07;12

Срезанные линейные зонные пластинки для жесткого рентгеновского излучения

© И.А. Артюков,¹ В.А. Бурцев,² А.В. Виноградов,¹ А.Ю. Девизенко,³ Н.В. Калинин,² И.А. Копылец,³ В.В. Кондратенко,³ В.Е. Пуха,³ Б.А. Савицкий,³ Р.М. Фещенко¹

1 Физический институт им. П.Н. Лебедева РАН,

119991 Москва, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

³ Национальный технический университет "Харьковский политехнический институт",

Харьков, Украина

e-mail: rusl@sci.lebedev.ru

(Поступило в Редакцию 12 декабря 2011 г.)

Рассмотрены линейные зонные пластинки для жесткого ($E > 10 \, \text{keV}$) рентгеновского излучения на основе срезов многослойных покрытий $W_5 Si_3/Si$, изготовленных методом магнетронного распыления. Из численных расчетов следует, что эта пара материалов обеспечивает высокую эффективность в первом и втором порядках дифракции. Экспериментально установлено, что возможен синтез многослойных структур высокого качества, содержащих сотни слоев на кремниевых и стеклянных подложках. Показано, что их срезы могут быть получены путем ионного травления многослойного покрытия через маску.

Введение

В оптике жесткого рентгеновского излучения (энергия фотонов больше 10 keV) важную роль играют дифракционные оптические элементы — дифракционные решетки и френелевские зонные пластинки. Эти оптические элементы могут быть как отражающими, так и пропускающими и могут использоваться для получения рентгеновских спектров, так же как и для построения изображений объектов в рентгеновских лучах. Основной проблемой здесь является технология изготовления. В случае отражательных решеток/зонных пластинок максимальная плотность штрихов, которую можно достичь путем механической нарезки или голографическим способом, не превышает $5000 \,\mathrm{mm}^{-1}$ [1]. Это, с одной стороны, не обеспечивает дисперсии, необходимой для достижения высокого спектрального разрешения для коротковолнового рентгеновского излучения, а с другой — ведет к большим фокусным расстояниям у зонных пластинок. В случае решеток и зонных пластинок, работающих на пропускание, хотя высокая плотность штрихов может быть достигнута с помощью электронно-лучевой литографии, достижимые при этом аспектные отношения оказываются слишком маленькими, что ведет к низкой дифракционной эффективности пропускающих дифракционных рентгенооптических элементов.

Указанные выше проблемы можно решить, если в качестве решеток/линейных зонных пластинок использовать срезы многослойных покрытий (под разными углами), изготовленные с применением как традиционной для рентгеновской оптики технологии магнетронного распыления, так и волоконно-оптических технологий. Из последних наибольший интерес представляет технология вакуумного плазмохимического осаждения в поверхностном разряде (SPCVD) [2,3]. Периоды многослойных покрытий, созданных с применением указанных технологий, могут варьироваться от одного до сотен нанометров. При их срезании получаются структуры, у которых плотность штрихов может достигать 10 000 mm⁻¹ и более. Поскольку толщина срезов ничем не ограничена, решается проблема с аспектным отношением, что особенно важно в случае дифракционных элементов на пропускание.

Идея использования срезанных многослойных структур была впервые предложена в начале 80-х годов XX века Шмалем и Рудольфом [4]. Попытки создания кольцевых срезанных зонных пластинок предпринимались как за рубежом, так и в России в 80-90-е годы [5-7]. В последнее время проводятся исследования по созданию линейных зонных пластинок на пропускание на основе срезов многослойных покрытий, изготовленных с помощью технологии магнетронного распыления [8,9]. Разработка и изготовление отражательных дифракционных решеток на основе срезанных многослойных покрытий — срезанных многослойных решеток проводятся в России и на Украине с начала 1990-х [10-12]. С их помощью, в частности, были получены спектры лазерной плазмы [11] и плазмы мощного электрического разряда [13]. Еще один метод создания срезанной решетки основывается на напылении многослойного покрытия на решетку большего периода, асимметрично вытравленную в кремниевой подложке, с последующим сошлифованием верхней части многослойного покрытия [14]. Достигнутые результаты являются в целом обнадеживающими и позволяют надеяться на создание в будущем рентгеновских спектрометров с разрешением до 10⁶, а также линейных зонных пластинок, способных строить изображения объектов в жестких рентгеновских лучах с нанометровым разрешением.

В настоящей работе авторы представляют последние результаты, полученные в ФИАНе в сотрудничестве с НТУ "ХПИ", в области создания линейных зонных пластинок на основе срезов многослойных покрытий, изготовленных с помощью технологии магнетронного распыления.

1. Теория линейных срезанных зонных пластинок

1.1. Основные соотношения

Основные параметры линейных зонных пластинок определяются из тех же формул, что для кольцевых зонных пластинок (см. рис. 1). Ниже приведена их сводка, а также рассчитаны параметры различных вариантов линейной зонной пластинки с заданным фокусным расстоянием, длиной волны, апертурой и разрешением [15].

Пусть заданы длина волны λ , толщина покрытия D и пространственное разрешение δ , тогда

$$f = \frac{D\delta}{\lambda}.$$
 (1)

Остальные величины можно определить через ширину первой зоны *d*₁ из следующих формул, справедливых для любой зонной пластинки:

$$d_1 = \sqrt{r_0^2 + 2\lambda f} - r_0, \quad D = \sqrt{r_0^2 + 2N\lambda f} - r_0.$$
 (2)

В итоге получаем

$$r_0 = D\left(\frac{\delta}{d_1} - \frac{d_1}{2D}\right), \ N = \frac{D + 2r_0}{2\delta} = \frac{D}{2\delta} + \left(\frac{D}{d_1} - \frac{d_1}{2\delta}\right).$$
(3)

Ширина последней N-й зоны (одна зона соответствует одному периоду — двум слоям из различных материалов) равна

$$D_N = \frac{\delta D}{D + r_0}.\tag{4}$$

Можно рассмотреть два случая. Первый случай это полная, начинающаяся на оптической оси, но асимметричная срезанная зонная пластинка (СЗП). Из (2) видно,

Рис. 1. Схема линейной срезанной зонной пластинки (D -толщина покрытия, δ — разрешение, d_1 — ширина первой зоны, N — число зон, f — фокусное расстояние, r_0 — расстояние до оси).

Таблица 1. Параметры зонных пластинок

N₂	$r_0, \mu m$	d_1, nm	$d_N,$ nm	Ν
1	20	100	50	300
2	40	50	33	500
3	60	33	25	700

что максимальное d_1 определяется из условия $r_0 = 0$ и равно

$$(d_1)_{\max} = \sqrt{2\delta D}.$$

При этом число зон равно $N = D/2\delta$, СЗП начинается от оси, а ее разрешение δ совпадает с шириной последней зоны d_N .

Во втором случа
е $r_0 \neq 0,$ а также должно выполняться неравенство

$$d_1 \ll (d_1)_{\max} = \sqrt{2\delta D}.$$

Уменьшение d_1 приводит к увеличению N и r_0 :

$$r_0 = \frac{\delta D}{d_1}, \quad N = \frac{D}{2\delta} \left(1 + \frac{2\delta}{d_1} \right), \quad d_N = \frac{d_1\delta}{d_1 + \delta}.$$
 (5)

Ниже в табл. 1 приведены три примера СЗП, рассчитанных для второго случая по формулам (5) для одинаковых величин $\lambda = 0.1$ nm, $D = 20 \,\mu$ m и $\delta = 0.1 \,\mu$ m. Для этих параметров фокусное расстояние тоже одинаково и равно f = 20 mm (см. (1)). Еще одним важным параметром СЗП является толщина среза. В отсутствие поглощения дифракционная эффективность в заданном дифракционном порядке является осциллирующей функцией толщины. В частности, для первого порядка оптимум достигается при толщине

$$T = \frac{\pi}{2} \frac{\lambda}{|\varepsilon - 1|},\tag{6}$$

которая для жесткого излучения с E > 20 keV составляет порядка 100 μ m (для материалов, указанных в разд. 2) и растет обратно пропорционально длине волны. В формуле (6) ε — это средняя диэлектрическая проницаемость материалов покрытия. В более мягкой области $\sim 10 \text{ keV}$ оптимальная толщина из-за наличия поглощения будет существенно меньше, порядка $20-50 \mu$ m.

1.2. Численное моделирование

Для расчета дифракционной эффективности, формы фокуса и других характеристик линейных зонных пластинок удобно использовать метод параболического уравнения. Из-за близости диэлектрической проницаемости материалов в жесткой рентгеновской области спектра к единице (отличие порядка 10⁻⁶) параболическое уравнение остается справедливым как внутри, так и вне зонной пластинки. Для решения параболического уравнения существуют эффективные конечноразностные схемы с прозрачным граничным условием, которые позволяют рассчитать амплитуду поля во всем пространстве за разумное время [16].

Рис. 2. Распределение квадрата амплитуды поля после прохождения через срезанную зонную пластинку (вариант 1 в табл. 1) с толщиной в продольном направлении $15\,\mu$ m и равной толщиной слоев Wi₅Si₃ и Si.

Рис. 3. Энергия света, сосредоточенная в коридоре $\pm 10\delta$ от оптической оси для СЗП, изображенной на рис. 2, для пяти разных толщин и длины волны 0.1 nm. Четко видны 5 первых порядков дифракции (5 фокусов).

На рис. 2 приведено распределение квадрата модуля амплитуды поля в пространстве после прохождения линейной СЗП на основе Wi₅Si₃/Si многослойного покрытия (см. разд. 2), с геометрическими параметрами, соответствующими варианту 1 в табл. 1 и толщиной 15 μ m. На рис. 3 показана концентрация излучения вблизи фокуса как функция расстояния вдоль оптической оси от той же СЗП для ряда значений ее толщины. Четко наблюдаются фокусы пяти первых порядков. Эффективность дифракции в первый порядок достигает 22% при оптимальной толщине, которая составляет около 20 μ m. При толщине 15 μ m во второй порядок фокусируется больше излучения, чем в первый. Присутствие фокусов второго и других четных порядков объясняется конечностью толщины зонной пластинки в продольном направлении.

2. Срезанные зонные пластинки на основе технологии магнетронного распыления

2.1. Выбор материалов и основные проблемы

Изготовление линейной СЗП на основе классического многослойного покрытия предполагает напыление на подложку сотен или даже тысяч слоев двух чередующихся материалов с помощью метода магнетронного распыления. Один из них должен иметь низкую оптическую плотность и малое поглощение в жесткой области спектра, а другой, соответственно высокую оптическую плотность. Поглощение обоих слоев также необходимо учитывать при проектировании СЗП.

В качестве подложек могут использоваться кремниевые или стеклянные пластины. Выбор пары материалов (в дополнение к оптическим свойствам) диктуется их технологичностью, т.е. способностью формировать тонкие слои с низкой межслоевой шероховатостью и малыми механическими напряжениями. Используемые материалы также должны находиться в термодинамическом равновесии друг с другом во избежание образования нежелательных химических соединений на границах. В качестве рабочей была выбрана равновесная система WSi₂/Si, в которой механические напряжения минимальны в сравнении с другими системами [17]. Выбор вольфрама позволит использовать дифракционные решетки в диапазоне энергий до 60 keV (К-скачок). В то же время кремний является практически прозрачным для рентгеновского излучения с энергиями фотонов больше 10 keV.

Создание СЗП предполагает решение следующих проблем: обеспечение изменения толщины слоев в покрытии по заданному закону, уменьшение влияния механических напряжений с целью недопущения отслоения многослойного покрытия и разрушения СЗП, изучение возможного межслоевого взаимодействия с целью последующего его учета при оптимизации конструкции СЗП.

2.2. Технология изготовления

Образцы зонных пластинок изготавливались по методу прямоточного магнетронного распыления. Постоянная скорость осаждения слоев достигалась благодаря применению высокостабильных источников питания магнетронов, а также поддержанию постоянного давления рабочего газа (Ar) в вакуумной камере с помощью системы напуска. Заданная толщина пленки обеспечивалась временем экспозиции, которое контролировалось с точностью до 1 ms с помощью автоматизированной системы управления перемещением подложки. Для снятия имеющихся механических напряжений проводились отжиги напыленных покрытий в вакууме. Проведенные рентгенофазовый и рентгеноспектральный анализы имеющейся в наличии мишени силицида вольфрама, а также выполненная оценка плотности ($\approx 15.7 \text{ g/cm}^3$) приготовленной распылением пленки показали, что мишень в основном состоит из силицида W₅Si₃. Возможно наличие незначительного количества W и WSi₂. По этой причине все многослойные покрытия, обсуждаемые в дальнейшем, состоят из чередующихся слоев W₅Si₃ и Si. Тем не менее оценки показывают, что это должно привести лишь к небольшому изменению характеристик СЗП.

Подложками служили плоские кремниевые и стеклянные пластины со среднеквадратичной шероховатостью менее 0.4 nm и с толщинами 0.33 и \approx 4 mm соответственно. Для повышения адгезии покрытия проводилась предварительная "чистка" поверхности подложек ионами Ar в течение 4 min с помощью ионной пушки. Процесс формирования покрытий начинался и заканчивался слоем Si. Отжиг образцов проводился при давлении ниже 10^{-2} Pa и в интервале температур 200–550°C. Время отжига составляло 1 h.

Определение параметров (толщина и плотность слоев и среднеквадратичная межслоевая шероховатость) многослойного периодического покрытия выполнялось по результатам численного моделирования малоугловой дифракции от многослойных покрытий в Сu-Ka₁-излучении при помощи программы, основанной на формулах Френеля [18,19]. Варьированием этих параметров достигалось наилучшее совпадение теоретической и экспериментальной кривых дифракции.

Процессы межслоевого взаимодействия исследовались с помощью метода электронной микроскопии поперечных срезов и малоугловой рентгеновской дифракции. Сочетание этих методов позволяет эффективно контролировать самые ранние стадии диффузионного взаимодействия.

2.3. Результаты напыления многослойных покрытий

Были изготовлены многослойные покрытия на кремниевых и стеклянных подложках с общей толщиной до $16\,\mu$ m. Как и ожидалось, покрытие вызывало изгиб кремниевой подложки с радиусом кривизны до 0.24 m. В отличие от кремниевой пластины, подложка из стекла толщиной 4 mm не изгибалась и не обеспечивала за счет собственного изгиба релаксацию напряжений в покрытии. Вследствие этого величина адгезии была недостаточной, и покрытие отделялось от стекла на стадии формирования или при напуске воздуха в камеру.

Отжиг при температуре $200-550^{\circ}$ С привел к существенному уменьшению механических напряжений и увеличению радиуса изгиба. Так, для пробного периодического покрытия с периодом 49 nm, соотношением толщин слоев (W₅Si₃ и Si) 1:1, числом периодов 325 (общая толщина 16 μ m) радиус изгиба увеличился до 2 m. Кроме этого, отжиг сопровождается изменением периода и

Рис. 4. Электронно-микроскопический снимок поперечного сечения многослойного периодического покрытия W_5Si_3/Si после отжига при 500°С. Параметры покрытия после отжига: период ≈ 49.6 nm, соотношение толщин слоев W_5Si_3 и Si 1:0.78.

соотношения толщин слоев в многослойном периодическом покрытии. После отжига при температуре 500°С период уменьшился на 0.5 nm (по данным малоугловой рентгеновской дифракции), а толщины слоев W₅Si₃ и Si стали соотноситься как 1:0.78 (см. рис. 4) вместо 1:1. Это подтверждает результаты моделирования малоугловой рентгеновской дифракции для этого покрытия: толщина слоев с вольфрамом увеличилась на 1.8 nm, а толщина кремниевых слоев уменьшилась на 2.3 nm. По-видимому, такие изменения связаны с межслоевым взаимодействием W₅Si₃ и Si с образованием WSi₂, что хорошо согласуется с диаграммой равновесия W-Si [20]. На электронно-микроскопической фотографии поперечного сечения многослойного покрытия W₅Si₃/Si (см. рис. 4) после отжига 500°С видно, что покрытие состоит из сплошных слоев W₅Si₃ и Si с гладкими границами. Зоны с составом WSi₂ не выявляются, по-видимому, вследствие того, что силициды W5Si3 и WSi2 находятся в аморфном состоянии и не формируют дифракционный контраст. Следует отметить, что, согласно проведенному рентгенофазовому анализу, в этом покрытии отсутствуют видимые фазовые превращения во всем интервале температур отжига 200-550°С.

С целью компенсации изменений толщины слоев при нагреве была проведена коррекция толщины слоев W₅Si₃ и Si в многослойном покрытии для зонной пластинки в

Таблица 2. Параметры непериодических многослойных покрытий после отжига при температуре 500°С. Первый слой считается от подложки. Общее число слоев везде 535.

Номер покрытия	Толщина первого слоя Si, nm	Толщина первого слоя W5Si3, nm	Толцина последнего слоя Si, nm	Толщина пос- леднего слоя W ₅ Si ₃ , nm
1103311	23.6	26.2	31.6	34.2
1103312	23.7	26.3	31.55	34.15
1105131	31.6	33.8	23.5	25.7
1105132	31.4	33.6	23.3	25.5

исходном состоянии (см. параметры образцов в табл. 2). Данные о распределении толщины слоев W_5Si_3 и Si по-

Рис. 5. Закон распределения толщин слоев W_5Si_3 и Si в направлении роста покрытия W_5Si_3/Si (образец 1103 311) после отжига при температуре 500°С. График изображен для первых 30 слоев.

Рис. 6. Закон распределения толщин слоев W_5Si_3 и Si в направлении роста покрытия W_5Si_3/Si (образец 1103 311) после отжига при температуре 500°С. Число слоев — 535.

Рис. 7. Изображение в сканирующем электронном микроскопе линейной зонной пластинки W₅Si₃/Si на кремниевой подложке после ионного травления.

сле отжига для образца 1103311 приведены на рис. 5 и 6. Они получены из проведенных расчетов по результатам моделирования спектров малоугловой рентгеновской дифракции от верхних слоев покрытия W_5Si_3/Si . Слои Si имеют бо́лышую, а слои W_5Si_3 меньшую толщину по сравнению с ожидаемыми толщинами. Разность между полученной и требуемой толщинами слоя составляет менее 1.6 nm. Необходимо отметить, что в случае отсутствия проведенной коррекции толщины слоев, разность в толщине соседних слоев W_5Si_3 и Si будет еще больше. Для достижения необходимого распределения толщины слоев после отжига требуется проведение дополнительных экспериментов по оптимизации исходной толщины слоев и температуры отжига.

2.4. Изготовление срезов

Для получения линейной зонной пластинки необходимо срезать изготовленные многослойные покрытия под углом 90°. Толщина среза определяется длиной волны излучения, для которой предназначена зонная пластинка. В диапазоне 10–60 keV она составляет 10–200 μ m. Срезы могут изготавливаться как механически, так и с использованием ионного травления многослойного покрытия. Последний метод предпочтителен для срезов малой толщины, когда использование механической резки может быть проблематичным.

На рис. 7 показана линейная зонная пластинка (см. параметры зонной пластинки в табл. 2 для 1105211), изготовленная по методу ионного травления из многослойного покрытия W_5Si_3/Si , нанесенного на кремниевую подложку. Травление зонной пластинки проводилось ионами Ar с применением маски. Использовался источник ионов оригинальной конструкции, который обеспечивал параллельный пучок. Энергия ионов составляла 1.5 keV. Время травления — 8 h. Зонная пластинка имеет толщину $\approx 80 \,\mu$ m, высоту $\approx 15 \,\mu$ m. Кремниевая пластина является держателем зонной пластинки и экраном для рентгеновского излучения.

Заключение

В настоящей работе приведены результаты по расчету, оптимизации и изготовлению линейных зонных пластинок для жесткого рентгеновского излучения на основе СЗП, полученных с помощью технологии магнетронного распыления. Рассчитаны параметры СЗП, пригодных для работы в области жесткого рентгеновского излучения с энергией фотонов более 10 keV. Для достижения пространственного разрешения порядка $0.1 \,\mu$ m при фокусном расстоянии 20 mm с помощью СЗП требуется многослойное покрытие, содержащее 600-1400 слоев. Разработан метод расчета дифракции излучения на толстых срезах многослойных покрытий и определения дифракционной эффективности на основе численного решения параболического уравнения в среде с прозрачными граничными условиями.

Для структур, изготавливаемых по методу магнетронного распыления, выбрана пара материалов WSi2/Si, которая является термодинамически стабильной и обладает большой оптической плотностью для жесткого рентгеновского излучения. Экспериментально установлено, что на основе реально доступной пары материалов W₅Si₃/Si можно синтезировать многослойные структуры высокого качества, содержащие сотни слоев на кремниевых и стеклянных подложках. Механические напряжения, неизбежно возникающие в процессе напыления, устранялись путем отжига при температуре 500°С. Показано, что срезы многослойных покрытий могут быть получены путем их частичного ионного травления через маску. Из численных расчетов следует, что линейные СЗП на основе W₅Si₃/Si-структур должны обладать высокой эффективностью для жесткого рентгеновского излучения как в первом, так и во втором порядках дифракции (до 22 и 8% соответственно на длине волны 0.1 nm при оптимальной толщине). В результате процесса травления линейные СЗП формируются непосредственно на исходной подложке, что упрощает их испытание и использование.

Результаты, изложенные в работе, были получены при поддержке Российского фонда фундаментальных исследований (РФФИ), гранты № 10-02-00991-а, 10-08-01042-а и 11-08-01100-а.

Список литературы

- Markert T. H., Förster E. X-Ray Spectroscopy / Digital Encyclopedia of Applied Physics. Wiley-VCH., 2009. P. 89– 113.
- [2] Golant K.M., Lavrishchev S.V., Popov A.V., Artyukov I.A., Feshchenko R.M., Mitrofanov A.N., Vinogradov A.V. // Appl. Opt. 2007. Vol. 46. N 23. P. 5964–5966.
- [3] Artyukov I.A., Bukreeva I.N., Chernov V.A., Feshchenko R.M., Golant K.M., Jark W., Lavrishchev S.V., Mitrofanov A.N., Popov A.V., Vinogradov A.V. // NIM A. 2009. Vol. 603. P. 66–68.
- [4] Шмаль Г., Рудольф Д. Рентгеновская оптика и микроскопия / Пер. с англ. М.: Мир, 1987. 463 с.
- [5] Bionta R.M. // Appl. Phys. Lett. 1987. Vol. 51. P. 725-727.
- [6] Kamijo N., Tamura S., Suzuki Y., Handa K., Takeuchi A., Yamamoto S., Ando M., Ohsumi K., Kihara H. // Rev. Sci. Instrum. 1997. Vol. 68. P. 14–16.
- [7] Asadchikov V.E., Beloglazov V.I., Vinogradov A.V., Voronov D.L., Kondratenko V.V., Kopylov Yu.V., Lebedev N.F., Ponomarenko A.G., Popov A.V., Postnov A.A., Fedorenko A.I. // Proc. SPIE. 1997. Vol. 3113. P. 384–392.

- [8] McColgan M.W., Zukic M., Kim J., Torr D.G., Fennelly A.J., Fry E.L. // Proc. SPIE. 1994. Vol. 2283. P. 189–199.
- [9] Kang H.C., Yan H., Winarski R. P., Holt M.V., Maser J., Liu C., Conley R., Vogt S., Macrander A.T., Stephenson G.B. // Appl. Phys. Lett. 2008. Vol. 92. P. 221 114–16.
- [10] Levashov V.E., Vinogradov A.V. // Appl. Opt. 1993. Vol. 32. N 7. P. 1130–1135.
- [11] Levashov V.E., Zubarev E.N., Fedorenko A.I., Kondratenko V.V., Poltseva O.V., Yulin S.A., Struk I.I., Vinogradov A.V. // Opt. Commun. 1994. Vol. 109. P. 1–4.
- [12] Bugaev E.A., Feshchenko R.M., Vinogradov A.V., Voronov D.L., Tokarev V.A., Petukhov V.P. // Proc. SPIE. 2005. Vol. 5918. P. 309–318.
- [13] Kantsyrev V.L., Safronova A.S., Williamson K.M., Wilcox P., Ouart N.D., Yilmaz M.F., Struve K.W., Voronov D.L., Feshchenko R.M., Artyukov I.A., Vinogradov A.V. // Rev. Sci. Instrum. 2008. Vol. 79. P. 10F542 (1–5).
- [14] Voronov D.L., Cambie R., Gullikson E.M., Yashchuk V.V., Padmore H.A., Pershin Y.P., Ponomarenko A.G., Kondratenko V.V. // Proc. SPIE. 2008. Vol. 7077. P. 707 708.
- [15] Atwood D. Soft X-Rays and Extreme Ultraviolet Radiation. Cambridge; N. Y.: Cambridge University Press, 2000. 486 p.
- [16] Kopylov Yu.V., Popov A.V., Vinogradov A.V // Opt. Commun. 1995. Vol. 118. P. 619–636.
- [17] Liu Chian, Conley R., Macrander A.T. // Proc. SPIE. 2006. Vol. 6317. P. 631 70J.
- [18] Виноградов А.В., Брытов И.А., Грудский А.Я., Коган М.Т., Кожевников И.В., Слемзин В.А. Зеркальная рентгеновская оптика / Под ред. А.В. Виноградова. Л.: Машиностроение, 1989. 463 с.
- [19] Пеньков А.В., Зубарев Е.Н., Польцева О.В., Пономаренко А.Г., Кондратенко В.В., Бобков В.В., Перегон Т.И., Тищенко Л.П. // Вопросы атомной науки и техники. Сер. Физика радиационных повреждений. 2006. Т. 89. № 4. С. 157–163.
- [20] Диаграммы состояния двойных металлических систем / Под ред. Н.П. Лякишева. М.: Машиностроение, 2000. Т. 3. С. 872.