09,18

Природа низкочастотной полосы в спектрах комбинационного рассеяния света многостенных углеродных нанотрубок, синтезированных методом CVD

© В.В. Болотов, В.Е. Кан, М.Ю. Бирюков, Е.В. Князев, Р.В. Шелягин, П.М. Корусенко, С.Н. Несов, Ю.А. Стенькин

Омский филиал Института физики полупроводников им. А.В. Ржанова СО РАН, Омск, Россия

E-mail: kan@obisp.oscsbras.ru

(Поступила в Редакцию 15 января 2013 г.)

Изучена природа низкочастотной полосы $(250-300\,\mathrm{cm}^{-1})$ в спектрах комбинационного рассеяния света (КРС) многостенных углеродных нанотрубок (МУНТ), полученных методом CVD. Исследования методами спектроскопии КРС, просвечивающей электронной микроскопии, Оже-спектроскопии, рентгеновской фото-электронной спектроскопии (РФЭС) слоев МУНТ после химических и термических обработок позволяют предположить, что данная полоса относится к радиальным колебаниям атомов углерода во внутренних стенках МУНТ.

Работа выполнена при частичной поддержке гранта РФФИ 12-08-00533.

1. Введение

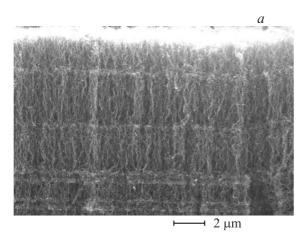
Углеродные нанотрубки (УНТ) являются одним из перспективных материалов для многих отраслей промышленности, таких как твердотельной электроники, сенсорной техники, в производстве материалов, обладающих уникальными электронными, механическими свойствами и т. д.

Во многом свойства нанотрубок определяются свойствами графена, образующего их стенки, однако они обладают рядом индивидуальных особенностей, возникающих из-за одномерной структуры УНТ. В оптических свойствах УНТ такими особенностями являются характерный вид G-полосы и присущая только УНТ полоса радиальных дышащих мод (RBM) в спектрах комбинационного рассеяния света (КРС) одностенных УНТ (ОУНТ) [1]. Особого внимания заслуживает полоса RBM в спектрах ОУНТ, относящаяся к A_{1g} колебаниям атомов углерода в графеновой плоскости, запрещенная в графите и проявляющаяся в спектрах ОУНТ благодаря искривлению графеновой плоскости. Расчеты и экспериментальные данные говорят об обратной пропорциональности частоты полосы RBM и диаметра нанотрубок [1]. Известно, что данная полоса проявляется не только в спектрах КРС ОУНТ, но может наблюдаться и в спектрах многостенных УНТ (МУНТ) высокого качества, получаемых электродуговым методом [2].

Настоящая работа посвящена исследованию природы низкочастотной полосы КРС, наблюдаемой в спектрах слоев МУНТ, полученных методом СVD. Слои МУНТ исследовались методами просвечивающей электронной микроскопии (ПЭМ), растровой электронной микроскопии (РЭМ), спектроскопии КРС.

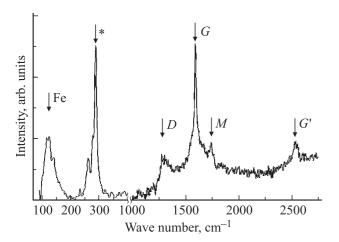
2. Методика эксперимента

Слои УНТ синтезировались по оригинальной методике, разработанной Окотрубом и коллегами (ИНХ СО РАН, [3]), основанной на каталитическом разложении паров углеводородов. В качестве подложек использовался монокристаллический кремний с предварительно выращенным слоем термоокисла. Температура в зоне реакции составляла $800-900^{\circ}$ С. В состав реакционной смеси входили аргон (газ-носитель), ацетонитрил (углеводородное сырье), ферроцен (прекурсор для частиц железа, играющих роль катализатора роста УНТ). Синтезируемые таким образом слои УНТ были легированы азотом. Концентрация атомов азота в стенках УНТ составляла 1-2% [3].


Термические обработки производились в трубчатой печи на воздухе. Химическая обработка производилась методом погружения образцов в концентрированную соляную кислоту (HCl, 30%).

Спектры KPC измерялись на рамановском Фурьеспектрометре BRUKER RFS-100/s при возбуждении Nd: YAG лазером ($\lambda=1064\,\mathrm{nm}$) с мощностью до 1000 mV в квазиобратной геометрии. Спектральное разрешение составляло $3\,\mathrm{cm}^{-1}$, диапазон — $3500-2000\,\mathrm{cm}^{-1}$.

Исследования в РЭМ осуществлялись на растровом электронном микроскопе JSM 6610-LV (JEOL), исследования в ПЭМ — на просвечивающем микроскопе JEM 2100 (JEOL). Исследования методом энергодисперсионного анализа (ЭДА) производились на установке INKA-250 Oxford Instruments, входящей в состав электронного микроскопа JEOL JEM 2100.

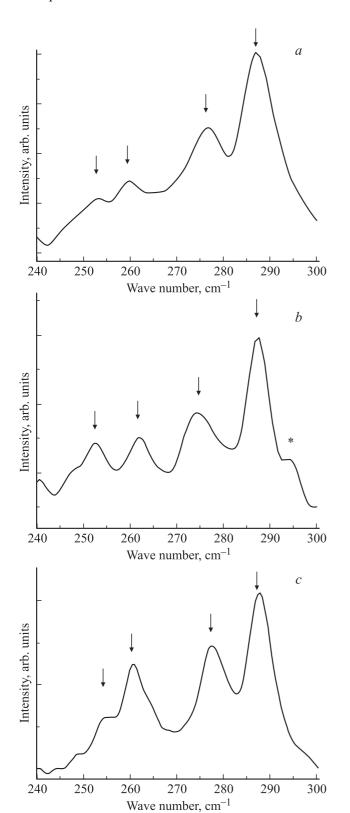

3. Результаты и обсуждение

Исследования в РЭМ показали, что в процессе синтеза формируется слой МУНТ, ориентированных перпен-

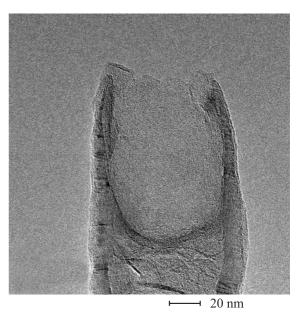
Рис. 1. Изображения слоев МУНТ, полученные методом: a - PЭM; b - ПЭМ высокого разрешения.

Рис. 2. Спектр КРС исходного слоя МУНТ. Символом * отмечена исследуемая полоса.

Положения пиков КРС в спектрах слоев МУНТ при термическом и химическом воздействии


Образец	Пик 1,	Пик 2,	Пик 3,	Пик 4,
	cm ⁻¹	cm ⁻¹	cm ⁻¹	cm ⁻¹
Исходный После термической	252	259	276	287
	252	261	275	287
обработки 390°C 1.5 h После обработки в HCl (30%), 1.5 h	252	259	275	287

дикулярно подложке (рис. 1,a) с внешними диаметрами $5-100\,\mathrm{nm}$ (рис. 1,b). Изображения в ПЭМ высокого разрешения показывают присутствие в слое, кроме многостенных УНТ с бамбукообразной структурой, аморфного углерода, равномерно распределенного по внешней поверхности МУНТ, а также значительное количество округлых частиц, расположенных преимущественно на торцах нанотрубок и изолированных от окружающей среды слоем углерода. Исследование химического состава методом ЭДА в данных областях показало присутствие неокисленного железа, из чего можно сделать вывод о принадлежности этих частиц катализатору.


В спектрах КРС слоев МУНТ (рис. 2) в области, характерной для RBM, обнаружена ярко выраженная полоса в диапазоне $200-300\,\mathrm{cm}^{-1}$ (см. таблицу, [4]). Кроме того, присутствуют пики D- и G-полос в диапазоне $1000-2000~{\rm cm}^{-1}$, дефект-индуцированная М-полоса при $1720~{\rm cm}^{-1}$ [5], обертон D-полосы — G'-полоса при 2540 ст⁻¹, проявляющаяся в высокоупорядоченных графитоподобных материалах [5]. В среднечастотном диапазоне присутствует широкая полоса с максимумом при $1070\,\mathrm{cm^{-1}}$ и полушириной $350\,\mathrm{cm^{-1}}$, возможно, вызванная присутствием в слое аморфного углерода (для наглядности вычтена из спектра) [6]. В низкочастотном диапазоне присутствует полоса с максимумом при $125\,\mathrm{cm}^{-1}$, вероятно, относящаяся к частицам катализатора, так как ее положение сходно с наблюдаемой полосой КРС в спектрах железа, интеркалированного в двустенных УНТ [7]. В спектрах слоев МУНТ, после термообработок наблюдается узкий пик при 303 cm⁻¹, который относится к кремниевой подложке (КРС на акустических фононах в кристаллическом кремнии, [8]).

В области RBM-колебаний наблюдаются несколько пиков, располагающихся в диапазоне $250-300\,\mathrm{cm}^{-1}$, наиболее интенсивный из которых имеет максимум около $287\,\mathrm{cm}^{-1}$ (рис. 2,3,a, см. таблицу). Проявление RBM в КРС характерно для ОУНТ, однако данные ПЭМ и РЭМ свидетельствуют о присутствии в слое УНТ с внешними диаметрами от 5 до $100\,\mathrm{nm}$, в строении которых отчетливо видна многостенная структура (см. рис. 1,b). Известно, что полоса RBM может проявляться и в спектрах КРС для МУНТ. В таком случае они соответствуют колебаниям атомов в стенках отдельных нанотрубок в структуре МУНТ и для оценки диаметров нанотрубок применимо приближение для ОУНТ [2,9].

В этом приближении наблюдаемой полосе RBM (см. таблицу) соответствуют колебания нанотрубок с диаметром $0.82-1.34\,\mathrm{nm}$. Так как в области RBM-коле-

Рис. 3. Спектры КРС слоя МУНТ в области $200-300\,\mathrm{cm}^{-1}$: a — исходный слой; b — после ТО 390° С, $1.5\,\mathrm{h}$ на воздухе; c — после обработки в HCl $(30\%, 60\,\mathrm{h})$.

Рис. 4. Изображения в ПЭМ высокого разрешения МУНТ в слое после обработки в HCl.

баний рассматриваемых спектров отсутствуют более высокочастотные полосы, то можно предположить, что наблюдаемые пики КРС вызваны колебаниями атомов углерода во внутренних стенках МУНТ.

Присутствие полосы RBM в спектрах КРС для многостенных УНТ наблюдается чаще всего в спектрах нанотрубок, полученных электродуговым способом [2]. Для случая получения МУНТ методом CVD, в рассматриваемом диапазоне, кроме RBM, могут проявляться полосы КРС оксидов железа, присутствующих в слоях благодаря используемому катализатору. В нашем случае для пиков КРС в диапазоне $250-300\,\mathrm{cm}^{-1}$ экспериментально установлены следующие факты и закономерности.

- 1. Пики в рассматриваемой полосе в области $250-300\,\mathrm{cm}^{-1}$ обладают малой полушириной $(5-10\,\mathrm{cm}^{-1})$ и по положению отличаются от пиков КРС в спектрах оксидов железа (присутствующих в исследуемых слоях). Наиболее близким по положению к рассматриваемым пикам КРС является пик в спектрах гематита (α -Fe₂O₃), расположенный при $293\,\mathrm{cm}^{-1}$ с полушириной более $20\,\mathrm{cm}^{-1}$ [10,11].
- 2. Исследования в ПЭМ показали наличие частиц катализатора (железа) на торцах МУНТ, закрытых слоем аморфного углерода (см. вставку на рис. 1, b). Исследования слоев МУНТ методами Оже-спектроскопии и РФЭС показали наличие в них чистого железа, что объясняется изоляцией частиц катализатора от окружающей среды слоем углерода. Анализ спектров Оже и РФЭС при ТО на воздухе при 390°С показал увеличение доли кислорода по отношению к железу в слоях, а также сдвиг пиков, относящихся к железу, что говорит о протекающем процессе окисления частиц железа. При этом в спектрах КРС положение и форма рассматриваемой полосы в области RBM не меняется (см. рис. 3, b, табл.).

- 3. При обработке слоя МУНТ в соляной кислоте (HCl, 30%) в течение 60 часов были удалены крупные частицы катализатора (Fe) на концах МУНТ (данные ПЭМ, см. рис. 4), однако в спектрах КРС гашения полосы в области RBM не произошло, ее положение и полуширина компонент не изменились (см. рис. 3, c, табл.).
- 4. Наличие нанотрубок с диаметром порядка 1 nm установлено исследованиями в ПЭМ, которые выявили присутствие в слое тонких МУНТ (5 nm и менее), содержащих, возможно, внутренние слои с диаметром около 1 nm.

Таким образом, приведенные экспериментальные данные позволяют нам предположить, что наблюдаемая в спектрах КРС полоса при $250-300\,\mathrm{cm^{-1}}$ относится к RBM колебаниям атомов углерода внутренних слоев МУНТ.

Список литературы

- [1] M.S. Dresselhaus, P.C. Eklund. Adv. Phys. 49, 705 (2000).
- [2] J.M. Benoit, J.P. Buisson, O. Chauvet, C.Godon. S. Lefrant. Phys. Rev. B 66, 073 417(4) (2002).
- [3] А.Г. Кудашов, А.В. Окотруб, Н.Ф. Юданов, А.И. Романенко, Л.Г. Булушева, А.Г. Абросимов, А.Л. Чувилин, Е.М. Пажетов, А.И. Боронин. ФТТ **44**, 626 (2002).
- [4] A. Jorio, M.A. Pimenta, A.G. Souza Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus. New J. Phys. 5, 139 (2003).
- [5] A. Jorio, R. Saito, G. Dresselhaus, M. Dresselhaus. Raman spectroscopy in graphene related systems. Willey-VCH, Weinheim (2011). 329 p.
- [6] A.C. Ferrari, J. Robertson. Phys. Rev. B 64, 075414 (2001).
- [7] J. Jorge. Chem. Phys. Lett. 457, 347 (2008).
- [8] P.A. Temple, C.E. Hathaway. Phys. Rev. B 7, 3685 (1973).
- [9] X. Zhao, Y. Ando, L.-C. Qin, H. Kataura, Y. Maniwa, R. Saito. Appl. Phys. Lett. 81, 2550 (2002).
- [10] S. Wang, W. Wang, W. Wang, Z. Jiao, J. Liu, Y. Qian. Sensors and Actuators B 69, 22 (2000).
- [11] D.L.A. de Faria, F.N. Lopes. Vibrational Spectroscopy **45**, 117 (2007).