12

Экспериментальное исследование концентрационной зависимости диэлектрической проницаемости в трехкомпонентных неупорядоченных системах

© В.А. Соцков, А.Н. Забавин

Кабардино-Балкарский государственный университет, 360004, Нальчик, Россия e-mail: sozkov_va@rambler.ru.

(Поступило в редакцию 4 марта 2011 г. В окончательной редакции 23 декабря 2011 г.)

Исследована концентрационная зависимость комплексной диэлектрической проницаемости для модельной трехкомпонентной системы диэлектрик—полупроводник—проводник. Для действительной части диэлектрической проницаемости обнаружен максимум и предложена качественная модель этого явления.

Введение

В современной технике широкое применение нашли гетерогенные системы, поэтому часто встает вопрос об их физических свойствах [1,2] и применении этих свойств. Одной из основных задач этих исследований является восстановление функциональной зависимости эффективной диэлектрической проницаемости системы от диэлектрических параметров, геометрических размеров и концентрации компонентов. Исследованию двухкомпонентных систем посвящено значительное количество работ [1,2,3], однако исследования трехкомпонентных систем немногочисленны [4,5] и получены в основном в результате компьютерного моделирования [4].

Целью настоящей работы было экспериментальное исследование диэлектрической проницаемости в трех-компонентных системах диэлектрик—проводник—полупроводник.

Методика эксперимента

Методики изготовления образцов и измерения электрических параметров, которые использовались в работе, довольно подробно описаны [6,7]. Фактически исследовалась диэлектрическая проницаемость смеси, залитой в плоский конденсатор. Следует учитывать, что диэлектрическая проницаемость ε это комплексная величина:

$$\varepsilon = \varepsilon' - j\varepsilon''. \tag{1}$$

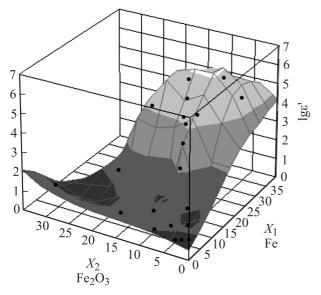
Мнимая часть диэлектрической проницаемости определялась как величина [8]

$$\varepsilon'' = \operatorname{tg} \delta \varepsilon' = \frac{1}{O} \varepsilon', \tag{2}$$

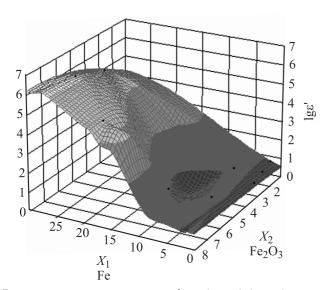
где Q — добротность конденсатора.

Добротность конденсатора определялась для схемы параллельного соединения конденсатора и сопротивления по стандартной методике. Замеры емкости и добротности производились на частоте 1 kHz. Исследовалась

трехкомпонентная система парафин—Fe-Fe₂O₃. В качестве проводника использовалось железо, "ч" металлическое восстановленное ТУ 6-09-2227-81. Как известно, оксидная пленка на поверхности железа имеет химический состав $Fe_2O_3 \cdot nH_2O$ [5]. Для того чтобы не увеличивать количества рассматриваемых в системе компонентов, в качестве полупроводника использовался A^8B^6 — (Fe₂O₃ "ч") — окись для ферритов ТУ6-09-563-85. Все указанные в работе концентрации объемные. Гранулометрический состав порошков определялся с помощью метода произвольных выборок. Результаты представлены в таблице.


	Железо	Fe ₂ O ₃
Основные размеры диаметров	4-6	24-26
частиц, µm Процентное содержание основной	80	60
группы		
Максимальные размеры диаметров	6 - 10	26 - 34
частиц, μ m	E	1.5
Процентное содержание	5	15
Минимальные размеры диаметров	0.7 - 4	16-24
частиц, μт	1.5	25
Процентное содержание	15	25

Исследования были проведены до 35% содержания наполнителей (суммарное 70%), так как при больших концентрациях нарушалась целостность образцов, здесь и далее X-объемные концентрации компонентов исследования в более широком диапазоне концентраций наполнителей при применяемой технологии изготовления образцов [6,7] могли привести к получению недостоверных результатов.


Результаты эксперимента

Результаты исследований представлены на рис. 1, 2. Зависимость $\lg \varepsilon' = f(X_1, X_2)$, где X_1 — концентрация Fe в композите, X_2 — концентрация Fe_2O_3 , изображена

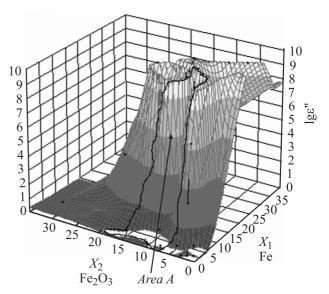

на рис. 1. Наиболее интересен тот факт, что зависимость $\lg \varepsilon' = f(X_1, X_2)$ не монотонна и имеет максимум $\lg \varepsilon' \approx 6.51$ при $X_1 \approx 25\%$, $X_2 \approx 7.51\%$. При исследовании двухкомпонентного композита парафин—Fe такой закономерности не наблюдалось. $\lg \varepsilon' = f(X_1)$ — это монотонно возрастающие кривые с насыщением при $X_1 \geq 45\%$, причем, для всех исследуемых в работе систем эта зависимость связывается, в основном, с межфрактальной емкостью [7]. Однако следует отметить, что слабо выраженный максимум существует в $\lg \varepsilon' = f(X_2)$ концентрационной зависимости диэлектрической проницаемости в системе парафин—Fe₂O₃ (X=30%) [9]. На рис. 2 изображено сечение поверхности графика I

Рис. 1. Концентрационные зависимости действительной части диэлектрической проницаемости для композита парафин—железо— Fe_2O_3 . X_1 — объемная доля Fe, X_2 — объемная доля Fe_2O_3 .

Рис. 2. Сечение поверхности $\lg \varepsilon' = f(X_1, X_2)$ (рис. 1) плоскостью $X_2 = 7.51$.

Рис. 3. Концентрационные зависимости мнимой части диэлектрической проницаемости для композита парафин—железо— Fe_2O_3 . X_1 — объемная доля Fe, X_2 — объемная доля Fe_2O_3 .

плоскостью $X_2=7.51$, параллельной двум другим осям. Для удобства восприятия оси X_1 и X_2 поменяны местами. При введении проводящего компонента Fe максимум становится очевидно выраженным, однако при этом одновременно возникают очень большие диэлектрические потери (рис. 3). Как видно из рис. 3, экстремумы в зависимости $\lg \varepsilon'' = f(X_1, X_2)$ отсутствуют и при увеличении концентрации компонентов ε'' увеличивается и стремится к бесконечности.

Обсуждение результатов эксперимента

Существование экстремума в зависимости действительной части диэлектрической проницаемости от концентрации вопрос часто обсуждаемый, но до настоящего времени дискуссионный [10-13].

Традиционным является подход, когда при рассмотрении свойств композита, происходит суммирование свойств компонентов по тем или иным законам, например уравнение Лихтенекера и т.д. [8]. Однако, с точки зрения объемной поляризации и суммирования свойств компонентов, полученные результаты (максимум ε' , рост ε'') трудно объяснимы. Это вызвано тем, что с ростом концентрации любого компонента должно наблюдаться и увеличение рассматриваемых свойств этого компонента. При этом не учитывается, что компонент может обладать различными взаимосвязанными свойствами, например проводимость и действительная часть диэлектрической проницаемости. В данном случае существование максимума возможно, если наряду с механизмами увеличения ε' существуют и механизмы его уменьшения. Из рис. 1,3 видно, что наряду с ростом ε' существует какой-то другой конкурирующий процесс, который приводит к понижению ε' , но к резкому росту ε'' в области максимума ε' . Можно предположить, что процесс возникновения максимума обусловлен, с одной стороны, поверхностной поляризацией (Максвелла—Вагнера) [14,15]. Поверхностная поляризация возникает тогда, когда граничащие диэлектрики, диэлектрики—полупроводники или подобные структуры имеют различную проводимость, поэтому для прохождения тока постоянной плотности необходимы различные градиенты напряжения [14,15] и, как следствие, существует возможность накопления зарядов на границе, предположительно, частиц Fe_2O_3 или парафина.

Экспериментально определенное удельное сопротивление составило: парафина $\rho = 1 \cdot 10^{11} \, \Omega \text{m}$, для порошкообразного $\mathrm{Fe_2O_3}$ $\rho=1\cdot 10^5\,\Omega\mathrm{m}$, для Fe $\rho=$ $= 9.71 \cdot 10^{-4} \Omega m$ [9,16], т.е. компоненты соответствуют условию различной проводимости. В работе [9] исследована система парафин — Fe₂O₃, проводимость в которой модифицировалась графитом. При проводимости композита $\rho < 10^6 \, \Omega m$ наблюдалось падение величины ε' . В смеси существует два конкурирующих процесса: накопление заряда на границе, предположительно, частиц Fe₂O₃ или парафина и стекание заряда на электроды. При достижении определенной проводимости в смеси (в данном случае $\rho < 1.76 \,\Omega m \, [5]$) в районе максимума превалирующим процессом становится не накопление, а стекание зарядов с поверхности полупроводника или диэлектрика. Подтверждением предложенной модели является зависимость $\lg \varepsilon'' = f(X_1, X_2)$ (рис. 3). В области максимума $\lg \varepsilon' = f(X_1, X_2)$ (рис. 1) для $\lg \varepsilon'' = f(X_1, X_2)$ наблюдается значительный рост, что, безусловно, определяется ростом проводимости смеси. В подавляющем большинстве современных теоретических работ [17,18] зависимость ε' от проводимости вообще не рассматривается. Однако в экспериментальной работе [19] для системы парафин-графит показана такая зависимость и предложена аппроксимация для зависимости $\lg \varepsilon' = f(x)$ как до порога перколяции, так и после него.

Кроме того, вблизи точки перколяционного перехода (для Fe $X_1 \approx 0.15$, для Fe₂O₃ $X_2 \approx 0.1$ [5]) имеется интересная особенность. На рис. 3 по линии $X_2 \approx 0.1 \; ({\rm Fe_2O_3})$ рост ε'' не столь интенсивен при $X_1 < 0.15$ как по другим направлениям, в результате чего образуется складка на графике. На рис. 1 эта особенность имеется, но менее выражена. О предсказании возможности особенностей в районе перколяционного перехода существует множество теоретических предсказаний [10-13], которые не всегда оправдываются в эксперименте [7]. Можно предположить, что при концентрации ${\rm Fe_2O_3}~X_2 \approx 0.1$ даже при росте содержания Fe рост потерь (эквивалентно рост проводимости в рассматриваемой схеме замещения) идет медленнее из-за более интенсивного захвата носителей электричества на поверхности компонентов частиц Fe₂O₃ или парафина, чем при других концентрациях Fe_2O_3 в трехкомпонентной системе. Причина такой избирательности может лежать в еще не исследованных особенностях поляризации Максвелла—Вагнера в районе перколяционного перехода.

Выводы

В результате проведенных работ обнаружено:

- 1. В зависимости $\lg \varepsilon' = f(X_1, X_2)$, где X_1 концентрация Fe в композите, X_2 концентрация Fe₂O₃, обнаружен максимум при $X_1 \approx 25\%$, $X_2 \approx 7.51\%$.
- 2. В зависимости $\lg \varepsilon'' = f(X_1, X_2)$ в районе максимума функции $\lg \varepsilon' = f(X_1, X_2)$ значительный рост мнимой части диэлектрической проницаемости.

Безусловно, для композита парафин— Fe_2O_3 —Fe имеются два вида релаксации — объемная и поверхностная (Максвелла—Вагнера), и полученный результат (существование максимума) следует рассматривать как сумму вышеупомянутых механизмов. Существование максимума в зависимости $\lg \varepsilon' = f(X_1, X_2)$ можно объяснить двумя конкурирующими процессами в поверхностной поляризации: с одной стороны, накоплением зарядов на поверхности частиц, а с другой — стеканием зарядов за счет увеличения проводимости системы.

Список литературы

- [1] Харитонов Е.В. Диэлектрические материалы с неоднородной структурой. М.: Радио и связь. 1983. 128 с.
- [2] Чмутин И.А., Летягин С.В., Шевченко В.Г., Пономаренко А.Т. Высокомолекулярные соединения. 1994. Т. 36. № 4, С. 699—713.
- [3] Гуль В.Е., Шенфень Л.З. Электропроводящие полимерные композиции. М.: Химия. 1984. С. 37.
- [4] Ioselevich A.S. // Phys. Rev. Lett. 1995.V 74. N 8. P. 1411-1414.
- [5] Соцков В.А. // ЖТФ. 2009. Т.79. Вып.6. С. 146-149.
- [6] Соцков В.А., Борисов В.А. // ЖТФ. 2007. Т. 77. Вып. 11. С. 103—107.
- [7] Соцков В.А. // ФТП. 2005. Т. 39. Вып. 2. С. 269.
- [8] *Пасынков В.В.* Материалы электронной техники. М.: Высшая школа, 1980. С. 155—160.
- [9] Соцков В.А. // Поверхность. 2010. № 10. С. 83-85.
- [10] Efros A.L., Shkovskii B.I. // Phys. Stat. Sol. B. 1976. Vol. 76. P. 475.
- [11] Дубров В.Е., Левинитейн М.Е., Шур М.С. // ЖЭТФ. 1976.Т. 70. Вып. 5. С. 2014—2023.
- [12] Неймарк А.В. // ЖЭТФ. 1990. Т. 98. Вып. 2(8). С. 611-625.
- [13] Виноградов А.П., Каримов А.М., Сарычев А.К. // ЖЭТФ. 1988. Т. 94. Вып. 10. С. 301—308.
- [14] Хиппель А.Р. Диэлектрики и волны. М.: ИИЛ, 1960. 440 с.
- [15] *Киттель Ч.* Введение в физику твердого тела. М.: Физматгиз, 1963. С. 175.
- [16] Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М.: Атомиздат, 1976. 1005 с.
- [17] Борисов В.С., Аграфонов Ю.И., Щербаченко Л.А. и др. // ФТТ. 2011. Т. 53. Вып. 1. С. 52–57.
- [18] *Богатин А.С., Лисица И.В., Богатина С.А.* // Письма в ЖТФ. 2002. Т 28. Вып. 18. С. 61–66.
- [19] Соцков В.А. // ЖТФ. 2005. Т. 75. Вып. 6. С. 134-135.