрату расхода Q газа в выходном отверстии сопла;
- не зависит от расстояния H между выходным отверстием сопла и недеформированной поверхностью жидкости.

Каждое из этих положений вызывает сомнение. В работе [21] приводятся результаты экспериментов, из которых следует, что сила F пропорциональна массовому расходу G в первой степени. В работе [22] представлены экспериментальные доказательства линейности двухфазной системы "струя газа—жидкость".

Многочисленные экспериментальные исследования позволяют сделать вывод о существенном влиянии расстояния H на интенсивность струйного воздействия [5,6,15,22]. В работе [19] указывается на снижение силового воздействия струи жидкости вследствие ее рассеяния. В работе [23] приводится эмпирическая формула, отражающая слабую зависимость силы F действия струи жидкости на плоскую преграду от расстояния H до нее. В соответствии с [23] для коэффициента формы можно записать

$$k = 1.06 - 4.0 \cdot 10^{-4} \frac{H}{\sqrt{\varepsilon d}}.$$
 (8)

Очевидно, что для затопленных газовых струй может наблюдаться более сильная зависимость силы F от H.

Для дальнейшего исследования двухфазной системы "струя газа—жидкость" необходимо убедиться в

справедливости высказанных теоретических положений. Процессы, происходящие на поверхности раздела фаз, гораздо сложнее рассмотренных. Пренебрежение факторами, влияющими на силовое действие струи, при исследовании этих процессов может привести к существенным погрешностям и формулировке выводов, не соответствующих действительности.

Выполненный теоретический анализ не позволяет определить диапазон действительных значений коэффициента k, а также степень влияния на него различных факторов. Невозможно также установить целесообразность практического использования формулы (7) для корректировки коэффициента сжатия струи при различных значениях расхода Q. Для проверки сформулированных теоретических положений и определения значений коэффициента k формы необходимо провести экспериментальные исследования.

2. Экспериментальная часть

Экспериментальная установка для исследования силового действия струи газа на жидкость позволяет имитировать углубления с различными постоянными радиусами R_0 и переменными высотами h и измерять силу F при различных значениях величин Q и H.

Схема экспериментальной установки для исследования силового действия струи газа представлена на рис. 2. Сжатый воздух, нагнетаемый компрессором I в

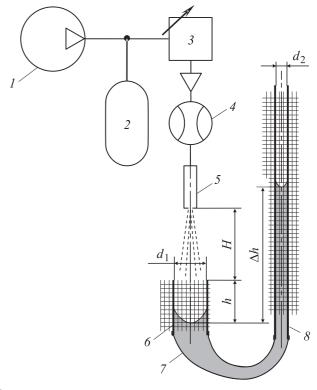


Рис. 2. Схема экспериментальной установки для исследования силового действия струи газа на жидкость. Объяснение обозначений на рисунке приведено в тексте.

ресивер 2, поступает из последнего через регулятор 3 расхода Q и ротаметр 4 типа PM-04 на вход сопла 5, формирующего турбулентную газовую струю. Выходное отверстие сопла 5 диаметром $d=(1.00\pm0.02)\cdot10^{-3}$ m расположено на расстоянии H от среза трубки 6. Оси сопла 5 и трубки 6 лежат на одной вертикальной прямой. В стеклянных трубках 6 и 8 круглого сечения внутренними диаметрами d_1 и d_2 соответственно, соединенных гибким прозрачным шлангом 7, находится жидкость. В систему заливают такое количество жидкости, при котором в отсутствие струйного воздействия в трубке 6 уровень устанавливается по верхнему ее краю, т.е. h=0. При этом за счет действия поверхностного натяжения уровень жидкости в трубке 8 меньшего диаметра немного выше, т.е. $\Delta h>0$.

Предусмотрено изменение расстояния H и установка трубок 6 с различными диаметрами d_1 .

Под действием силы F струи газа, вытекающей из сопла 5, жидкость из трубки 6 вытесняется в трубку 8. Внутренняя поверхность трубки 6 и поверхность жидкости, которая в ней находится, имитируют углубление с переменной высотой h и постоянным радиусом $R_0 = 0.5d_1$. С целью упрощения расчетов силу F определяют по величине давления P_{l} , создаваемого в нижней точке жидкости столбом высотой Δh и поверхностным натяжением σ жидкости за счет образования менисков с радиусами кривизны R_{h6} и R_{h8} в трубках 6 и 8соответственно. Для измерения величин Δh , R_{h6} и R_{h8} трубки 6 и 8 закреплены на твердом основании с наклеенной миллиметровой бумагой. Величины Δh , R_{h6} и R_{h8} определяются по увеличенным фотографиям освещенной установки, сделанным цифровой фотокамерой. Относительная погрешность измерения величины Δh не превышает 12 и 0.5% для минимальных и максимальных значений соответственно.

В качестве жидкости с известными физическими свойствами ρ и σ , необходимыми для определения величины P_l , использовалось касторовое масло ($\sigma=(0.042\pm0.002)\,\mathrm{N/m};\,\rho=(964\pm3)\,\mathrm{kg/m}^3$). Действительные значения плотности получены пикнометрическим методом [24], поверхностного натяжения — методом счета капель [25]. Измерения проводились при температуре окружающего воздуха $\theta=(20.0\pm0.3)^\circ\mathrm{C}$. Погрешности результатов измерений физических свойств жидкости соответствуют доверительной вероятности 0.95.

3. Методика

Показания ротаметра 4 (рис. 2) зависят от избыточного давления P перед соплом и плотности ρ_g' . Действительный массовый расход Q в выходном отверстии сопла выше измеренного. При этом если учет влияния давления P не представляет затруднений, то определение зависимости показаний расходомера от плотности ρ_g' сопряжено с появлением дополнительных погрешностей [26]. Корректировка измеренных значений расхода

осуществлялась путем сличения показаний ротаметра 4 и тарированного ротаметра того же типа, подключенного к выходу сопла 5. Относительная погрешность измерения расхода не превышает 2%.

Определить коэффициент ε сжатия возможно с использованием формулы для расчета расхода газа в турбулентном пневматическом сопротивлении [20]

$$G = \mu \frac{\pi d^2}{4} \sqrt{2\rho_g P}.$$
 (9)

Необходимость использования в этой формуле плотности ρ_g газа на выходе из сопла вместо плотности ρ_g' перед ним показана в работе [20]. Выражая массовый расход через объемный и заменяя коэффициент расхода μ произведением $\varepsilon \phi_w$, из (9) получим

$$\varepsilon = \frac{4Q}{\pi d^2 \varphi_w} \sqrt{\frac{\rho_g}{2P}}.$$
 (10)

При определении коэффициента сжатия ротаметр был подключен к выходу сопла. Перепад давления P на сопле измерялся при помощи U-образного манометра, заполненного дистиллированной водой.

Для расчета силы F действия струи газа на поверхность жидкости использована формула

$$F = \frac{\pi d_1^2}{4} P_l,\tag{11}$$

где $P_l = \rho g \Delta h + 2\sigma (1/R_{h6} - 1/R_{h8})$ — давление на поверхность раздела газовой и жидкой фаз в трубке 6 со стороны жидкости (рис. 2).

Из уравнения (6) получим формулу для расчета коэффициента формы

$$k = \frac{\pi d^2 \varepsilon F}{4\rho_g Q^2}. (12)$$

В результате экспериментов определены значения коэффициента формы углубления k для различных значений расстояния H и радиуса $R_0=0.5d_1$ (см. таблицу). Выбор расстояний H позволяет определить как зависимости k от d_1 при постоянном H, так и зависимости k от отношения H/d_1 .

Диаметр d_H струи увеличивается по мере удаления от выходного отверстия сопла вследствие вовлечения в нее частиц из окружающей среды [17,20]. В результате этого в трубку 6 (рис. 2) при различных соотношениях величин H и d_1 поступают различные части струи. В таблице приведены значения диаметров d_H , определяющих внешние границы струи на расстоянии H от выходного отверстия сопла (в плоскости среза трубки 6), рассчитанные по данным работ [17,20], и отношения d_H/d_1 для каждого соотношения H/d_1 . С целью учета снижения силы F, обусловленного увеличением отношения d_H/d_1 при больших H, использованы коэффициенты k_d .

Для расчета коэффициентов k_d определим силу F_d , создаваемую центральной частью струи, ограниченной

d_1 , 10^{-3} m		7.26					8.26					10.45				
$\frac{H}{10^{-3}}$ m	d_H , 10^{-3} m	$\frac{H}{d_1}$	$\frac{d_H}{d_1}$	k	k_d	$k' = \frac{k}{k_d}$	$\frac{H}{d_1}$	$\frac{d_H}{d_1}$	k	k_d	$k' = \frac{k}{k_d}$	$\frac{H}{d_1}$	$\frac{d_H}{d_1}$	k	k_d	$k' = \frac{k}{k_d}$
15	6.3	2.07	0.87	1.115	1	1.115										_
20	8.5	2.75	1.17	1.128	1	1.128										
25	10.7	3.44	1.47	1.129	0.97	1.164	3.03	1.30	1.151	0.99	1.162					
30	12.9	4.13	1.78	1.039	0.90	1.155	3.63	1.56	1.140	0.95	1.200					
34	14.7						4.12	1.78	1.015	0.90	1.128					
40	17.4						4.84	2.11	0.804	0.79	1.018	3.83	1.67	1.065	0.93	1.145

Результаты экспериментального определения коэффициента формы

окружностью диаметром d_F , считая, что происходит полное торможение молекул газа (т.е. k=1). Проинтегрируем составляющие dF_d силы F_d , создаваемые массой газа dm, движущегося со скоростью w_r , поступающего за время dt на кольцо толщиной dr и радиусом r, лежащее в плоскости, перпендикулярной оси струи, см. формулу (5)

$$F_d = \int_0^{d_F/2} \frac{dm}{dt} w_r.$$

Определив массовый расход dm/dt газа, поступающего на кольцо площадью $2\pi r dr$ через скорость w_r его движения, получим

$$F_d = 2\pi\rho \int_{0}^{d_F/2} w_r^2 r dr.$$
 (13)

Скорость w_r газа на расстоянии r от оси струи можно определить через осевую скорость w_a на расстоянии H от выходного отверстия сопла по формуле [17,20]

$$w_r = w_a \left[1 - \left(\frac{2r}{d_H} \right)^{3/2} \right]^2. \tag{14}$$

Подставив (14) в (13), получим

$$F_d = 2\pi\rho w_a^2 \int_0^{d_F/2} \left[1 - \left(\frac{2r}{d_H} \right)^{3/2} \right]^4 r dr.$$
 (15)

Используя (15), определим коэффициент k_d как отношение силы F_d для диаметра d_F , равного диаметру d_1 трубки d_F (рис. 2), к силе d_F для диаметра d_F , равного диаметру d_H струи на расстоянии d_F от выходного отверстия сопла, в виде

$$k_{d} = \frac{\int_{0}^{d_{H}/2(d_{H}/d_{1})^{-1}} \left[1 - (2r/d_{H})^{3/2}\right]^{4} r dr}{\int_{0}^{d_{H}/2} \left[1 - (2r/d_{H})^{3/2}\right]^{4} r dr}.$$
 (16)

Значения коэффициентов k_d и скорректированных коэффициентов k' для различных значений соотношения d_H/d_1 представлены в таблице.

4. Результаты и их обсуждение

В ходе экспериментального определения коэффициента ε сжатия получена зависимость давления P газа перед соплом от расхода Q в выходном отверстии сопла (рис. 3). Экспериментальные данные соответствуют теоретической квадратичной зависимости

$$P(Q) = \frac{8\rho_g Q^2}{\pi^2 d^4 \varphi_w^2 \varepsilon^2},$$
 (17)

полученной из формулы (10).

Результаты экспериментов, представленные на рис. 3, позволяют сделать вывод, что зависимость коэффициента ε сжатия от давления P не является возрастающей, т.е. не соответствует формуле (7). Для экспериментальной функции $\varepsilon(P)$, напротив, характерно небольшое убывание. В результате аппроксимации зависимости

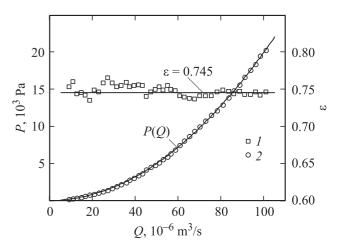


Рис. 3. Зависимости давления P перед соплом и коэффициента сжатия ε от расхода газа Q в выходном отверстии сопла: $1-\varepsilon(Q),\,2-P(Q).$

P(Q) функцией (17) было установлено значение коэффициента ε_1 , равное 0.745 (ϕ_w принято равным постоянному значению 0.97). Среднее квадратичное отклонение значений ε_i коэффициента сжатия для отдельного i-го наблюдения от значения ε_1 составляет 0.0078.

Значение $\varepsilon_1=0.745$ существенно превышает теоретическое значение $\varepsilon\approx0.63$, получаемое по формуле (7) для используемого диапазона давлений P. Это отклонение можно было бы объяснить несовершенным сжатием струи [19], обусловленным влиянием боковых стенок сопла на истечение газа. Однако расчет по формулам гидравлики показал, что это влияние пренебрежимо мало.

На рис. 4 представлены зависимости коэффициента k формы от расхода Q газа в выходном отверстии сопла для различных значений диаметра d_1 и расстояния H. Сплошные линии являются аппроксимирующими полиномами 2-го, 3-го или 4-го порядков для $d_1=0.00726$ m и $d_1=0.00826$ m, штриховая — для $d_1=0.01045$ m. Расчет коэффициента k произведен по формуле (12) при $\varepsilon=\varepsilon_1=0.745$.

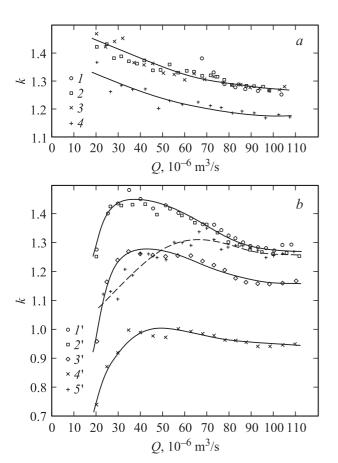


Рис. 4. Зависимости коэффициента формы k от расхода газа Q для различных значений диаметра d_1 и расстояния H: $a-d_1=0.00726$ m, H, m: I-0.015, 2-0.020, 3-0.025, 4-0.030; $b-d_1=0.00826$ m, H, m: I'-0.025, 2'-0.030, 3'-0.034, 4'-0.040; $5'-d_1=0.01045$ m, H=0.040 m; сплошные линии — аппроксимирующие полиномы 2-4 порядков для d_1 равного 0.00726 m и 0.00826 m, штриховая — для $d_1=0.1045$ m.

Зависимость k(Q) при $d_1 = 0.00726$ m является убывающей во всем диапазоне изменения расхода Q (рис. 4, a), при $d_1 = 0.00826 \,\mathrm{m}$ — в диапазоне от $40 \cdot 10^{-6}$ до $100 \cdot 10^{-6} \,\mathrm{m}^3$ /s, при $d_1 = 0.01045 \,\mathrm{m}$ — в диапазоне от $70 \cdot 10^{-6}$ до $100 \cdot 10^{-6}$ m³/s (рис. 4, b). Протяженность интервала возрастания функции k(Q) увеличивается с возрастанием диаметра d_1 трубки 6 (рис. 2). При $d_1 = 0.00726$ m такой интервал отсутствует (рис. 4, a), при $d_1 = 0.00826 \,\mathrm{m}$ возрастание наблюдается только при нескольких минимальных значениях расхода, при $d_1 = 0.01045$ m интервал возрастания занимает большую часть диапазона изменения расхода Q (рис. 4, b). Причиной снижения эффективности силового воздействия струи газа при малых расходах может быть как форма воспринимающей поверхности, так и чрезмерные потери энергии струи. Влияние формы поверхности обосновано теоретически и подтверждается тем, что возрастание функции k(Q) наблюдается при значениях отношения h/d_1 , не превышающих предельного значения, равного 0.6 для всех кривых, изображенных на рис. 4, b. Влияние потерь энергии струи подтверждается тем, что при увеличении расстояния Н протяженность интервала возрастания функции k(Q) увеличивается (рис. 4, b). Очевидно, что при малой скорости истечения газа из сопла молекулы легко теряют исходное направление движения и на больших расстояниях Н интенсивность силового воздействия существенно снижа-

Графики, представленные на рис. 4, также наглядно характеризуют уменьшение силового воздействия вследствие частичного попадания струи в приемную трубку 6 (рис. 2). При значениях коэффициента k_d , больших 0.95 (см. таблицу), расстояние H слабо влияет на коэффициент k. Зависимости k(Q) при $d_1=0.00726\,\mathrm{m}$ и $H\leq 0.025\,\mathrm{m}$, а также при $d_1=0.00826\,\mathrm{m}$ и $H\leq 0.030\,\mathrm{m}$ аппроксимированы одними и теми же кривыми (рис. 4). В случае $k_d\leq 0.95$, напротив, наблюдается существенное снижение коэффициента k.

Наиболее сложным вопросом является эффект убывания зависимости k(Q), заметно проявляющийся в большинстве случаев. Он может быть объяснен зависимостью диаметра струи от скорости истечения газа из сопла, удалением поверхности жидкости от сопла при увеличении расхода Q и зависимостью коэффициента ε сжатия от плотности ρ_g' газа перед соплом (см. формулу (7)). В ходе обработки экспериментальных данных было установлено, что математически описать интервал убывания функции k(Q) наиболее удобно путем замены в уравнении (6) коэффициента ε на функцию $\varepsilon(P)$.

Поскольку коэффициенты k и ε взаимосвязаны, целесообразно для одного из них выбрать теоретическое значение, а значение другого получить на основании экспериментальных данных. Для коэффициента ε выбрана теоретическая зависимость (7). Значения коэффициента k для различных значений диаметра d_1 и расстояния d_1 расститаны как среднее геометрическое значений d_1 в

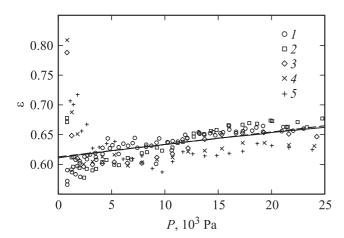


Рис. 5. Зависимости коэффициента сжатия ε от давления газа P перед соплом, d_1 , m: I — 0.00726, 2 — 0.00826 (H = 0.025, 0.030 m), 3 — 0.00826 (H = 0.034 m), 4 — 0.00826 (H = 0.040 m), 5 — 0.01045; сплошная линия — уравнение (7), штриховая — уравнение (20).

отдельном і-м наблюдении. Из соотношения (12) имеем

$$k = \sqrt[n]{\prod_{i=2}^{n} \frac{\pi d^2 \varepsilon(P_i) F_i}{4\rho_g Q_i^2}},$$
(18)

где n — число наблюдений величин F_i и Q_i при соответствующих значениях d_1 и H. Вычисления не производились для i=1, так как $Q_1=0$. Значения P_i давления перед соплом рассчитаны по формуле (17) при $\varepsilon=\varepsilon_1$, значения F_i силового действия струи — по формуле (11). Полученные значения коэффициента k представлены в таблице.

На рис. 5 представлены зависимости коэффициента ε сжатия от давления P. Экспериментальные зависимости построены с использованием формулы, полученной из (6),

$$\varepsilon_i(P_i) = \frac{4k\rho_g}{\pi d^2} \frac{Q_i^2}{F_i},\tag{19}$$

где значения k, рассчитанные по формуле (18), взяты из таблицы, а значения P_i получены по формуле (17). Сплошной линией изображена теоретическая зависимость (7), штриховой — зависимость

$$\varepsilon(P) = \varepsilon_0 + k_p P,\tag{20}$$

где $\varepsilon_0 = 0.612$, $k_P = 2.1 \cdot 10^{-6} \, \mathrm{Pa}^{-1}$, полученная путем аппроксимации значений коэффициента ε , найденных по формуле (7), позволяющая заменить уравнение (7) в диапазоне изменения давления P от 0 до $25 \cdot 10^3 \, \mathrm{Pa}$ без значимой потери точности.

Анализ результатов исследований, представленных на рис. 5, позволяет установить, что экспериментальная зависимость $\varepsilon(P)$ соответствует теоретической зависимости (7). Для $d_1=0.00726$ m максимальное абсолютное отклонение экспериментальных данных от функции (20) составляет 0.048, стандартное отклонение — 0.015.

Очевидно, что реальная зависимость коэффициента ε сжатия от давления P перед соплом все же существует, несмотря на результаты, полученные по формуле (10). При этом уравнение (9) является удобной функцией для аппроксимации расходной характеристики турбулентного пневматического сопротивления [20]. При увеличении давления Р и скорости истечения газа из сопла режим течения становится более хаотичным, происходит изменение плотности газа в выходном отверстии сопла, что приводит как к увеличению коэффициента сжатия, так и к возрастанию диаметра струи на ее основном участке. Такие выводы основываются на экспериментальных наблюдениях. В области малых скоростей истечения полученные результаты не противоречат теории турбулентных струй, так как режим истечения не является развитым турбулентным.

Подставив (20) в (6), получим уравнение

$$F(Q, P) = \frac{4k\rho_g}{\pi d^2} \frac{Q^2}{(\varepsilon_0 + k_P P)},$$

откуда после поочередной подстановки давления P и расхода Q из уравнения (17) получим более простые уравнения

$$F(Q) = \frac{4k\rho_g}{\pi d^2} \frac{Q^2}{\varepsilon_0 + k_O Q^2},\tag{21}$$

$$F(P) = \frac{k\pi d^2 \mu_1^2}{2} \frac{P}{\varepsilon_0 + k_P P},\tag{22}$$

гле

$$k_Q = \frac{8\rho_g k_P}{\pi^2 d^4 \mu_1^2} = 4.2 \cdot 10^6 \,\text{s}^2/\text{m}^6,$$

 $\mu_1 = \varphi_w \varepsilon_1 = 0.772$ — коэффициент расхода.

Среднее геометрическое скорректированных значений k', представленных в таблице, составляет 1.134. Для соотношения d_H/d_1 диаметров струи и приемной трубки, не превышающего 1.5 ($k_d > 0.97$), среднее геометрическое значение коэффициента k составляет 1.142. С учетом того, что значение 1.134 получено с использованием значения k' = 1.018, которое существенно отличается от остальных, для дальнейших расчетов было принято k = 1.14. Описания данных таблицы какой-либо функциональной зависимостью k(H/d) не проводилось, так как максимальное относительное отклонение значений коэффициента k' от значения 1.14 не превышает 5.3% (без учета k' = 1.018), чего вполне достаточно для проведения дальнейших исследований двухфазной системы "струя газа-жидкость". В отношении справедливости формулы (8) результаты эксперимента не позволяют сделать каких-либо выводов. Тем не менее значение 1.14 для коэффициента k закономерно превышает значения, получаемые по формуле (8), так как в рассматриваемой системе струя взаимодействует с вогнутой поверхностью, для которой угол $\beta > 90^{\circ}$ (см. рис 1).

На рис. 6 представлены зависимости силы F действия струи от расхода Q газа в выходном отверстии сопла. Экспериментальные значения силы F, вычисленные по

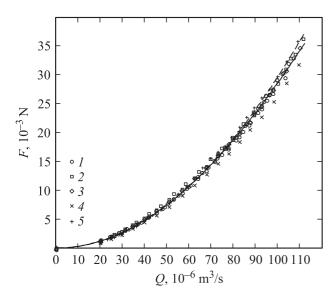


Рис. 6. Зависимости силы действия струи F от расхода газа Q в выходном отверстии сопла, d_1 , m: 1-0.00726, 2-0.00826 ($H=0.025,\,0.030\,\mathrm{m}$), 3-0.00826 ($H=0.034\,\mathrm{m}$), 4-0.00826 ($H=0.040\,\mathrm{m}$), 5-0.01045; сплошная линия — уравнение (21), штриховая — уравнение (6).

формуле (11), скорректированы путем деления на коэффициент k_d . Сплошная линия — график функции (21), штриховая — график функции (6), при построении которого использовано среднее значение коэффициента ε сжатия, равное 0.63.

Из графиков, представленных на рис. 6, видно, что экспериментальные данные с высокой точностью описываются как функцией (21), так и функцией (6) при любых значениях диаметра d_1 и расстояния H. Значения силы F, полученные по формулам (21) и (22), совпадают. Максимальное абсолютное отклонение экспериментальных данных от функции (21) составляет $2.3 \cdot 10^{-3}$ N, от функции (6) — $3.8 \cdot 10^{-3}$ N; стандартное отклонение экспериментальных данных от функции (21) — $0.67 \cdot 10^{-3}$ N, от функции (6) — $0.87 \cdot 10^{-3}$ N; относительная погрешность аппроксимации для функции (21) — 4.8%, для функции (6) — 6.2%. Без учета экспериментальных данных при H = 0.040 m относительные погрешности аппроксимации для функций (21) и (6) равны соответственно 2.9 и 4.7%.

Заключение

Результаты проведенных исследований подтверждают следующие теоретические предположения:

- сила F действия струи на поверхность жидкости пропорциональна квадрату расхода Q газа в выходном отверстии сопла и давлению P газа перед ним;
- существует зависимость коэффициента ε сжатия от давления P перед соплом, описываемая уравнениями (7) и (20);

— расстояние H от выходного отверстия сопла до поверхности жидкости и радиус R_0 углубления не оказывают значимого влияния на силу F.

Для определения силового воздействия струи газа на поверхность жидкости получены формулы (21) и (22). Определено экспериментальное значение коэффициента k формы углубления, равное 1.14. Формулы (21) и (22) могут быть существенно упрощены путем замены функциональных зависимостей их знаменателей на константы, соответствующие используемым диапазонам давлений и расходов.

Полученные результаты позволяют более точно математически описать процессы, происходящие в двухфазной системе "струя газа—жидкость", что может быть использовано для теоретического анализа бесконтактных аэрогидродинамических методов и устройств контроля вязкости жидкостей.

Список литературы

- [1] Дерягин Б.В., Страховский Г.М., Малышева Д.С. // ЖЭТФ. 1946. Т. 16. Вып. 2. С. 171–178.
- [2] Дерягин Б.В., Кусаков М.М., Крым К.С. // ЖЭТФ. 1946.Т. 16. Вып. 3. С. 266–279.
- [3] Дерягин Б.В., Карасев В.В. // Успехи химии. 1988. Т. 57. Вып. 7. С. 1110–1130.
- [4] Пат. 492787 СССР, G01 N 11/08. Способ измерения вязкости жидкости по ее колебаниям / М.М. Мордасов, Ю.С. Шаталов. № 1940130/26–25. Заявл. 09.07.1973. Опубл. 25.11.1975. Бюл. № 43. 2 с.
- [5] *Гализдра В.И., Мордасов М.М.* // Заводская лаборатория. Диагностика материалов. 2000. Т. 66. № 6. С. 37–39.
- [6] *Гализдра В.И., Мордасов М.М.* // Заводская лаборатория. Диагностика материалов. 2005. Т. 71. № 5. С. 34–38.
- [7] Пат. 2211444 РФ, G01 N 11/16. Способ измерения вязкости жидкости по ее колебаниям / С.В. Мищенко, Д.М. Мордасов, М.М. Мордасов. № 2001115897/28. Заявл. 08.06.2001. Опубл. 27.08.2003. Бюл. № 24. 2 с.
- [8] *Гребенникова Н.М., Мордасов М.М.* // Вестн. ТГТУ. 2005. Т. 11. № 1A. C. 81–87.
- [9] *Мордасов М.М., Савенков А.П.* // Заводская лаборатория. Диагностика материалов. 2008. Т. 74. № 2. С. 22–25.
- [10] Collins R.D., Lubanska H. // Brit. J. Appl. Phys. 1954. Vol. 5. P. 22–26.
- [11] Banks R.B., Chandrasekhara D.V. // J. Fluid. Mech. 1963. Vol. 15. Pt. 1. P. 13–34.
- [12] *Turkdogan E.T.* // Chem. Eng. Sci. 1966. Vol. 21. P. 1133–1144.
- [13] Hopkins D.F., Robertson J.M. // J. Fluid. Mech. 1967. Vol. 29. Pt. 2. P. 273–287.
- [14] Rosler R.S., Stewart G.H. // J. Fluid. Mech. 1968. Vol. 31. Pt. 1. P. 163–174.
- [15] Labus T.L., Aydelott J.C. NASA tecnical note TN D-6368. 1971 // NASA technical reports server. URL: http://ntrs.nasa.gov./search.jsp.
- [16] *Мордасов Д.М.* // Вестн. ТГТУ. 2004. Т. 10. № 3. С. 666–674.
- [17] Абрамович Г.Н. Теория турбулентных струй. М.: Физматгиз, 1960. 715 с.

- [18] *Гуревич М.И.* Теория струй идеальной жидкости. Изд. 2-е, перераб. и доп. М.: Наука, 1979. 536 с.
- [19] Чугаев Р.Р. Гидравлика. Изд. 4-е, перераб. и доп. Л.: Энергоиздат, 1982. 672 с.
- [20] *Залманзон Л.А.* Теория элементов пневмоники. М.: Наука, 1969. 508 с.
- [21] Замараев Л.М., Локшин Б.Е., Поляков Л.В., Матафонов П.П. // Заводская лаборатория. 1994. Т. 60. № 12. С. 40–42.
- [22] Савенков А.П. Бесконтактный струйный деформационный метод и устройство контроля вязкости жидкостей. Автореф. канд. дис. 05.11.13. Тамбов, 2009. 16 с.
- [23] *Нурок Г.А.* Гидромеханизация открытых разработок. М.: Наука, 1972. 264 с.
- [24] ГОСТ 28513—90. Материалы лакокрасочные. Метод определения плотности. М.: Изд-во стандартов, 1990. 8 с.
- [25] *Гетманский И.К., Бавика Л.И.* Методы испытаний водных растворов поверхностно-активных веществ. Обзор. Ч. І. М.: НИИТЭХИМ, 1965. 100 с.
- [26] *Кремлевский П.П.* Расходомеры и счетчики количества веществ. Справочник: Кн. 2. Изд. 5-е, перераб, и доп. СПб.: Политехника, 2004. 412 с.