05

Полимернеорганический композит, содержащий ультрадисперсные частицы гадолиния

© И.А. Александров, И.Ю. Метленкова, С.С. Абрамчук, С.П. Солодовников, А.А. Ходак, С.Б. Зезин, А.И. Александров

- $^{1}\,\mathrm{Институт}$ синтетических полимерных материалов им. Н.С. Ениколопова РАН,
- 117393 Москва, Россия
- 2 Институт элементоорганических соединений им. А.Н. Несмеянова РАН,
- 117813 Москва, Россия
- 3 Московский государственный университет им. М.В. Ломоносова,
- 117813 Москва, Россия

e-mail: aleks@ispm.ru

(Поступило в Редакцию 3 ноября 2012 г.)

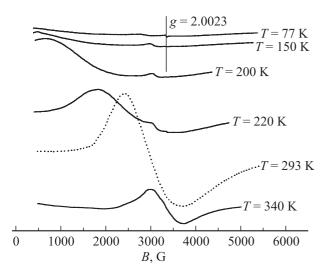
Исследованы композиты на основе полистирола и ультрадисперсных частиц (в том числе и наночастиц) металлического Gd и SiO $_2$. Композиты получали обработкой в шаровой мельнице исходных веществ при комнатной температуре и исследовали методами ферромагнитного резонанса, просвечивающей электронной микроскопии и рентгеновской дифракции на отражение. Установлено, что магнитная система композитов сформирована магнитными нанокластерами — кристаллитами Gd с диаметром $30\pm10\,\mathrm{nm}$, которые обладают объемной и поверхностной магнитной анизотропией и при температуре $(210\pm10)\,\mathrm{K}$ переходят в суперпарамагнитное состояние. Установлено, что наиболее близко к количественному согласию с экспериментом по наблюдению ферромагнитного резонанса суперпарамагнитных металлических наночастиц приводит уравнение Ландау—Лифшица с затуханием в форме Ландау—Лифшица.

Введение

Поведение магнитных ультрадисперсных частиц (в том числе и наночастиц) в полимерных матрицах представляет огромный интерес, обусловленный электронными, оптическими и магнитными свойствами таких систем [1–3]. Значительный интерес проявляется к наночастицам гадолиния, что связано с их использованием в качестве контрастного агента в магнитной ядерной томографии, а также с хранением и использованием водорода. Однако количество исследований, посвященных получению наночастиц гадолиния, весьма ограничено. К настоящему времени исследованы жидкофазное восстановление GdCl₃ натрием [4], высокотемпературное испарение металлического гадолиния [5] и разрушение наноразмерных многослойных пленок мощным радиоизлучением [6].

Ранее методами твердофазной механохимии были синтезированы наночастицы Fe, Co, Ni непосредственно в полимерных матрицах из солей указанных металлов и установлено стабилизирующее влияние полимерной матрицы на получаемые наночастицы [7–9]. Недостаток подобного метода получения ферромагнитных наночастиц заключается в том, что исходные реактивы не полностью превращаются в конечный продукт и остаются в полимерной матрице.

Именно поэтому в представленной работе рассмотрена возможность получения композиционного полимерного материала, содержащего ферромагнитные ультрадисперсные частицы гадолиния, методами механохимии при измельчении исходного металла.


Экспериментальная часть

Для получения ультрадисперсных частиц гадолиния применялись механохимические методы воздействия на смесь частиц металлического Gd с размером около 0.3 mm (Aldrich, Gadolinium, 99.99%) и порошка SiO_2 (Aldrich, Silicon dioxide — 325 megh (44 μ m), 99.6%). Металл совместно с SiO2 обрабатывали в вибромельнице Pulverizette 0 Fritsch GmbH (Германия) с агатовой размольной гарнитурой (ступа и шар). Полученную смесь (SiO₂-частицы Gd) вводили в полимерную матрицу — полистирол (ПС) от Aldrich (Polystyrene, average M_w 230 000, average M_n 140 000, 1.04 g/ml 25 C, $T_g = 94 \, \text{C}$) также с помощью вибромельницы, после 10 тіп обработки при 77 К получали порошкообразный продукт, из которого путем прессования при 150 С изготавливали образцы полимернеорганического композиционного материала (ПС-SiO₂-частицы Gd).

Образцы композита (ПС—SiO₂—частицы Gd) исследовали с помощью ЭПР-спектрометра "Е-12 Varian" в температурном диапазоне от 77 до 340 K на частоте 9.2 GHz и мощности 2 mW (частота модуляции 100 kHz). Размеры и структуру частиц гадолиния определяли с помощью просвечивающей электронной микроскопии на установке "LEO 912 AB OMEGA" (Германия), а также анализируя рентгеновские дифрактограммы, полученые на дифрактометре URD-6 (Германия) CuK_{α} -излучение, $\lambda = 1.54056$ A.

Результаты и их обсуждение

Для выяснения магнитного состояния полученных описанным выше способом частиц гадолиния в компо-

Рис. 1. Спектры ФМР образца $\Pi C - SiO_2 -$ частицы Gd в зависимости от температуры измерения.

зитах (ПС-SiO₂-частицы Gd) были проведены исследования зависимости спектров ФМР от температуры. На рис. 1 показано, как изменяются спектры от образца (ПС-SiO₂-частицы Gd) при изменении температуры от 77 до 340 К. Видно, что основной сигнал при 77 К претерпел огромное уширение и практически не регистрируется. На его фоне заметен сигнал с д-фактором $g_{\rm eff} = 3.36$. Повышение температуры до 150 K (рис. 1) приводит к тому, что основной сигнал начинает сужаться. Сигнал, имевший при 77 К $g_{\text{eff}} = 3.36$, сдвигается в высокое поле до значения $g_{\text{eff}} = 2.22$. Он, видимо, относится к более мелким частицам гадолиния, количество которых мало по сравнению с основной массой частиц. Из рис. 1 видно дальнейшее уменьшение ширины линии основного сигнала, которая с $\Delta B_{\rm pp} = 2700\,{\rm G}$ при 200 K сужается до $\Delta B_{\rm pp} = 1600\,{\rm G}$ при 220 К ($\Delta B_{\rm pp}$ — ширина линии ФМР pick to pick).

Известно, что ферромагнитная частица будет проявлять свойства суперпарамагнетизма, если время изменения направления намагничивания из-за тепловых флуктуации сопоставимо или меньше характерного времени измерения, в нашем случае это $\tau=100\,\mathrm{s}$. Время инверсии намагниченности однодоменной частицы объемом V и с эффективной константой магнитной анизотротропии K_{eff} определяется соотношением Нееля—Брауна [10]:

$$\tau = \tau_0 e^{\frac{V_{\text{nano}} K_{\text{eff}}}{k_B T}}, \tag{1}$$

где k_B — постоянная Больцмана, а типичные значения τ_0 лежат в интервале $10^{-13} - 10^{-10}$ s. Зная температуру блокировки ($T_{\rm bloc}$) и размер суперпарамагнитной частицы, можно определить ее константу магнитной анизотропии из выражения (1)

$$K_{\text{eff}} = \frac{k_B T_{\text{bloc}}}{V_{\text{nano}}} \ln \left(\frac{100}{\tau_0} \right).$$

Температура блокировки может быть оценена по изменению формы линии ФМР. Как это видно из

рис. 1, в интервале температур $200-220\,\mathrm{K}$ происходит существенное сужение резонансной линии ФМР и ее можно уверенно фиксировать в виде широкого синглета. Поэтому мы оценили значение T_{bloc} как равное $210\,\mathrm{K}$.

Для выяснения размеров и структуры полученных частиц гадолиния были проведены исследования образцов композита с помощью просвечивающей электронной микроскопии и методом рентгеновской дифракции на отражение.

На рис. 2 представлено изображение частиц гадолиния в порошкообразном композите ($\Pi C - SiO_2 -$ частицы Gd), полученное просвечивающей электронной микроскопией. Средний размер частиц порядка 270 ± 50 nm.

Метод рентгеновской дифракции на отражение позволил установить, что при содержании металлического Gd в образцах в количестве 5 вес.% (объемная доля около 1%) дифракционные линии уширены из-за наличия малых кристаллитов в частицах Gd с указанными выше размерами (рис. 3 — линии Gd сняты при большой экспозиции в каждой точке). Оценочные расчеты по уширению линии Gd дают для кристаллитов средний размер около $30\pm10\,\mathrm{nm}$.

Таким образом, если считать, что за резонансное поглощение микроволнового излучения ответственны кристаллиты со средним диаметром 30 nm, а температура блокировки этих суперпарамагнитных частиц равна 210 K, то оценочная величина константы магнитной анизотропии для отдельного кристаллита равна

$$K_{\rm eff} = \frac{k_B T_{\rm bloc}}{V_{\rm nano}} \ln \left(\frac{100}{\tau_0} \right) \sim 210 \times \ln \left(\frac{100}{\tau_0} \right),$$
$$K_{\rm eff} \sim (5.8 - 7.25) \times 10^3 \, \mathrm{J/m^3}.$$

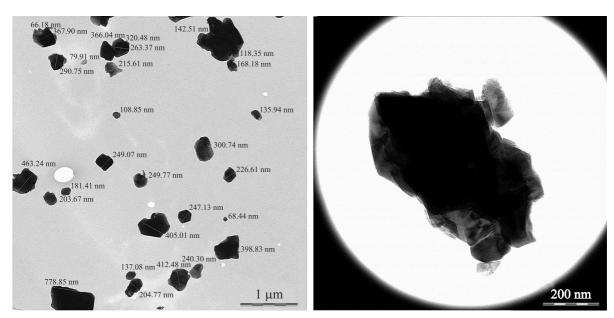
Известно, что эффективная константа магнитной анизотропии для наночастицы определяется вкладом двух составляющих — константой объемной магнитной анизотропии K_v и постоянной поверхностной магнитной анизотропии K_s , которые связаны формулой [11]

$$K_{\text{eff}} = K_v + \frac{6}{d} \times K_s$$
.

Константа K_v для наночастицы практически совпадает со значением константы магнитной анизотропии макромолекулярного образца с гексагональной плотной упаковкой, которая равна $K=K_1+K_2$, где $K_1=-8.5\cdot 10^{-2}\,\mathrm{J/cm^3}$, а $K_2=2.5\cdot 10^{-2}\,\mathrm{J/cm^3}$ [12]. Откуда следует, что $K_s=(0.62\pm0.03)\cdot 10^{-7}\,\mathrm{J/cm^3}$.

Известно, что ширина линии ФМР равна [13,14]

$$\Delta B_{\rm pp} = \Delta B_{\rm pp}^{(0)} L(x) G(x), \tag{2}$$


где

$$x = \frac{M_s V_{\text{nano}} B_{\text{eff}}}{k_B T} = \frac{K_{\text{eff}} V_{\text{nano}}}{k_B T},$$

 $\Delta B_{
m pp}^{(0)}$ — ширина линии ФМР при $T=0\,{
m K},\,L(x)$ — формула Ланжевена, G(x) — суперпарамагнитный усредняющий коэффициент. Они равны

$$G(x) = \frac{1}{L(x)} - \frac{10}{x} + \frac{35}{L(x) \times x^2} - \frac{105}{x^3},$$
 (3)

$$L(x) = \operatorname{cth}(x) - \frac{1}{x}. (4)$$

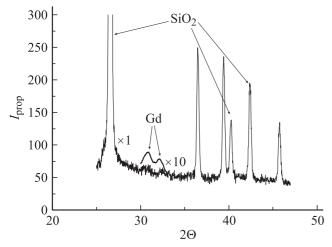
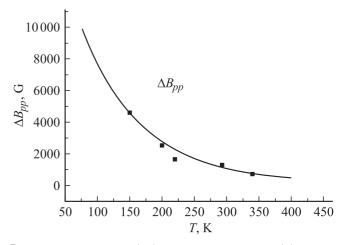


Рис. 2. Фотографии порошкообразного образца из смеси $\Pi C - SiO_2 -$ частицы Gd, полученные методом просвечивающей электронной микроскопии.


Используя формулу (2), получили достаточно хорошее совпадение теоретической кривой с экспериментальными значениями (что видно из рис. 4) при значениях $\Delta B_{\rm pp}^{(0)}=22\,000\,{\rm G}$ и при $K_{\rm eff}V_{\rm nano}==(M_sV_{\rm nano})B_{\rm eff}=\mu_{\rm nano}B_{\rm eff}=1000k_B$.

Таким образом, можно допустить, что магнитная система образца ($\Pi C-SiO_2-Gd$) сформирована магнитными нанокластерами–кристаллитами Gd с диаметром 30 ± 10 nm, которые обладают объемной и поверхностной магнитной анизотропией и при температуре (210 ± 10) K переходят в суперпарамагнитное состояние.

Было интересно выяснить, возможно ли реализовать моделирование магнитной динамики подобной системы в рамках уже известных моделей, описанных в рабо-

Рис. 3. Спектры рентгеновской дифракции на отражение от образцов из системы $\Pi C - SiO_2$ —частицы Gd, снятые при различных экспозициях.

Рис. 4. Теоретические (—) и экспериментальные (\blacksquare) зависимости ширины линии $\Delta B_{\rm pp}$ от температуры.

тах [13,14], и провести анализ формы линии ФМР для ансамбля подобных частиц.

Известно, что эффективное поле $B_{\rm eff}$, которое действует на однодоменную частицу, равно [13,14]

$$B_{\text{eff}} = B_{\text{app}} + B_a + B_d, \tag{5}$$

где $B_{\rm app}$ — это постоянное поле измерительного прибора, B_a — поле магнитной анизотропии, B_d — размагничивающее поле. Также известно [13,14], что из нескольких уравнений движения для намагниченности ферромагнетика в постоянном и микроволновом полях, наиболее близко приводящих к количественному согласию с экспериментом по наблюдению ФМР в металлических наночастицах, оказывается уравнение Ландау—

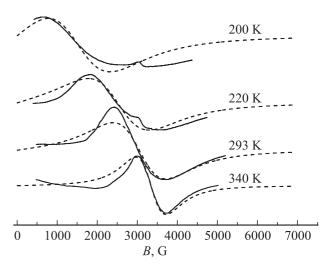
Лифшица с затуханием в форме Ландау-Лифшица:

$$\dot{\mathbf{M}} = -\gamma \mathbf{M} \wedge \mathbf{B}_{\text{eff}} - \frac{\lambda}{|\mathbf{M}|^2} \wedge (\mathbf{M} \wedge \mathbf{B}_{\text{eff}}), \tag{6}$$

где M — магнитный момент наночастицы, γ — гиромагнитное отношение, $\lambda > 0$ — коэффициент затухания. Линеаризованное решение уравнения (6) позволяет найти диагональную компоненту тензора высокочастотной магнитной восприимчивости. Мнимая часть этой компоненты имеет вид уравнения (7)

$$\chi'' = \frac{1}{\pi} \times \frac{MB_{\text{eff}}^2 \Delta B_{\text{pp}} [(B_{\text{eff}}^2 + \Delta B_{\text{pp}}^2) B^2 + B_{\text{eff}}^4]}{[B_{\text{eff}}^2 (B - B_{\text{eff}})^2 + \Delta B_{\text{pp}}^2 B^2] [B_{\text{eff}}^2 (B + B_{\text{eff}})^2 + \Delta B_{\text{pp}}^2 B^2]},$$
(7)

где B — изменяющееся в процессе эксперимента постоянное поле прибора. Уравнение (7) включает как правополярную (резонансную), так и левополярную (антирезонансную) составляющие переменного поля [13–15]. В формуле (7) $\Delta B_{\rm pp}$ характеризует ширину линии спектра однодоменной частицы в предположении, что ширина линии не является узкой, т.е. при предположении, что суммарная резонансная линия ФМР есть аддитивная сумма резонансных кривых отдельных доменов [13,14]. При этом фиксируемая в эксперименте линия ФМР есть первая производная по полю от χ'' , т.е. в эксперименте фиксируем $\frac{d\chi''}{dB}$.


Расчет χ'' по формуле Ландау—Лифшица (7) в настоящей работе преследовал цель добиться совпадения теоретической линии ФМР с полученной из эксперимента линией ФМР за счет варьирования только значения $B_{\rm eff}$ (таблица), а $\Delta B_{\rm pp}$ при этом выбирались как значения $\Delta B_{\rm pp}^{\rm theor}$ (см. таблицу), так как $\Delta B_{\rm pp}^{\rm theor}$ практически совпадают с $\Delta B_{\rm pp}^{\rm exp}$, за исключением значения при 220 К. В таблице сведены данные $\Delta B_{\rm pp}^{\rm exp}$, $\Delta B_{\rm pp}^{\rm theor}$, $B_{\rm rez}^{\rm exp}$, $B_{\rm eff}^{\rm exp}$

Видно (см. рис. 5), что экспериментальные спектры ФМР, снятые при температурах 200, 220, 293 и 340 К, достаточно хорошо совпадают со спектрами, полученными в виде первой производной $\frac{d\chi''}{dB}$ полуэмпирическим методом, описанным выше.

Из таблицы видно, что $B_{\rm rez}^{\rm exp}$ и $B_{\rm eff}$ различаются по своей величине. Эта разница, вероятно, является результатом суммарного вклада от B_a и B_d в величину $B_{\rm eff}$, описываемую формулой (5).

Экспериментальные и теоретические параметры спектров ферромагнитного резонанса

T,K	$\Delta B_{\rm pp}^{\rm exp}, {\rm G}$	$\Delta B_{\rm pp}^{\rm theor}, G$	$B_{\text{rez}}^{\text{exp}}, G$	$B_{\rm eff}$, G	$B_a + B_d$, G
340	725	787	3345	3470	130
293	1300	1171	3045	3470	435
220	1600	2290	2245	3165	705
200	2700	2780	1445	2800	1356
150	4600	4600	845	_	_

Рис. 5. Экспериментальные (—) и теоретические (---) спектры Φ MP.

Приведенный выше расчет показывает, что использование формулы Ландау—Лифшица эффективно даже в случае рассматриваемых частиц металлического Gd, которые представляют собой кластеры, состоящие из ансамбля отдельных кристаллитов. Однако адекватно описывать подобную систему возможно только при переходе ее свойств в суперпарамагнитное состояние. То есть только тогда, когда тепловые флуктуации достаточно сильны, чтобы можно было пренебречь взаимодействием суперспина частицы с окружением.

Заключение

Механическим воздействием на твердофазные смеси органических (полимерных) и неорганических веществ (в частности, частиц металлического Gd с размером около 100 μm) реализовано физико-химическое превращение исходного металла в частицы со средним размером порядка $270 \pm 50 \, \mathrm{nm}$, состоящие из кристаллитов размером 30 ± 10 nm. Проведенное исследование показало, что реализовать получение отдельных нанокристаллитов металла, внедренных в полимерную оболочку и обладающих суперпарамагнитными свойствами в определенном интервале температур, требует применения последующих воздействий, к которым с большой долей вероятности можно отнести ультразвуковое воздействие. Очевидно также и то, что при этом в состав исходных веществ необходимо вводить добавки, способствующие распаду ультрадисперсных частиц металла на отдельные нанокристаллиты.

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 09-03-00758.

Список литературы

[1] Ziolo R.F., Giannelis E.P., Weinstein B.A., O'Horo M.P., Gamguly B.N., Mehrotra V., Russel M.W., Huffman D.R. // Science, 1992. Vol. 257. P. 219.

- [2] Beecroft L.L., Ober C.K. // Chem. Mater. 1997. Vol. 9. P. 1302.
- [3] Corbierre M.K., Cameron N.S., Sutton M., Mochric S.G.J., Lurio L.B., Rühm A., Lennox R.B. // J. Am. Chem. Soc. 2001. Vol. 123. P. 10 411.
- [4] Yan Z.C., Huang Y.H., Zhang Y., Okumura H., Xiao J.Q., Stoyanov S., Skumzyev V., Hadjipanayis G.C., Nelson C. // Phys. Rev. 2003. Vol. 67. P. 054 403.
- [5] Nelson J.A., Bennett L.H., Wagner M.J. // J. Am. Chem. Soc. 2002. Vol. 124. N 12. P. 2979.
- [6] Aruna Mehta B.R., Malhotra L.K., Shivaprasad S.M. // Advanc. Function. Mater. 2005. Vol. 15. N 1. P. 131.
- [7] Rakhimov R.R., Jackson E.M., Hwang J.S., Prokof'ev A.I., Alexandrov I.A., Karmilov A.Y., Aleksandrov A.I. // J. Appl. Phys. 2004. Vol. 95. P. 7133.
- [8] Александров А.И., Кармилов Ф.Ю., Александров И.А., Чвалун С.Н., Метленкова И.Ю., Тальянова Е.В., Оболонкова Е.С., Прокофьев А.И. // Высокомолекулярные соединения. Сер. Б. 2004. Т. 46. С. 1105.
- [9] Rakhimov R.R., Hwang J.S., Solodovnikov S.P., Alexandrov I.A., Karmilov A.Yu., Shevchenko V.G., Obolonkova E.S., Aleksandrov A.I. // J. Appl. Phys. 2007. Vol. 101. P. 09N504.
- [10] Brown W.F. // Phys. Rev. B. 1963. Vol. 30. P. 1677.
- [11] Bodker F., Morup S., Linderoth S. // Phys. Rev. Lett. 1994.Vol. 72. N 2. P. 282.
- [12] Graham C.D. // J. Appl. Phys. 1963. Vol. 33. P. 1341.
- [13] Berger R., Bissey J.-C., Kliava J. // J. Phys.: Condens. Matter. 2000. Vol. 12. P. 9347.
- [14] Berger R., Bissey J.-C., Kliava J., Daubric H., Estournes C. // J. Magn. Magn. Mater. 2001. Vol. 234. P. 535.
- [15] Landau L., Lifshitz E. // Sow. Phys. 1935. Vol. 8. P. 153.